FSW Optimization: Prediction Using Polynomial Regression and Optimization with Hill-Climbing Method
Abstract
:1. Introduction
2. Materials and Methods
Evaluation of the Experimental Model
3. Creating a Polynomial Regression Model
3.1. Principles of Polynomial Regression
3.2. ANOVA for Fifth Model
4. Results
4.1. Model Diagnostics
4.2. Principles of Hill-Climbing Algorithm
5. Optimization
6. Confirmation Test
6.1. Macro and Microstructure Analysis
- Region 1 (Base Metal (BM), Heat-Affected Zone (HAZ), Thermomechanically Affected Zone (TMAZ), and Stir Zone (SZ)). This region shows the transition from the BM through the HAZ and the TMAZ into the SZ. The microstructure shows a gradual refinement of the grains from the BM to the SZ, indicating effective thermal and mechanical processing during FSW. The distinct zones highlight the gradient of thermal and mechanical effects on the material [51].
- Region 2 (TMAZ, HAZ): Similar to Region 1, this region provides a detailed view of the microstructural changes within the TMAZ and the HAZ. Grain refinement is evident as the material moves toward the stir zone, showing the progressive effect of the welding process on the material structure. The shape of the grains is a direct result of the compression process, which flattens them into small fractions and causes further grain refinement. A similar evolution of the microstructure was shown in the work of Orlowska et al. [52].
- Region 3 (SZ): The stir zone exhibits a uniform and refined grain structure, indicating effective material mixing and recrystallization during the welding process. This region confirms the high quality of the stir zone, which is critical to the integrity and strength of the weld.
- Region 4 (SZ, TMAZ, HAZ): This region illustrates the microstructural characteristics at the interface between the stir zone (SZ), thermomechanically affected zone (TMAZ), and heat-affected zone (HAZ). The boundaries are well defined and demonstrate the effectiveness of the welding parameters in producing a strong joint with distinct zones that contribute to the overall mechanical properties of the weld.
- Region 5 (SZ—Hooking): This section shows a hooking defect within the SZ. The hooking defect is characterized by a curved, hook-like shape at the interface between the joined materials. [53]. Despite the presence of this defect, the overall grain structure remains consistent with the expected characteristics of a properly welded stir zone. The hooking defect is identified during mechanical testing as a potential crack initiation site that can compromise the structural integrity of the weld.
- Region 6 (SZ—Material Flow Lines): The microstructure in this region shows material flow lines within the stir zone (SZ). The visible lines are likely to flow lines of the material, with changes in shading possibly reflecting the presence of “onion rings” that are characteristic of FSW. These features indicate effective stirring and mixing of the material without the presence of cracks, confirming the overall quality of the weld in this region [54].
6.2. The Microhardness Analysis
7. Discussion
8. Conclusions
- The findings of the conducted research led to the following conclusions:
- A fifth-degree polynomial regression model was developed to predict the maximum tensile load (MTL) of friction stir welded (FSW) lap joints, achieving high predictive accuracy with minimal overfitting.
- The experimental results demonstrated a range of MTL values, from 1912 N to 15,336 N, across the tested ranges of spindle speed and welding speed.
- The hill-climbing optimization algorithm identified the optimal welding parameters, which were a spindle speed of 1100 rpm and a welding speed of 332 mm/min, resulting in an MTL of 16,852 N.
- The results of the response surface analysis corroborate the significant interaction between spindle speed and welding speed, delineating regions of maximum MTL values.
- The confirmation tests served to validate the optimized parameters, which were shown to achieve high load capacities and to demonstrate robust weld quality through macro- and microstructural analyses.
- The microhardness profile revealed a peak hardness of approximately 210 HV in the weld center, which can be attributed to grain refinement and the absence of phase dissolution. This indicates that the joint exhibits superior strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, W.M.; Nicholas, E.D. Friction stir welding for the transportation industries. Mater. Des. 1997, 18, 269–273. [Google Scholar] [CrossRef]
- Mishra, R.S. Friction Stir Welding and Processing: Science and Engineering; Springer Cham: New York, NY, USA, 2014. [Google Scholar]
- He, X.; Gu, F.; Ball, A. A review of numerical analysis of friction stir welding. Prog. Mater. Sci. 2014, 65, 1–66. [Google Scholar] [CrossRef]
- Chumaevskii, A.; Amirov, A.; Ivanov, A.; Rubtsov, V.; Kolubaev, E. Friction Stir Welding/Processing of Various Metals with Working Tools of Different Materials and Its Peculiarities for Titanium Alloys: A Review. Metals 2023, 13, 970. [Google Scholar] [CrossRef]
- Ahmed, S.; Rahman, R.; Awan, A.; Ahmad, S.; Akram, W.; Amjad, M.; Yahya, M.; Rahimian Koloor, S.R. Optimization of Process Parameters in Friction Stir Welding of Aluminum 5451 in Marine Applications. J. Mar. Sci. Eng. 2022, 10, 1539. [Google Scholar] [CrossRef]
- Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives. Mach. Learn. Knowl. Extr. 2019, 1, 10. [Google Scholar] [CrossRef]
- Sabry, I.; Gadallah, N.; Abu-Okail, M. Optimization of friction stir welding parameters using response surface methodology. IOP Conf. Ser. Mater. Sci. Eng. 2020, 973, 012017. [Google Scholar] [CrossRef]
- Kesharwani, R.K.; Panda, S.K.; Pal, S.K. Multi Objective Optimization of Friction Stir Welding Parameters for Joining of Two Dissimilar Thin Aluminum Sheets. Procedia Mater. Sci. 2014, 6, 178–187. [Google Scholar] [CrossRef]
- Verma, S.; Misra, J.P.; Singh, J.; Batra, U.; Kumar, Y. Prediction of tensile behavior of FS welded AA7039 using machine learning. Mater. Today Commun. 2021, 26, 101933. [Google Scholar] [CrossRef]
- Maleki, E. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy. IOP Conf. Ser. Mater. Sci. Eng. 2015, 103, 012034. [Google Scholar] [CrossRef]
- Kumar, S.D.; Pugazhenthi, R.; Ajith Arul Danial, S.; Swaminathan, G. Optimization of Dissimilar aluminum alloy by Friction stir welding Process Control variables with Multiple Objectives. J. Phys. Conf. Ser. 2021, 2040, 012042. [Google Scholar] [CrossRef]
- Khourshid, A.M.; El-Kassas, A.M.; Hindawy, H.M.; Sabry, I. Optimization of Friction Stir Welding Parameters for Joining Aluminum Pipes Using Regression Analysis. RG Rep. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Cho, M.; Gim, J.; Kim, J.H.; Kang, S. Development of an Artificial Neural Network Model to Predict the Tensile Strength of Friction Stir Welding of Dissimilar Materials Using Cryogenic Processes. Appl. Sci. 2024, 14, 9309. [Google Scholar] [CrossRef]
- Albaijan, I.; Ahmed, M.M.Z.; El-Sayed Seleman, M.M.; Touileb, K.; Habba, M.I.A.; Fouad, R.A. Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology. Materials 2022, 15, 6886. [Google Scholar] [CrossRef] [PubMed]
- Sabry, I.R.S.; Idrisi, A.H.; Mourad, A.H.I. Friction Stir Welding Process Parameters Optimization Through Hybrid Multi-Criteria Decision-Making Approach. Int. Rev. Model. Simul. (IREMOS) 2021, 14, 75–84. [Google Scholar] [CrossRef]
- Jasim, S.; Saleh, N.; Jasim, R. Numerical Simulation and Optimization of Friction Stir Welding Parameters. Basrah J. Eng. Sci. 2023, 23, 72–80. [Google Scholar] [CrossRef]
- Marian, M.; Tremmel, S. Current Trends and Applications of Machine Learning in Tribology—A Review. Lubricants 2021, 9, 86. [Google Scholar] [CrossRef]
- Prabhu, S.R.; Shettigar, A.; Herbert, M.A.; Rao, S.S. Parameter investigation and optimization of friction stir welded AA6061/TiO2 composites through TLBO. Weld World 2022, 66, 93–103. [Google Scholar] [CrossRef]
- Mishra, A.; Sefene, E.M.; Tsegaw, A.A. Process parameter optimization of Friction Stir Welding on 6061AA using Supervised Machine Learning Regression-based Algorithms. arXiv 2021, arXiv:2109.00570. [Google Scholar]
- Constantin, M.A.; Iordache, M.D.; Nitu, E.L.; Diakhaté, M.; Demmouche, Y.; Dhondt, M.; Bădulescu, C. An efficient strategy for 3D numerical simulation of friction stir welding process of pure copper plates. IOP Conf. Ser. Mater. Sci. Eng. 2020, 916, 012021. [Google Scholar] [CrossRef]
- Buffa, G.; Fratini, L.; Ingarao, G.; Di Lorenzo, R.; Arregi, B.; Luz Penalva, M. An optimization procedure for the friction stir welding FEM model of corner fillet joints. In Proceedings of the 14th International Conference on Metal Forming, METAL FORMING 2012, Krakow, Poland, 16–19 September 2012; Volume 2012, pp. 567–570. Available online: https://www.researchgate.net/publication/288560277_An_optimization_procedure_for_the_friction_stir_welding_FEM_model_of_corner_fillet_joints (accessed on 19 December 2024).
- Myśliwiec, P.; Kubit, A.; Szawara, P. Optimization of 2024-T3 Aluminum Alloy Friction Stir Welding Using Random Forest, XGBoost, and MLP Machine Learning Techniques. Materials 2024, 17, 1452. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Mountakis, N.; Kechagias, J.D. Optimization of Friction Stir Welding Parameters in Hybrid Additive Manufacturing: Weldability of 3D-Printed Poly(methyl methacrylate) Plates. J. Manuf. Mater. Process. 2022, 6, 77. [Google Scholar] [CrossRef]
- Sambath, Y.; Natarajan, R.; Babu, P.K.; Raju, K.R.; Alahmadi, A.A.; Alwetaishi, M.; Khan, S.A. Comparative Analysis of Predictive Modeling Techniques for Mechanical Properties in Dissimilar Friction Stir Welding of AA6061 and AZ31B. J. Mater. Eng. Perform. 2024, in press. [Google Scholar] [CrossRef]
- Chadha, U.; Selvaraj, S.K.; Gunreddy, N.; Babu, S.; Mishra, S.; Padala, D.; Shashank, M.; Mathew, R.M.; Kishore, S.R.; Panigrahi, S.; et al. A Survey of Machine Learning in Friction Stir Welding, including Unresolved Issues and Future Research Directions. Mater. Des. Process. Commun. 2022, 2022, 1–28. [Google Scholar] [CrossRef]
- Rana, A.; Hooda, N.; Kumar, R.; Deshwal, S.; Gahlot, P.; Phanden, R.K. Friction stir welding process parameters optimization and weld structure analyses to study mechanical characteristics using hybrid artificial intelligent soft computing techniques. Int. J. Interact. Des. Manuf. (IJIDeM) 2024, in press. [Google Scholar] [CrossRef]
- Fuse, K.; Venkata, P.; Reddy, R.M.; Bandhu, D. Machine learning classification approach for predicting tensile strength in aluminium alloy during friction stir welding. Int. J. Interact. Des. Manuf. (IJIDeM) 2024, in press. [Google Scholar] [CrossRef]
- Elsheikh, A.H. Applications of machine learning in friction stir welding: Prediction of joint properties, real-time control and tool failure diagnosis. Eng. Appl. Artif. Intell. 2023, 121, 105961. [Google Scholar] [CrossRef]
- Prabhakar, D.A.P.; Korgal, A.; Shettigar, A.K.; Herbert, M.A.; Chandrashekharappa, M.P.G.; Pimenov, D.Y.; Giasin, K. A Review of Optimization and Measurement Techniques of the Friction Stir Welding (FSW) Process. J. Manuf. Mater. Process. 2023, 7, 181. [Google Scholar] [CrossRef]
- Kubit, A.; Trzepieciński, T.; Kluz, R.; Ochałek, K.; Slota, J. Multi-Criteria Optimisation of Friction Stir Welding Parameters for EN AW-2024-T3 Aluminium Alloy Joints. Materials 2022, 15, 5428. [Google Scholar] [CrossRef] [PubMed]
- Yaknesh, S.; Rajamurugu, N.; Babu, P.K.; Subramaniyan, S.; Khan, S.A.; Saleel, C.A.; Soudagar, M.N.-E.-A. A technical perspective on integrating artificial intelligence to solid-state welding. Int. J. Adv. Manuf. Technol. 2024, 132, 4223–4248. [Google Scholar] [CrossRef]
- Rao, T.B.; Rao, C.S.P.; Baki, N. Multi-objective optimisation of friction stir welding parameters: Integration of FEM and NSGA-II. Int. J. Manuf. Res. 2021, 16, 82–101. [Google Scholar] [CrossRef]
- Babalola, S.A.; Dutta, S.; Murmu, N.C.; Akinnuli, B.O. In-situ process reliability monitoring strategy for friction stir welding machine. Mater. Today Proc. 2022, 66, 3883–3889. [Google Scholar] [CrossRef]
- El-Kassas, A.M.; Sabry, I. Using Multi Criteria Decision Making in Optimizing the Friction Stir Welding Process of Pipes: A Tool Pin Diameter Perspective. Int. J. Appl. Eng. 2019, 14, 3668–3677. [Google Scholar]
- Maheshwari, S.; Kar, A.; Alam, Z.; Kumar, L. Deep Neural Network-Based Approach for Modeling, Predicting, and Validating Weld Quality and Mechanical Properties of Friction Stir Welded Dissimilar Materials. JOM 2023, 75, 4562–4578. [Google Scholar] [CrossRef]
- Kahhal, P.; Ghasemi, M.; Kashfi, M.; Ghorbani-Menghari, H.; Kim, J.H. A multi-objective optimization using response surface model coupled with particle swarm algorithm on FSW process parameters. Sci. Rep. 2022, 12, 2837. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Wang, Z. Bearing Faulty Prediction Method Based on Federated Transfer Learning and Knowledge Distillation. Machines 2022, 10, 376. [Google Scholar] [CrossRef]
- Matitopanum, S.; Pitakaso, R.; Sethanan, K.; Srichok, T.; Chokanat, P. Prediction of the Ultimate Tensile Strength (UTS) of Asymmetric Friction Stir Welding Using Ensemble Machine Learning Methods. Processes 2023, 11, 391. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, W.; Feng, J.; Lu, G.; Zhu, R.; Li, Y. A Review of the Friction Stir Welding of Dissimilar Materials between Aluminum Alloys and Copper. Metals 2022, 12, 675. [Google Scholar] [CrossRef]
- Di Bella, G.; Favaloro, F.; Borsellino, C. Effect of Process Parameters on Friction Stir Welded Joints between Dissimilar Aluminum Alloys: A Review. Metals 2023, 13, 1176. [Google Scholar] [CrossRef]
- Zhang, F.; Li, L.; Han, Z.; Wang, X. Determination method of binary fractions by the integrated spectrum. Mon. Not. R. Astron. Soc. 2024, 531, 3468–3478. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Zhang, L. Evolutionary polynomial regression improved by regularization methods. PLoS ONE 2023, 18, e0282029. [Google Scholar] [CrossRef] [PubMed]
- Marasco, S.; Marano, G.C.; Cimellaro, G.P. Evolutionary polynomial regression algorithm combined with robust bayesian regression. Adv. Eng. Softw. 2022, 167, 103101. [Google Scholar] [CrossRef]
- Cheng, C.-L.; Tsai, J.-R.; Schneeweiss, H. Polynomial regression with heteroscedastic measurement errors in both axes: Estimation and hypothesis testing. Stat. Methods Med. Res. 2019, 28, 2681–2696. [Google Scholar] [CrossRef] [PubMed]
- Sulthan, A.; Jayakumar, G.S.D.S. Exact distribution of Cook’s distance and identification of influential observations. Hacet. J. Math. Stat. 2014, 44, 165–178. [Google Scholar] [CrossRef]
- Li, J.; Valliant, R. Linear Regression Influence Diagnostics for Unclustered Survey Data. J. Off. Stat. 2011, 27, 99–119. [Google Scholar]
- Bahadir, B.; İnci, H.; Karadavut, U. Determination of Outlier in Live-Weight Performance Data of Japanese Quails (Coturnix Coturnix Japonica) By Dfbeta and Dfbetas Techniques. Ital. J. Anim. Sci. 2014, 13, 3113. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Frontoni, E.; Romeo, L.; Poluyanenko, N.; Kandiy, S.; Kuznetsova, K.; Beňová, E. Optimizing Hill Climbing Algorithm for S-Boxes Generation. Electronics 2023, 12, 2338. [Google Scholar] [CrossRef]
- Peker, F.; Altun, M. A Fast Hill Climbing Algorithm for Defect and Variation Tolerant Logic Mapping of Nano-Crossbar Arrays. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 522–532. [Google Scholar] [CrossRef]
- Qiao, J.; Shi, Q.; Chen, S.; Yang, C.; Han, Y.; Chen, G. Visualization of vertical transfer of material through high-velocity rotating flow zone during friction stir welding. Mater. Lett. 2024, 367, 136599. [Google Scholar] [CrossRef]
- Orłowska, M.; Pixner, F.; Hütter, A.; Kooijman, A.; Jasiński, C.; Gonzalez-Garcia, Y.; Enzinger, N.; Lewandowska, M. Local changes in the microstructure, mechanical and electrochemical properties of friction stir welded joints from aluminium of varying grain size. J. Mater. Res. Technol. 2021, 15, 5968–5987. [Google Scholar] [CrossRef]
- Ji, S.; Li, Z. Reducing the Hook Defect of Friction Stir Lap Welded Ti-6Al-4V Alloy by Slightly Penetrating into the Lower Sheet. J. Mater. Eng. Perform. 2017, 26, 921–930. [Google Scholar] [CrossRef]
- Yang, C.; Chen, G.; Qiao, J.; Wu, C.; Zhou, M.; Zhang, G.; Shi, Q. Material flow during dissimilar friction stir welding of Al/Mg alloys. Int. J. Mech. Sci. 2024, 272, 109173. [Google Scholar] [CrossRef]
- Myśliwiec, P.; Śliwa, R.E.; Ostrowski, R. Friction Stir Welding of Ultrathin AA2024-T3 Aluminum Sheets Using Ceramic Tool. Arch. Met. Mater. 2019, 64, 1385–1394. [Google Scholar] [CrossRef]
- Mysliwiec, P.; Śliwa, R.E. Friction Stir Welding of Thin Sheets of the AA2024-T3 Alloy with a Ceramic Tool: RSM and ANOVA Study. Key Eng. Mater. 2022, 926, 1756–1761. [Google Scholar] [CrossRef]
- Salih, O.S.; Neate, N.; Ou, H.; Sun, W. Influence of process parameters on the microstructural evolution and mechanical characterisations of friction stir welded Al-Mg-Si alloy. J. Mater. Process. Technol. 2020, 275, 116366. [Google Scholar] [CrossRef]
- Laska, A.; Szkodo, M.; Cavaliere, P.; Moszczyńska, D.; Mizera, J. Analysis of Residual Stresses and Dislocation Density of AA6082 Butt Welds Produced by Friction Stir Welding. Metall. Mater. Trans. A 2023, 54, 211–225. [Google Scholar] [CrossRef]
- Sato, Y.S.; Urata, M.; Kokawa, H.; Ikeda, K. Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater. Sci. Eng. A 2003, 354, 298–305. [Google Scholar] [CrossRef]
- Kosturek, R.; Śnieżek, L.; Torzewski, J.; Wachowski, M. Research on the Friction Stir Welding of Sc-Modified AA2519 Extrusion. Metals 2019, 9, 1024. [Google Scholar] [CrossRef]
- Staron, P.; Kocak, M.; Williams, S. Residual stresses in friction stir welded Al sheets. Appl. Phys. A 2002, 74 (Suppl. S1), s1161–s1162. [Google Scholar] [CrossRef]
- Sreenivasan, K.S.; Satish Kumar, S.; Katiravan, J. Genetic algorithm based optimization of friction welding process parameters on AA7075-SiC composite. Eng. Sci. Technol. Int. J. 2019, 22, 1136–1148. [Google Scholar] [CrossRef]
- Anandan, B.; Manikandan, M. Machine learning approach with various regression models for predicting the ultimate tensile strength of the friction stir welded AA 2050-T8 joints by the K-Fold cross-validation method. Mater. Today Commun. 2023, 34, 105286. [Google Scholar] [CrossRef]
- Malde, M. Thermomechanical Modeling and Optimization of Friction Stir Welding. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2009. [Google Scholar] [CrossRef]
- Das, P.P.; Chakraborty, S. Optimization of friction stir welding processes using hybrid-taguchi methods: A comparative analysis. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 17, 1021–1038. [Google Scholar] [CrossRef]
- Verma, S.; Gupta, M.; Misra, J.P. Performance evaluation of friction stir welding using machine learning approaches. MethodsX 2018, 5, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Lipińska, M.; Grocholewski, A.; Zakrzyk, A.; Duda, P.; Golombek, M.; Rogala, T.; Jarzębska, M.; Domagała-Dubiel, J.; Przybyłek, P. The Influence of Microstructure Evolution on the Mechanical and Electrochemical Properties of Dissimilar Welds from Aluminum Alloys Manufactured Via Friction Stir Welding. Metall. Mater. Trans. A 2024, 55, 4373–4390. [Google Scholar] [CrossRef]
- Ghorbanzade, T.; Soltanipour, A.; Dehghani, K.; Chabok, A. Microstructural evolutions and mechanical properties of friction stir welded AA2024. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 75–87. [Google Scholar] [CrossRef]
- Naik, B.S.; Chen, D.L.; Cao, X.; Wanjara, P. Microstructure and Fatigue Properties of a Friction Stir Lap Welded Magnesium Alloy. Metall. Mater. Trans. A 2013, 44, 3732–3746. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Y.; Peng, Y.; Dou, C.; Wang, Z. The effect of interface defect on mechanical properties and its formation mechanism in friction stir lap welded joints of aluminum alloys. J. Mater. Process. Technol. 2016, 238, 244–254. [Google Scholar] [CrossRef]
- Aldanondo, E.; Vivas, J.; Álvarez, P.; Hurtado, I. Effect of Tool Geometry and Welding Parameters on Friction Stir Welded Lap Joint Formation with AA2099-T83 and AA2060-T8E30 Aluminium Alloys. Metals 2020, 10, 872. [Google Scholar] [CrossRef]
- Lacki, P.; Derlatka, A.; Więckowski, W.; Adamus, J. Development of FSW Process Parameters for Lap Joints Made of Thin 7075 Aluminum Alloy Sheets. Materials 2024, 17, 672. [Google Scholar] [CrossRef] [PubMed]
- Soto-Diaz, R.; Sandoval-Amador, A.; Escorcia-Gutierrez, J.; Unfried-Silgado, J. Influence of Process Parameters on the Mechanical Properties and Corrosion Resistance of Dissimilar Friction Stir Welded Joints of AA2024-O and AA6061-O Aluminum Alloys. Metals 2024, 14, 664. [Google Scholar] [CrossRef]
Tool Parameters | Value | Tool View |
---|---|---|
Shoulder diameter D [mm] | 12 | |
Pin diameter d [mm] | 4.5 | |
Pin height [mm] | 2.55 | |
Tool offset [mm] | 0.05 | |
Dwell time [s] | 10 | |
Tool tilt angle | 0° | |
Tool plunge speed [mm/min] | 2 | |
Shoulder profile | Flat with spiral groove | |
Pin profile | Conical threaded | |
D/d ratio of the tool | 2.7 | |
Tool material | H13 Steel |
Factor | Name | Units | Type | Min. | Max. | Coded Low | Coded High | Mean | Std. Dev. |
---|---|---|---|---|---|---|---|---|---|
A | Spindle Speed | rpm | Numeric | 600 | 2200 | −1 ↔ 600 | +1 ↔ 2200 | 1400 | 536.92 |
B | Welding Speed | mm/min | Numeric | 100 | 350 | −1 ↔ 100 | +1 ↔ 350 | 226.79 | 87.49 |
Response | Name | Units | Observations | Min. | Max. | Mean | Std. Dev. | Ratio |
---|---|---|---|---|---|---|---|---|
R1 | MTL | N | 112 | 1912 | 15,336 | 6451.97 | 3071.58 | 8.02 |
Source | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 | |
---|---|---|---|---|---|
Linear | <0.0001 | <0.0001 | 0.3877 | 0.3629 | |
2FI | 0.1962 | <0.0001 | 0.3916 | 0.3541 | |
Quadratic | 0.1153 | <0.0001 | 0.4049 | 0.3573 | |
Cubic | <0.0001 | <0.0001 | 0.5213 | 0.4544 | |
Quartic | <0.0001 | <0.0001 | 0.8435 | 0.8234 | |
Fifth | <0.0001 | <0.0001 | 0.9489 | 0.9390 | Suggested |
Sixth | <0.0001 | <0.0001 | 0.9752 | 0.9683 | Aliased |
Term | Standard Error * | VIF | Ri2 | Power |
---|---|---|---|---|
A | 0.1416 | 1.00309 | 0.0031 | 99.9% |
B | 0.1357 | 1.00182 | 0.0018 | 99.9% |
AB | 0.1964 | 1.00309 | 0.0031 | 99.9% |
A2 | 0.2453 | 1.01148 | 0.0114 | 99.9% |
B2 | 0.2349 | 1.00965 | 0.0096 | 99.9% |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1.003 × 109 | 20 | 5.017 × 107 | 104.12 | <0.0001 | significant |
A—Spindle Speed | 3.854 × 107 | 1 | 3.854 × 107 | 79.99 | <0.0001 | |
B—Welding Speed | 7.292 × 105 | 1 | 7.292 × 105 | 1.51 | 0.2218 | |
AB | 1.535 × 108 | 1 | 1.535 × 108 | 318.49 | <0.0001 | |
A2 | 1.946 × 107 | 1 | 1.946 × 107 | 40.40 | <0.0001 | |
B2 | 2.012 × 107 | 1 | 2.012 × 107 | 41.77 | <0.0001 | |
A2B | 1.090 × 106 | 1 | 1.090 × 106 | 2.26 | 0.1360 | |
AB2 | 4.119 × 107 | 1 | 4.119 × 107 | 85.49 | <0.0001 | |
A3 | 4.509 × 107 | 1 | 4.509 × 107 | 93.59 | <0.0001 | |
B3 | 1.284 × 107 | 1 | 1.284 × 107 | 26.65 | <0.0001 | |
A2B2 | 3.609 × 107 | 1 | 3.609 × 107 | 74.91 | <0.0001 | |
A3B | 1.930 × 108 | 1 | 1.930 × 108 | 400.65 | <0.0001 | |
AB3 | 5.528 × 106 | 1 | 5.528 × 106 | 11.47 | 0.0010 | |
A4 | 2.486 × 107 | 1 | 2.486 × 107 | 51.60 | <0.0001 | |
B4 | 8.687 × 106 | 1 | 8.687 × 106 | 18.03 | <0.0001 | |
A3B2 | 1.317 × 107 | 1 | 1.317 × 107 | 27.33 | <0.0001 | |
A2B3 | 5.118 × 104 | 1 | 5.118 × 104 | 0.1061 | 0.7454 | |
A4B | 5.018 × 104 | 1 | 5.018 × 104 | 0.1041 | 0.7477 | |
AB4 | 2.440 × 107 | 1 | 2.440 × 107 | 50.64 | <0.0001 | |
A5 | 4.439 × 107 | 1 | 4.439 × 107 | 92.12 | <0.0001 | |
B5 | 1.765 × 107 | 1 | 1.765 × 107 | 36.62 | <0.0001 | |
Residual | 4.385 × 107 | 91 | 4.818 × 105 | |||
Lack of Fit | 3.533 × 107 | 7 | 5.048 × 106 | 49.80 | <0.0001 | significant |
Pure Error | 8.514 × 106 | 84 | 1.014 × 105 | |||
Cor Total | 1.047 × 109 | 111 |
Std. Dev. | 694.15 | R2 | 0.9581 |
Mean | 6451.97 | Adjusted R2 | 0.9489 |
C.V. % | 10.76 | Predicted R2 | 0.9390 |
Adeq Precision | 40.7155 |
MTL | = |
---|---|
+2.65761 × 105 | |
−816.24439 | Spindle Speed |
−1633.38459 | Welding Speed |
−2.37849 | Welding Speed |
+1.42349 | Spindle Speed2 |
+24.68195 | Welding Speed2 |
+0.000460 | Spindle Speed2 Welding Speed |
+0.016034 | Welding Speed2 |
−0.001068 | Spindle Speed3 |
−0.158386 | Welding Speed3 |
−2.71047 × 10−6 | Welding Speed2 |
−4.74309 × 10−8 | Welding Speed |
−0.000039 | Welding Speed3 |
+3.80250 × 10−7 | Spindle Speed4 |
+0.000442 | Welding Speed4 |
+5.20073 × 10−10 | Welding Speed2 |
+2.29939 × 10−10 | Welding Speed3 |
−7.12925 × 10−12 | Welding Speed |
+4.38557 × 10−8 | Welding Speed4 |
−5.22195 × 10−11 | Spindle Speed5 |
−4.58801 × 10−7 | Welding Speed5 |
Run Order | Rotational Speed [rpm] | Welding Speed [mm/min] | Actual Value of MTL [N] | Predicted Value of MTL [N] | Residual | Leverage | Internally Studentized Residuals | Externally Studentized Residuals | Cook’s Distance | Influence on Fitted Value DFFITS |
---|---|---|---|---|---|---|---|---|---|---|
1 | 600 | 100 | 7165.00 | 7288.17 | −123.17 | 0.248 | −0.205 | −0.204 | 0.001 | −0.117 |
2 | 7299.00 | 7288.17 | 10.83 | 0.248 | 0.018 | 0.018 | 0.000 | 0.010 | ||
3 | 7057.00 | 7288.17 | −231.17 | 0.248 | −0.384 | −0.382 | 0.002 | −0.219 | ||
4 | 7329.00 | 7288.17 | 40.83 | 0.248 | 0.068 | 0.067 | 0.000 | 0.039 | ||
5 | 800 | 150 | 2754.00 | 3364.21 | −610.21 | 0.213 | −0.991 | −0.991 | 0.013 | −0.516 |
6 | 2800.00 | 3364.21 | −564.21 | 0.213 | −0.916 | −0.916 | 0.011 | −0.477 | ||
7 | 2671.00 | 3364.21 | −693.21 | 0.213 | −1.126 | −1.128 | 0.016 | −0.588 | ||
8 | 2974.00 | 3364.21 | −390.21 | 0.213 | −0.634 | −0.632 | 0.005 | −0.329 | ||
9 | 1000 | 100 | 4746.00 | 4397.76 | 348.24 | 0.218 | 0.567 | 0.565 | 0.004 | 0.299 |
10 | 4885.00 | 4397.76 | 487.24 | 0.218 | 0.794 | 0.792 | 0.008 | 0.419 | ||
11 | 5084.00 | 4397.76 | 686.24 | 0.218 | 1.118 | 1.120 | 0.017 | 0.592 | ||
12 | 5272.00 | 4397.76 | 874.24 | 0.218 | 1.425 | 1.433 | 0.027 | 0.757 | ||
13 | 1000 | 200 | 6138.00 | 5629.89 | 508.11 | 0.139 | 0.789 | 0.787 | 0.005 | 0.316 |
14 | 5938.00 | 5629.89 | 308.11 | 0.139 | 0.478 | 0.476 | 0.002 | 0.191 | ||
15 | 6264.00 | 5629.89 | 634.11 | 0.139 | 0.984 | 0.984 | 0.007 | 0.395 | ||
16 | 6017.00 | 5629.89 | 387.11 | 0.139 | 0.601 | 0.599 | 0.003 | 0.241 | ||
17 | 1000 | 300 | 13,477.00 | 13,585.93 | −108.93 | 0.141 | −0.169 | −0.168 | 0.000 | −0.068 |
18 | 13,438.00 | 13,585.93 | −147.93 | 0.141 | −0.230 | −0.229 | 0.000 | −0.093 | ||
19 | 13,602.00 | 13,585.93 | 16.07 | 0.141 | 0.025 | 0.025 | 0.000 | 0.010 | ||
20 | 13,511.00 | 13,585.93 | −74.93 | 0.141 | −0.116 | −0.116 | 0.000 | −0.047 | ||
21 | 1200 | 150 | 5692.00 | 5464.73 | 227.27 | 0.141 | 0.353 | 0.352 | 0.001 | 0.143 |
22 | 5538.00 | 5464.73 | 73.27 | 0.141 | 0.114 | 0.113 | 0.000 | 0.046 | ||
23 | 5462.00 | 5464.73 | −2.73 | 0.141 | −0.004 | −0.004 | 0.000 | −0.002 | ||
24 | 5206.00 | 5464.73 | −258.73 | 0.141 | −0.402 | −0.400 | 0.001 | −0.162 | ||
25 | 1200 | 250 | 7612.00 | 8243.00 | −631.00 | 0.128 | −0.973 | −0.973 | 0.007 | −0.373 |
26 | 7547.00 | 8243.00 | −696.00 | 0.128 | −1.074 | −1.075 | 0.008 | −0.411 | ||
27 | 7803.00 | 8243.00 | −440.00 | 0.128 | −0.679 | −0.677 | 0.003 | −0.259 | ||
28 | 7735.00 | 8243.00 | −508.00 | 0.128 | −0.784 | −0.782 | 0.004 | −0.299 | ||
29 | 1400 | 100 | 4984.00 | 5902.63 | −918.63 | 0.173 | −1.455 | −1.464 | 0.021 | −0.669 |
30 | 5059.00 | 5902.63 | −843.63 | 0.173 | −1.336 | −1.342 | 0.018 | −0.613 | ||
31 | 4939.00 | 5902.63 | −963.63 | 0.173 | −1.526 | −1.538 | 0.023 | −0.702 | ||
32 | 5326.00 | 5902.63 | −576.63 | 0.173 | −0.913 | −0.912 | 0.008 | −0.417 | ||
33 | 1400 | 200 | 5560.00 | 6117.56 | −557.56 | 0.106 | −0.850 | −0.848 | 0.004 | −0.292 |
34 | 5602.00 | 6117.56 | −515.56 | 0.106 | −0.786 | −0.784 | 0.003 | −0.270 | ||
35 | 5714.00 | 6117.56 | −403.56 | 0.106 | −0.615 | −0.613 | 0.002 | −0.211 | ||
36 | 5623.00 | 6117.56 | −494.56 | 0.106 | −0.754 | −0.752 | 0.003 | −0.259 | ||
37 | 1400 | 300 | 12,271.00 | 10,669.27 | 1601.73 | 0.131 | 2.475 | 2.549 | 0.044 | 0.989 |
38 | 12,121.00 | 10,669.27 | 1451.73 | 0.131 | 2.243 | 2.295 | 0.036 | 0.891 | ||
39 | 12,189.00 | 10,669.27 | 1519.73 | 0.131 | 2.348 | 2.410 | 0.040 | 0.935 | ||
40 | 11,405.00 | 10,669.27 | 735.73 | 0.131 | 1.137 | 1.139 | 0.009 | 0.442 | ||
41 | 1400 | 350 | 11,064.00 | 11,140.53 | −76.53 | 0.191 | −0.123 | −0.122 | 0.000 | −0.059 |
42 | 9862.00 | 11,140.53 | −1278.53 | 0.191 | −2.047 | −2.084 | 0.047 | −1.011 | ||
43 | 9916.00 | 11,140.53 | −1224.53 | 0.191 | −1.961 | −1.992 | 0.043 | −0.967 | ||
44 | 10,018.00 | 11,140.53 | −1122.53 | 0.191 | −1.797 | −1.820 | 0.036 | −0.883 | ||
45 | 1600 | 150 | 4556.00 | 3732.42 | 823.58 | 0.141 | 1.280 | 1.285 | 0.013 | 0.521 |
46 | 4525.00 | 3732.42 | 792.58 | 0.141 | 1.232 | 1.236 | 0.012 | 0.501 | ||
47 | 4989.00 | 3732.42 | 1256.58 | 0.141 | 1.953 | 1.985 | 0.030 | 0.805 | ||
48 | 4734.00 | 3732.42 | 1001.58 | 0.141 | 1.557 | 1.569 | 0.019 | 0.636 | ||
49 | 1600 | 250 | 5028.00 | 4620.71 | 407.29 | 0.128 | 0.628 | 0.626 | 0.003 | 0.240 |
50 | 4914.00 | 4620.71 | 293.29 | 0.128 | 0.452 | 0.450 | 0.001 | 0.172 | ||
51 | 4870.00 | 4620.71 | 249.29 | 0.128 | 0.385 | 0.383 | 0.001 | 0.147 | ||
52 | 4966.00 | 4620.71 | 345.29 | 0.128 | 0.533 | 0.531 | 0.002 | 0.203 | ||
53 | 1800 | 100 | 5092.00 | 4625.74 | 466.26 | 0.218 | 0.760 | 0.758 | 0.008 | 0.401 |
54 | 4889.00 | 4625.74 | 263.26 | 0.218 | 0.429 | 0.427 | 0.002 | 0.226 | ||
55 | 5102.00 | 4625.74 | 476.26 | 0.218 | 0.776 | 0.774 | 0.008 | 0.409 | ||
56 | 4612.00 | 4625.74 | −13.74 | 0.218 | −0.022 | −0.022 | 0.000 | −0.012 | ||
57 | 1800 | 200 | 4465.00 | 4913.36 | −448.36 | 0.139 | −0.696 | −0.694 | 0.004 | −0.279 |
58 | 4357.00 | 4913.36 | −556.36 | 0.139 | −0.864 | −0.863 | 0.006 | −0.347 | ||
59 | 4599.00 | 4913.36 | −314.36 | 0.139 | −0.488 | −0.486 | 0.002 | −0.195 | ||
60 | 4741.00 | 4913.36 | −172.36 | 0.139 | −0.268 | −0.266 | 0.001 | −0.107 | ||
61 | 1800 | 300 | 3250.00 | 4666.11 | −1416.11 | 0.141 | −2.201 | −2.250 | 0.038 | −0.912 |
62 | 3612.00 | 4666.11 | −1054.11 | 0.141 | −1.638 | −1.654 | 0.021 | −0.670 | ||
63 | 3341.00 | 4666.11 | −1325.11 | 0.141 | −2.060 | −2.098 | 0.033 | −0.850 | ||
64 | 3493.00 | 4666.11 | −1173.11 | 0.141 | −1.823 | −1.847 | 0.026 | −0.749 | ||
65 | 1800 | 350 | 4472.00 | 3473.27 | 998.73 | 0.202 | 1.611 | 1.625 | 0.031 | 0.818 |
66 | 3922.00 | 3473.27 | 448.73 | 0.202 | 0.724 | 0.722 | 0.006 | 0.363 | ||
67 | 3816.00 | 3473.27 | 342.73 | 0.202 | 0.553 | 0.551 | 0.004 | 0.277 | ||
68 | 4715.00 | 3473.27 | 1241.73 | 0.202 | 2.003 | 2.037 | 0.048 | 1.025 | ||
69 | 2000 | 150 | 3611.00 | 4131.38 | −520.38 | 0.213 | −0.845 | −0.844 | 0.009 | −0.440 |
70 | 3511.00 | 4131.38 | −620.38 | 0.213 | −1.008 | −1.008 | 0.013 | −0.525 | ||
71 | 3761.00 | 4131.38 | −370.38 | 0.213 | −0.602 | −0.600 | 0.005 | −0.312 | ||
72 | 3987.00 | 4131.38 | −144.38 | 0.213 | −0.235 | −0.233 | 0.001 | −0.122 | ||
73 | 2000 | 250 | 5235.00 | 5184.34 | 50.66 | 0.194 | 0.081 | 0.081 | 0.000 | 0.040 |
74 | 4987.00 | 5184.34 | −197.34 | 0.194 | −0.317 | −0.315 | 0.001 | −0.154 | ||
75 | 6166.00 | 5184.34 | 981.66 | 0.194 | 1.575 | 1.588 | 0.028 | 0.778 | ||
76 | 6125.00 | 5184.34 | 940.66 | 0.194 | 1.509 | 1.520 | 0.026 | 0.745 | ||
77 | 2200 | 300 | 5828.00 | 5831.36 | −3.36 | 0.224 | −0.006 | −0.005 | 0.000 | −0.003 |
78 | 5552.00 | 5831.36 | −279.36 | 0.224 | −0.457 | −0.455 | 0.003 | −0.245 | ||
79 | 6836.00 | 5831.36 | 1004.64 | 0.224 | 1.643 | 1.659 | 0.037 | 0.892 | ||
80 | 5555.00 | 5831.36 | −276.36 | 0.224 | −0.452 | −0.450 | 0.003 | −0.242 | ||
81 | 2200 | 350 | 5228.00 | 6187.20 | −959.20 | 0.242 | −1.587 | −1.601 | 0.038 | −0.905 |
82 | 5928.00 | 6187.20 | −259.20 | 0.242 | −0.429 | −0.427 | 0.003 | −0.241 | ||
83 | 6865.00 | 6187.20 | 677.80 | 0.242 | 1.122 | 1.123 | 0.019 | 0.635 | ||
84 | 6133.00 | 6187.20 | −54.20 | 0.242 | −0.090 | −0.089 | 0.000 | −0.050 | ||
85 | 2200 | 200 | 5738.00 | 5860.18 | −122.18 | 0.234 | −0.201 | −0.200 | 0.001 | −0.111 |
86 | 5759.00 | 5860.18 | −101.18 | 0.234 | −0.167 | −0.166 | 0.000 | −0.092 | ||
87 | 6288.00 | 5860.18 | 427.82 | 0.234 | 0.704 | 0.702 | 0.007 | 0.388 | ||
88 | 5890.00 | 5860.18 | 29.82 | 0.234 | 0.049 | 0.049 | 0.000 | 0.027 | ||
89 | 2200 | 100 | 1912.00 | 1992.21 | −80.21 | 0.248 | −0.133 | −0.133 | 0.000 | −0.076 |
90 | 2065.00 | 1992.21 | 72.79 | 0.248 | 0.121 | 0.120 | 0.000 | 0.069 | ||
91 | 2058.00 | 1992.21 | 65.79 | 0.248 | 0.109 | 0.109 | 0.000 | 0.062 | ||
92 | 1951.00 | 1992.21 | −41.21 | 0.248 | −0.068 | −0.068 | 0.000 | −0.039 | ||
93 | 600 | 300 | 10,620.99 | 10,887.32 | −266.33 | 0.224 | −0.436 | −0.434 | 0.003 | −0.233 |
94 | 10,933.00 | 10,887.32 | 45.68 | 0.224 | 0.075 | 0.074 | 0.000 | 0.040 | ||
95 | 10,641.00 | 10,887.32 | −246.32 | 0.224 | −0.403 | −0.401 | 0.002 | −0.216 | ||
96 | 10,884.00 | 10,887.32 | −3.32 | 0.224 | −0.005 | −0.005 | 0.000 | −0.003 | ||
97 | 600 | 200 | 8110.00 | 7771.51 | 338.49 | 0.234 | 0.557 | 0.555 | 0.005 | 0.307 |
98 | 8014.00 | 7771.51 | 242.49 | 0.234 | 0.399 | 0.397 | 0.002 | 0.220 | ||
99 | 7917.00 | 7771.51 | 145.49 | 0.234 | 0.239 | 0.238 | 0.001 | 0.132 | ||
100 | 8436.00 | 7771.51 | 664.49 | 0.234 | 1.094 | 1.095 | 0.017 | 0.606 | ||
101 | 800 | 250 | 5529.00 | 5453.20 | 75.80 | 0.194 | 0.122 | 0.121 | 0.000 | 0.059 |
102 | 5168.00 | 5453.20 | −285.20 | 0.194 | −0.458 | −0.456 | 0.002 | −0.223 | ||
103 | 5127.00 | 5453.20 | −326.20 | 0.194 | −0.523 | −0.521 | 0.003 | −0.255 | ||
104 | 5193.00 | 5453.20 | −260.20 | 0.194 | −0.417 | −0.416 | 0.002 | −0.204 | ||
105 | 1000 | 350 | 15,336.00 | 14,230.29 | 1105.71 | 0.202 | 1.783 | 1.805 | 0.038 | 0.908 |
106 | 14,590.00 | 14,230.29 | 359.71 | 0.202 | 0.580 | 0.578 | 0.004 | 0.291 | ||
107 | 14,274.97 | 14,230.29 | 44.68 | 0.202 | 0.072 | 0.072 | 0.000 | 0.036 | ||
108 | 13,972.00 | 14,230.29 | −258.29 | 0.202 | −0.417 | −0.415 | 0.002 | −0.209 | ||
109 | 600 | 350 | 5009.00 | 5290.96 | −281.96 | 0.242 | −0.467 | −0.465 | 0.003 | −0.263 |
110 | 5514.00 | 5290.96 | 223.04 | 0.242 | 0.369 | 0.367 | 0.002 | 0.208 | ||
111 | 5435.00 | 5290.96 | 144.04 | 0.242 | 0.238 | 0.237 | 0.001 | 0.134 | ||
112 | 5219.00 | 5290.96 | −71.96 | 0.242 | −0.119 | −0.118 | 0.000 | −0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myśliwiec, P.; Szawara, P.; Kubit, A.; Zwolak, M.; Ostrowski, R.; Derazkola, H.A.; Jurczak, W. FSW Optimization: Prediction Using Polynomial Regression and Optimization with Hill-Climbing Method. Materials 2025, 18, 448. https://doi.org/10.3390/ma18020448
Myśliwiec P, Szawara P, Kubit A, Zwolak M, Ostrowski R, Derazkola HA, Jurczak W. FSW Optimization: Prediction Using Polynomial Regression and Optimization with Hill-Climbing Method. Materials. 2025; 18(2):448. https://doi.org/10.3390/ma18020448
Chicago/Turabian StyleMyśliwiec, Piotr, Paulina Szawara, Andrzej Kubit, Marek Zwolak, Robert Ostrowski, Hamed Aghajani Derazkola, and Wojciech Jurczak. 2025. "FSW Optimization: Prediction Using Polynomial Regression and Optimization with Hill-Climbing Method" Materials 18, no. 2: 448. https://doi.org/10.3390/ma18020448
APA StyleMyśliwiec, P., Szawara, P., Kubit, A., Zwolak, M., Ostrowski, R., Derazkola, H. A., & Jurczak, W. (2025). FSW Optimization: Prediction Using Polynomial Regression and Optimization with Hill-Climbing Method. Materials, 18(2), 448. https://doi.org/10.3390/ma18020448