Hybrids of Deep HOMO Organic Cyanoacrylic Acid Dyes and Graphene Nanomaterials for Water Splitting Photoanodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Density Functional Theory (DFT) Calculations
2.2. Dye Synthesis and Characterization
2.2.1. (E)-3-(4-((2-(Tert-butyldimethylsilyloxy)ethyl)(methyl)amino)phenyl)-2-cyanoacrylic Acid (ASIL-CNCOOH)
2.2.2. Molecular Optoelectronic Characterization
2.3. Photoanode Preparation and PEC Tests
3. Results and Discussion
3.1. Theoretical Calculations
3.2. Synthesis and Optoelectronic Characterization of Dye Molecules
3.3. PEC Characterization of Dye-Sensitized TiO2 Photoanodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jian, J.; Jiang, G.; van de Krol, R.; Wei, B.; Wang, H. Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy 2018, 52, 457–480. [Google Scholar] [CrossRef]
- Raub, A.A.M.; Bahru, R.; Nashruddin, S.N.A.M.; Yunas, J. Advances of nanostructured metal oxide as photoanode in photoelectrochemical (PEC) water splitting application. Heliyon 2024, 10, e39079. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Lia, F.; Sun, L. Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ. Sci. 2015, 8, 760–775. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, T.; Song, S. Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J. Mater. Chem. A 2016, 4, 2365–2402. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, H.; Hua, J.; Tian, H. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem 2019, 1, 100015. [Google Scholar] [CrossRef]
- Collomb, M.-N.; Morales, D.V.; Astudillo, C.N.; Dautreppe, B.; Fortage, J. Hybrid photoanodes for water oxidation combining a molecular photosensitizer with a metal oxide oxygen-evolving catalyst. Sustain. Energy Fuels 2020, 4, 31–49. [Google Scholar] [CrossRef]
- Cecconi, B.; Manfredi, N.; Montini, T.; Fornasiero, P.; Abbotto, A. Dye-sensitized solar hydrogen production: The emerging role of metal-free organic sensitizers. Eur. J. Org. Chem. 2016, 2016, 5194–5215. [Google Scholar] [CrossRef]
- Huang, J.-F.; Lei, Y.; Luo, T.; Liu, J.-M. Photocatalytic H2 production from water by metal-free dye-sensitized TiO2 semiconductors: The role and development process of organic sensitizers. ChemSusChem 2020, 13, 5863–5895. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-L.; Huang, J.-F.; Liu, J.-M.; Tsiakaras, P. Recent advances in metal-free photosensitizers for dye-sensitized photoelectrochemical cells. Coord. Chem. Rev. 2025, 522, 216143. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, W.H.; Zhang, Q.; Wu, W.J.; Xu, M.; Ning, Z.J.; Xie, Y.S.; Tian, H. Conveniently synthesized isophoronedyes for high efficiency dye-sensitized solar cells: Tuning photovoltaic performance by structural modification of donor group in donor–π–acceptor system. Chem. Commun. 2009, 13, 1766–1768. [Google Scholar] [CrossRef]
- Duerto, I.; Colom, E.; Andrés, J.M.; Franco, S.; Garín, J.; Orduna, J.; Villacampa, B.; Blesa, M.J. DSSCs based on aniline derivatives functionalized with a tert-butyldimethylsilyl group and the effect of the π–spacer. Dyes Pigment. 2018, 148, 61–71. [Google Scholar] [CrossRef]
- Abe, R.; Shinmei, K.; Hara, K.; Ohtani, B. Robust dye-sensitized overall water splitting system with two-stepphotoexcitation of coumarin dyes and metal oxide semiconductors. Chem. Commun. 2009, 24, 3577–3579. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, T.G.U.; Ghobadi, A.; Buyuktemiz, M.; Yildiz, E.A.; Yildiz, D.B.; Yaglioglu, H.G.; Dede, Y.; Ozbay, E.; Karadas, F. A robust, precious-metal-free dye-sensitized photoanode for water oxidation: A nanosecond-long excited-state lifetime through a Prussian blue analogue. Angew. Chem. Int. Ed. 2020, 59, 4082–4090. [Google Scholar] [CrossRef]
- Lee, J.; Kwak, J.; Ko, K.C.; Park, J.H.; Ko, J.H.; Park, N.; Kim, E.; Ryu, D.H.; Ahn, T.K.; Lee, J.Y.; et al. Phenothiazine-based organic dyes with two anchoring groups on TiO2 for highly efficient visible light-induced water splitting. Chem. Commun. 2012, 48, 11431–11433. [Google Scholar] [CrossRef]
- Li, X.; Cui, S.; Wang, D.; Zhou, Y.; Zhou, H.; Hu, Y.; Liu, J.; Long, Y.; Wu, W.; Hua, J.; et al. New organic donor–acceptor–π–acceptor sensitizers for efficient dye-sensitized solar cells and photocatalytic hydrogen evolution under visible-light irradiation. ChemSusChem 2014, 7, 2879–2888. [Google Scholar] [CrossRef] [PubMed]
- Wee, K.-R.; Sherman, B.D.; Brennaman, M.K.; Sheridan, M.V.; Nayak, A.; Alibabaei, L.; Meyer, T.J. An aqueous, organic dye derivatized SnO2/TiO2 core/shell photoanode. J. Mater. Chem. A 2016, 4, 2969–2975. [Google Scholar] [CrossRef]
- Alibabaei, L.; Dillon, R.J.; Reilly, C.E.; Brennaman, M.K.; Wee, K.-R.; Marquard, S.L.; Papanikolas, J.M.; Meyer, T.J. Chromophore-catalyst assembly for water oxidation prepared by atomic layer deposition. ACS Appl. Mater. Interfaces 2017, 9, 39018–39026. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Zhang, S.; Zhang, J.; Yu, Z.; Bai, G.; Du, C. TiO2 nanotube arrays decorated with plasmonic Cu, CuO nanoparticles, and eosin Y dye as efficient photoanode for water splitting. Mater. Chem. Phys. 2019, 231, 27–32. [Google Scholar] [CrossRef]
- Yu, J.; Ma, T.; Liu, S. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 2011, 13, 3491–3501. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Huang, D.; Yuan, H.; Wang, M.; Shen, Y. TiO2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon 2014, 80, 591–598. [Google Scholar] [CrossRef]
- Morais, A.; Longo, C.; Araujo, J.R.; Barroso, M.; Durrant, J.R.; Nogueira, A.F. Nanocrystalline anatase TiO2/reduced Graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: The role of reduced graphene oxide. Phys. Chem. Chem. Phys. 2016, 18, 2608–2616. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, C.; Li, Y.; Han, W.; Fu, W.; He, Y.; Xie, E. Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting. Nano Energy 2016, 30, 892–899. [Google Scholar] [CrossRef]
- Hernández-Ferrer, J.; Ansón-Casaos, A.; Víctor-Román, S.; Sanahuja-Parejo, O.; Martínez, M.T.; Villacampa, B.; Benito, A.M.; Maser, W.K. Photoactivity improvement of TiO2 electrodes by thin hole transport layers of reduced graphene oxide. Electrochim. Acta 2019, 298, 279–287. [Google Scholar] [CrossRef]
- Le, C.V.; Nguyen, M.T.T.; Le, N.T.T.; Le, H.K.; Bui, T.M.; Ho, D.H.; Le, V.H.; Ho, T.T.N.; Pham, T.L.C.; Huynh, L.T.N.; et al. Rapidly forming the chemical bond titania–carbon in hybrid composite TiO2/reduced graphene oxide to enhance the efficiency of dye-sensitized solar cells. Arab. J. Sci. Eng. 2022, 47, 387–395. [Google Scholar] [CrossRef]
- Sang, L.; Lei, L.; Lin, J.; Ge, H. Co-sensitization of TiO2 electrode with Eosin Y dye and carbon dots for photoelectrochemical water splitting: The enhanced dye adsorption and the charge transfer route. Int. J. Hydrogen Energy 2017, 42, 29686–29693. [Google Scholar] [CrossRef]
- Kim, D.J.; Choi, Y.S.; Choi, H.-H.; Kwon, S.-J.; Lee, T.-W.; Choi, H.; Kang, I.; Park, J.H.; Hong, B.H. Degradation protection of color dyes encapsulated by graphene barrier films. Chem. Mater. 2019, 31, 7173–7177. [Google Scholar] [CrossRef]
- Esmaili, H.; Kowsari, E.; Ramakrishna, S.; Motamedisade, A.; Andersson, G.G. Sensitization of TiO2 nanoarrays by a novel palladium decorated naphthalene diimide functionalized graphene nanoribbons for enhanced photoelectrochemical water splitting. Mater. Today Chem. 2022, 24, 100900. [Google Scholar] [CrossRef]
- Li, D.; He, X.; Zhao, L.; Li, H.; Zhang, X.; Chen, J.; Jin, Q.; Xu, J. Ultrafast charge transfer dynamics of Rhodamine B with graphene oxide. J. Chem. Phys. 2022, 157, 214701. [Google Scholar] [CrossRef]
- Colom, E.; Hernández-Ferrer, J.; Galán-González, A.; Ansón-Casaos, A.; Navarro-Rodríguez, M.; Palacios-Lidón, E.; Colchero, J.; Padilla, J.; Urbina, A.; Arenal, R.; et al. Graphene oxide: Key to efficient charge extraction and suppression of polaronic transport in hybrids with poly (3-hexylthiophene) nanoparticles. Chem. Mater. 2023, 35, 3522–3531. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. Influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Kula, S.; Szlapa-Kula, A.; Fabiańczyk, A.; Gnida, P.; Libera, M.; Bujak, K.; Siwy, M.; Schab-Balcerzak, E. Effect of thienyl units in cyanoacrylic acid derivatives toward dye-sensitized solar cells. J. Photochem. Photobiol. B 2019, 197, 111555. [Google Scholar] [CrossRef] [PubMed]
- Ansón-Casaos, A.; Martínez-Barón, C.; Angoy-Benabarre, S.; Hernández-Ferrer, J.; Benito, A.M.; Maser, W.K.; Blesa, M.J. Stability of a pyrimidine-based dye-sensitized TiO2 photoanode in sacrificial electrolytes. J. Electroanal. Chem. 2023, 929, 117114. [Google Scholar] [CrossRef]
- Martínez-Barón, C.; Calvo, V.; Hernández-Ferrer, J.; Villacampa, B.; Ansón-Casaos, A.; González-Domínguez, J.M.; Maser, W.K.; Benito, A.M. Towards sustainable TiO2 photoelectrodes based on cellulose nanocrystals as a processing adjuvant. RSC Sustain. 2024, 2, 2015–2025. [Google Scholar] [CrossRef]
Dye | λabs 2 [nm] | fosc 3 | Eox 4 [V] | E0-0 [eV] | Eox* 5 [V] |
---|---|---|---|---|---|
ASIL-CNCOOH | 387 | 1.26 | 1.41 | 3.02 | −1.61 |
TT-CNCOOH | 416 | 1.08 | 1.90 | 2.71 | −0.81 |
Dye | λabs [nm] | Ɛ [×104 M−1 cm−1] | λcut [nm] | Eopt 1 [eV] |
---|---|---|---|---|
ASIL-CNCOOH | 429 | 2.92 ± 0.11 | 465 | 2.66 |
TT-CNCOOH | 421 | 2.41 ± 0.29 | 472 | 2.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansón-Casaos, A.; Benito, A.M.; Maser, W.K.; Orduna, J.; Villacampa, B.; Blesa, M.-J. Hybrids of Deep HOMO Organic Cyanoacrylic Acid Dyes and Graphene Nanomaterials for Water Splitting Photoanodes. Materials 2025, 18, 463. https://doi.org/10.3390/ma18020463
Ansón-Casaos A, Benito AM, Maser WK, Orduna J, Villacampa B, Blesa M-J. Hybrids of Deep HOMO Organic Cyanoacrylic Acid Dyes and Graphene Nanomaterials for Water Splitting Photoanodes. Materials. 2025; 18(2):463. https://doi.org/10.3390/ma18020463
Chicago/Turabian StyleAnsón-Casaos, Alejandro, Ana M. Benito, Wolfgang K. Maser, Jesús Orduna, Belén Villacampa, and María-Jesús Blesa. 2025. "Hybrids of Deep HOMO Organic Cyanoacrylic Acid Dyes and Graphene Nanomaterials for Water Splitting Photoanodes" Materials 18, no. 2: 463. https://doi.org/10.3390/ma18020463
APA StyleAnsón-Casaos, A., Benito, A. M., Maser, W. K., Orduna, J., Villacampa, B., & Blesa, M.-J. (2025). Hybrids of Deep HOMO Organic Cyanoacrylic Acid Dyes and Graphene Nanomaterials for Water Splitting Photoanodes. Materials, 18(2), 463. https://doi.org/10.3390/ma18020463