Effect of Hydride Types on the Fracture Behavior of a Novel Zirconium Alloy Under Different Hydrogen-Charging Current Densities
Abstract
:1. Introduction
2. Experimental Methods
2.1. In Situ Hydrogen-Charging Slow Strain Rate Tensile Test
2.2. Microstructural Characterization
3. Results and Discussion
3.1. Stress–Strain Relations
3.2. Fracture Morphology of Post Tensile Test Specimens
3.3. Characterization of Zirconium Hydride
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coleman, C.E.; Hardie, D. The hydrogen embrittlement of α-zirconium—A review. J. Less Common Met. 1966, 3, 168–185. [Google Scholar] [CrossRef]
- Marashi, S.; Abdolvand, H. The micromechanics of fracture of zirconium hydrides. Acta Mater. 2024, 276, 120143. [Google Scholar] [CrossRef]
- Kolesnik, M. Micro-mechanisms of the ductile-to-brittle transition in hydrogenated zirconium alloys: A review and a comparison analysis of experimental data and theoretical approaches. Eng. Fail. Anal. 2024, 159, 108110. [Google Scholar] [CrossRef]
- Hong, X.; Ma, F.Q.; Zhang, J.; Du, D.; Tian, H.; Xu, Q.; Zhou, J.; Gong, W.J. Effect of hydride orientation on tensile properties and crack formation in zirconium alloy cladding tubes. J. Nucl. Mater. 2024, 596, 155120. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, H.; Satoh, Y.; Murakami, K.; Kano, S.; Zhao, Z.; Shen, J.; Abe, H. Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des. 2017, 316, 131–150. [Google Scholar] [CrossRef]
- Lin, X.-H.; Beyerlein, I.J.; Han, W.-Z. Annealing cracking in Zr and a Zr-alloy with low hydrogen concentration. J. Mater. Sci. Technol. 2024, 182, 165–175. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, D.Y.; Fang, J.; Gao, X.-Y.; Zhao, Y.-F.; Song, H.-F. Structure and thermodynamic properties of zirconium hydrides by structure search method and first principles calculations. J. Comput. Mater. Sci. 2018, 150, 77–85. [Google Scholar] [CrossRef]
- Bang, S.; Kim, H.-A.; Noh, J.-S.; Kim, D.; Keum, K.; Lee, Y. Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations. Nucl. Eng. Technol. 2022, 5, 1579–1587. [Google Scholar] [CrossRef]
- Narang, P.P.; Paul, G.L.; Taylor, K.N.R. Location of hydrogen in a-zirconium. J. Less-Common Met. 1977, 56, 125–128. [Google Scholar] [CrossRef]
- Wang, Z.; Garbe, U.; Li, H.; Wang, Y.; Studer, A.J.; Sun, G.; Harrison, R.P.; Liao, X.; Alvarez, M.V.; Santisteban, J.R.; et al. Microstructure and texture analysis of δ-hydride precipitation in Zircaloy-4 materials by electron microscopy and neutron diffraction. J. Appl. Crystallogr. 2014, 47, 303–315. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, X.; Zhang, Y.G.; Wang, M.M.; Zhao, B.L.; Xie, Z.M.; Zhang, T.; Liu, R.; Wu, X.B.; Wang, X.P.; et al. Hydrogen embrittlement of bulk W-0.5 wt% ZrC alloy induced by annealing in hydrogen atmosphere. J. Nucl. Mater. 2021, 556, 153177. [Google Scholar] [CrossRef]
- Bertolino, G.; Meyer, G.; Ipiña, J.P. Degradation of the mechanical properties of Zircaloy-4 due to hydrogen embrittlement. J. Alloys Compd. 2002, 330–332, 408–413. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, M.H.; Choi, B.K.; Jeong, Y.H. Effect of the hydrogen contents on the circumferential mechanical properties of zirconium alloy claddings. J. Alloys Compd. 2007, 431, 155–161. [Google Scholar] [CrossRef]
- Tung, H.-M.; Chen, T.C.; Tseng, C.C. Effects of hydrogen contents on the mechanical properties of Zircaloy-4 sheets. Mater. Sci. Eng. A 2016, 659, 172–178. [Google Scholar] [CrossRef]
- Nagase, F.; Sugiyama, T.; Fuketa, T. Optimized ring tensile test method andhydrogen effect on mechanical properties of Zircaloy cladding in hoopdirection. J. Nucl. Sci. Technol. 2009, 46, 545–552. [Google Scholar] [CrossRef]
- Jia, Y.-J.; Han, W.-Z. Mechanisms of Hydride Nucleation, Growth, Reorientation, and Embrittlement in Zirconium: A Review. Materials 2023, 16, 2419. [Google Scholar] [CrossRef]
- Long, F.; Luo, Y.; Badr, N.N.; Shiman, O.; Topping, M.; Persaud, S.Y.; Yao, Z.; Béland, L.K.; Daymond, M.R. Identifying the true structure and origin of the water-quench induced hydride phase in Zr-2.5Nb alloy. Acta Mater. 2021, 221, 117369. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Tsay, L.-W. Effect of hydride orientation on fracture toughness of Zircaloy-4 cladding. J. Nucl. Mater. 2011, 1, 67–72. [Google Scholar] [CrossRef]
- Qin, W.; Szpunar, J.A.; Kozinski, J. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis. Acta Mater. 2012, 12, 4845–4855. [Google Scholar] [CrossRef]
- Qin, W.; Kumar, N.A.P.K.; Szpunar, J.A.; Kozinski, J. Intergranular δ-hydride nucleation and orientation in zirconium alloys. Acta Mater. 2011, 18, 7010–7021. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Guan, B.; Xin, Y.; Wu, Y.; Liu, X.; Chen, G. Uncovering the hydride orientation-mediated hoop fatigue mechanism in a zirconium alloy cladding tube. Int. J. Plast. 2022, 159, 103440. [Google Scholar] [CrossRef]
- Hong, E.; Dunand, D.C.; Choe, H. Hydrogen-induced transformation superplasticity in zirconium. Int. J. Hydrogen Energy 2010, 11, 5708–5713. [Google Scholar] [CrossRef]
- Steuwer, A.; Santisteban, J.R.; Preuss, M.; Peel, M.J.; Buslaps, T.; Harada, M. Evidence of stress-induced hydrogen ordering in zirconium hydrides. Acta Mater. 2009, 1, 145–152. [Google Scholar] [CrossRef]
- Liu, S.-M.; Han, W.-Z. Effect of grain boundary character on intergranular hydrides precipitation in zirconium. Acta Mater. 2024, 276, 120120. [Google Scholar] [CrossRef]
- Thuinet, L.; Besson, R. Ab initio study of competitive hydride formation in zirconium alloys. Intermetallics 2012, 1, 24–32. [Google Scholar] [CrossRef]
- Chernikov, A.S.; Syasin, V.A.; Kostin, V.M.; Boiko, E.B. Influence of hydrogen content on the strength and the presence of defects in ε-zirconium hydride. J. Alloys Compd. 2002, 330–332, 393–395. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Li, R.; Wang, Y.; Xu, N.; Xue, F.; Bai, G.; Wang, Y.-D. Microscopic stress and crystallographic orientation of hydrides precipitated in Zr-1Nb-0.01Cu cladding tube investigated by high-energy X-ray diffraction and EBSD. J. Nucl. Mater. 2020, 542, 152534. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Zhang, X. Reconstructing brittle hydrides using pulsed electric current to restore the degraded performance of zirconium alloys. Int. J. Hydrogen Energy 2024, 66, 122–134. [Google Scholar] [CrossRef]
- Li, L.S.; Wang, K.Y.; Che, F.Z.; Liu, G.; Ren, Y.; Wang, Y. Investigations of deformation-induced δ→ζ phase transformation in zirconium hydride by in situ high-energy X-ray diffraction. Acta Mater. 2017, 140, 168–175. [Google Scholar] [CrossRef]
- Shi, H.; Li, J.; Mao, J.; Lu, W. The Elimination of the Yield Point Phenomenon in a New Zirconium Alloy: Influence of Degree of Recrystallization on the Tensile Properties. Scr. Mater. 2019, 169, 28–32. [Google Scholar] [CrossRef]
- Muta, H.; Nishikane, R.; Ando, Y.; Matsunaga, J.; Sakamoto, K.; Harjo, S.; Kawasaki, T.; Ohishi, Y.; Kurosaki, K.; Yamanaka, S. Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride. J. Nucl. Mater. 2018, 500, 145–152. [Google Scholar] [CrossRef]
- Zhao, C.; Song, X.; Yang, Y.; Zhang, B. Hydrogen absorption cracking of zirconium alloy in the application of nuclear industry. Int. J. Hydrogen Energy 2013, 25, 10903–10911. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, H.; Luan, B.; Zhang, Y.; Zhu, X.; Xu, C.; Sun, C.; Murty, K.L.; Fan, G.; Liu, Q. In-situ EBSD analysis of hydride phase transformation and its effect on micromechanical behavior in Zircaloy-4 under uniaxial tensile loading. J. Mater. Res. Technol. 2024, 30, 6653–6667. [Google Scholar] [CrossRef]
- Capolungo, L.; Beyerlein, I.J.; Kaschner, G.C.; Tomé, C.N. On the interaction between slip dislocations and twins in HCP Zr. Mater. Sci. Eng. A 2009, 513–514, 42–51. [Google Scholar] [CrossRef]
- Li, J.; Liu, A.; Liu, X.; Ye, X.; Wang, J.; Zhang, Y.; Zhang, Z. An investigation of slip and twinning behavior of a zirconium alloy during plastic deformation based on in-situ SEM-EBSD. J. Alloys Compd. 2025, 1010, 177918. [Google Scholar] [CrossRef]
- Birch, R.M.; Douglas, J.O.; Britton, T.B. Characterization of local deformation around hydrides in Zircaloy-4 using conventional and high angular resolution electron backscatter diffraction. Mater. Charact. 2023, 202, 112988. [Google Scholar] [CrossRef]
- Qin, W.; Szpunar, J.A.; Kozinski, J. Hydride-induced degradationof zirconium alloys: A criterion for complete ductile-to-brittle transition and itsdependence on microstructure. Proc. R. Soc. A 2015, 471, 20150192. [Google Scholar] [CrossRef]
- Wang, S.; Giuliani, F.; Britton, T.B. Microstructure and formation mechanisms of δ-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction. Acta Mater. 2019, 169, 76–87. [Google Scholar] [CrossRef]
- Yang, Z.; Li, F.; Yao, J.; Li, S.; Wang, Y. The HRTEM characterization of electropolishing-induced ζ-hydride in the α-Zr/δ-hydride interface in Zircaloy-4. Mater. Lett. 2023, 335, 133713. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Zhang, X.; Liang, S.; Wang, Y.; Gong, W.; Ren, Y.; Wang, Y.-D. Unveiling the formation of nanotwin-mediated metastable ζ-hydrides in fatigued Zr-1Nb-0.01Cu cladding tube. Acta Mater. 2024, 277, 120170. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Li, F.; Qiu, R.; Liu, Q. Formation of nanocrystalline γ-ZrH in Zr-Nb alloy: Crystal structure and twinning. Micron 2023, 167, 103414. [Google Scholar] [CrossRef] [PubMed]
- Maimaitiyili, T.; Bjerken, C.; Steuwer, A.; Wang, Z.; Daniels, J.; Andrieux, J.; Blomqvist, J.; Zanellato, O. In situ observation of γ-ZrH formation by X-ray diffraction. J. Alloys Compd. 2017, 695, 3124–3130. [Google Scholar] [CrossRef]
- Torres, J.R.; Mizzi, C.A.; Rehn, D.A.; Smith, T.; Paisner, S.W.; Terricabras, A.J.; Parkison, D.M.; Vogel, S.C.; Kohnert, C.A.; Hayne, M.L.; et al. High-temperature structure; elasticity, and thermal expansion of ε-ZrH1.8. J. Nucl. Mater. 2025, 603, 155437. [Google Scholar] [CrossRef]
- Zhao, Z.; Morniroli, J.P.; Legris, A.; Ambard, A.; Khin, Y.; Legras, L.; Blat-Yrieix, M. Identification and characterization of anew zirconium hydride. J. Microsc. 2008, 232, 410–421. [Google Scholar] [CrossRef]
- Deng, S.; Song, H.; Liu, H.; Zhang, S.-H. Effect of uniaxial loading direction on mechanical responses and texture evolution in cold pilgered Zircaloy-4 tube: Experiments and modeling. Int. J. Solids Struct. 2021, 213, 63–76. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Fan, H.; Luan, B.; Chen, P.; Jia, B.; Chen, P.; Wang, H. Effect of Hydride Types on the Fracture Behavior of a Novel Zirconium Alloy Under Different Hydrogen-Charging Current Densities. Materials 2025, 18, 467. https://doi.org/10.3390/ma18020467
Zhang K, Fan H, Luan B, Chen P, Jia B, Chen P, Wang H. Effect of Hydride Types on the Fracture Behavior of a Novel Zirconium Alloy Under Different Hydrogen-Charging Current Densities. Materials. 2025; 18(2):467. https://doi.org/10.3390/ma18020467
Chicago/Turabian StyleZhang, Kun, Hang Fan, Baifeng Luan, Ping Chen, Bin Jia, Pengwan Chen, and Hao Wang. 2025. "Effect of Hydride Types on the Fracture Behavior of a Novel Zirconium Alloy Under Different Hydrogen-Charging Current Densities" Materials 18, no. 2: 467. https://doi.org/10.3390/ma18020467
APA StyleZhang, K., Fan, H., Luan, B., Chen, P., Jia, B., Chen, P., & Wang, H. (2025). Effect of Hydride Types on the Fracture Behavior of a Novel Zirconium Alloy Under Different Hydrogen-Charging Current Densities. Materials, 18(2), 467. https://doi.org/10.3390/ma18020467