Development of 17-4 PH Stainless Steel for Low-Power Selective Laser Sintering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Selection
2.2. Experimental Methods
3. Results and Discussion
3.1. Material Characterization
3.2. Printing Parameters
3.3. Debinding and Sintering Parameters
3.4. Microscopic Observation and Micro-CT Scan
3.5. Heat Treatment and Application
4. Process Comparison
- Materials and particle size: The core–shell powder technology provides more versatility in material choices than SLS and BJT processes. SLS has a finer powder particle size (D90 < 22 µm), offering more precision and potentially higher resolution compared to SLM, which has a larger particle size (16–63 µm). BJT also uses a similar powder size to SLS, but the precision and application may vary based on the material and binder interaction. The SLS process in this study can use atomized powder or lower-cost water-atomized powder.
- Mechanical properties: While SLM provides the highest tensile strength (1310 MPa) and sintered density (99.87%), SLS is more advantageous in terms of flexibility with different material types and ease of post-processing. With a tensile strength of 931.89 MPa and a sintered density of 97.3%, SLS offers a good balance of material properties for applications requiring plastic and composite materials.
- Post-processing: SLS benefits from an acid catalysis post-processing method, which is less labor-intensive than BJT’s hot degreasing and more effective than SLM’s lack of post-processing.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molotnikov, A.; Kingsbury, A.; Brandt, M. Current State and Future Trends in Laser Powder Bed Fusion Technology. In Fundamentals of Laser Powder Bed Fusion of Metals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 621–634. ISBN 9780128240908. [Google Scholar]
- Singh, R.; Gupta, A.; Tripathi, O.; Srivastava, S.; Singh, B.; Awasthi, A.; Rajput, S.K.; Sonia, P.; Singhal, P.; Saxena, K.K. Powder Bed Fusion Process in Additive Manufacturing: An Overview. Mater. Today Proc. 2020, 26, 3058–3070. [Google Scholar] [CrossRef]
- Chen, A.N.; Wu, J.M.; Liu, K.; Chen, J.Y.; Xiao, H.; Chen, P.; Li, C.H.; Shi, Y.S. High-Performance Ceramic Parts with Complex Shape Prepared by Selective Laser Sintering: A Review. Adv. Appl. Ceram. 2018, 117, 100–117. [Google Scholar] [CrossRef]
- Bhat, C.; Prajapati, M.J.; Kumar, A.; Jeng, J.Y. Additive Manufacturing-Enabled Advanced Design and Process Strategies for Multi-Functional Lattice Structures. Materials 2024, 17, 3398. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of Selective Laser Sintering Materials for Different Applications. Rapid Prototyp. J. 2015, 21, 630–648. [Google Scholar] [CrossRef]
- Schmid, M.; Amado, A.; Wegener, K. Polymer Powders for Selective Laser Sintering (SLS). In Proceedings of the AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, USA, 2015; Volume 1664. [Google Scholar]
- Kruth, J.P.; Wang, X.; Laoui, T.; Froyen, L. Lasers and Materials in Selective Laser Sintering. Assem. Autom. 2003, 23, 357–371. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, V.S.; Sachdeva, A. Progress in Selective Laser Sintering Using Metallic Powders: A Review. Mater. Sci. Technol. 2016, 32, 760–772. [Google Scholar] [CrossRef]
- Anand, M.; Das, A.K. Issues in Fabrication of 3D Components through DMLS Technique: A Review. Opt. Laser Technol. 2021, 139, 106914. [Google Scholar] [CrossRef]
- Yan, C.Z.; Shi, Y.S.; Yang, J.S.; Liu, J.H. Preparation and Selective Laser Sintering of Nylon-Coated Metal Powders for the Indirect SLS Process. Rapid Prototyp. J. 2009, 15, 355–360. [Google Scholar] [CrossRef]
- Li, M.; Du, W.; Elwany, A.; Pei, Z.; Ma, C. Metal Binder Jetting Additive Manufacturing: A Literature Review. J. Manuf. Sci. Eng. Trans. ASME 2020, 142, 090801. [Google Scholar] [CrossRef]
- Kutlu, Y.; Wencke, Y.L.; Luinstra, G.A.; Esen, C.; Ostendorf, A. Directed Energy Deposition of PA12 Carbon Nanotube Composite Powder Using a Fiber Laser. Procedia CIRP 2020, 94, 128–133. [Google Scholar] [CrossRef]
- Du, W.; Ren, X.; Pei, Z.; Ma, C. Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density. J. Manuf. Sci. Eng. Trans. ASME 2020, 142, 040801. [Google Scholar] [CrossRef]
- Chao, Y.; Liu, S.; Yeh, D.; Kumar, A.; Tsai, J.; Prajapati, M.J.; Jeng, J. Development of Carbon Black Coating on TPU Elastic Powder for Selective Laser Sintering. Materials 2024, 17, 3363. [Google Scholar] [CrossRef]
- Material Data Sheet—FlexLine. EOS StainlessSteel 17-4PH. Available online: https://wipro-3d.com/pdf/SS-17-4-PH.pdf (accessed on 7 January 2025).
- Desktop Metal—17-4PH Stainless Steel. Available online: https://www.desktopmetal.com/resources/174-stainless-steel (accessed on 7 January 2025).
Binder Role | Component | Brand | Model | Density (g/cm3) | Melting Point (°C) |
---|---|---|---|---|---|
Filler | POM | Asahi Kasei | 9520 | 1.41 | 165~175 |
Skeleton | HDPE | Formosa Plastics | 8230 | 0.952 | 131 |
Interface activity | SA | First Chemical | First Chemical | 0.9408 | 69.3 |
No. | Preheating Temperature (°C) | Laser Fluence (mJ/mm2) | Weight (g) | Density (g/cm3) |
---|---|---|---|---|
A | 130 | 19.28 | 1.33 | 3.00 |
B | 35.87 | 1.62 | 3.16 | |
C | 52.46 | 1.72 | 3.20 | |
D | 140 | 19.28 | 1.83 | 3.27 |
E | 35.87 | 1.89 | 3.61 | |
F | 52.46 | 2.14 | 3.56 |
Density (g/cm3) | Hardness (HRC) | Tensile Strength (MPa) | |
---|---|---|---|
Test value | 7.57 | 14.8 | 605.64 |
Theoretical value | 7.8 | 26 | 932 |
Proportion (%) | 97 | 57 | 65 |
Green Part | Brown Part | Silver Part | |
---|---|---|---|
Carbon content | 8.24 wt% | 5.32 wt% | 2.64 wt% |
Oxygen content | 3.45 wt% | 2.90 wt% | 2.31 wt% |
Before Heat Treatment | After Heat Treatment | Relative Value (%) | |
---|---|---|---|
Tensile Strength (MPa) | 605.64 | 931.89 | 53.87% |
Hardness (HRC) | 14.8 | 30.76 | 107.84% |
SLM [15] | SLS (This Study) | BJT [16] | ||
---|---|---|---|---|
Equipment | Forming method | Laser | Laser | Adhesive and light exposure |
Heating module | One | One | Two | |
Material | Printing materials | Metal powder | Plastic and composite materials | Inorganic powder and binder |
Powder type | Spherical shape | Unlimited | Spherical shape | |
Particle size range | 16~63 µm | D90 < 22 µm | D90 < 22 µm | |
Post-processing | Degreasing method | None | Acid catalysis | Hot degreasing |
Mechanical properties (H900) | Tensile strength | 1310 MPa | 931.89 MPa | 1275 MPa |
Hardness (HRC) | 41 | 30.76 | 41.9 | |
Sintered density | 99.87% | 97.3% | 97.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, Y.-D.; Liu, S.-C.; Chen, F.-L.; Prajapati, M.J.; Kumar, A.; Tsai, J.-T.; Jeng, J.-Y. Development of 17-4 PH Stainless Steel for Low-Power Selective Laser Sintering. Materials 2025, 18, 447. https://doi.org/10.3390/ma18020447
Chao Y-D, Liu S-C, Chen F-L, Prajapati MJ, Kumar A, Tsai J-T, Jeng J-Y. Development of 17-4 PH Stainless Steel for Low-Power Selective Laser Sintering. Materials. 2025; 18(2):447. https://doi.org/10.3390/ma18020447
Chicago/Turabian StyleChao, Yu-Deh, Shu-Cheng Liu, Fu-Lin Chen, Mayur Jiyalal Prajapati, Ajeet Kumar, Jung-Ting Tsai, and Jeng-Ywan Jeng. 2025. "Development of 17-4 PH Stainless Steel for Low-Power Selective Laser Sintering" Materials 18, no. 2: 447. https://doi.org/10.3390/ma18020447
APA StyleChao, Y.-D., Liu, S.-C., Chen, F.-L., Prajapati, M. J., Kumar, A., Tsai, J.-T., & Jeng, J.-Y. (2025). Development of 17-4 PH Stainless Steel for Low-Power Selective Laser Sintering. Materials, 18(2), 447. https://doi.org/10.3390/ma18020447