Treatment and Valorization of Waste Wind Turbines: Component Identification and Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.1.1. Manual Separation
2.1.2. Compression Milling Process
2.1.3. Wet Separation
2.1.4. Dry Separation
2.2. Analytical Methods
3. Results
3.1. Visual Assessment
3.1.1. Optical Microscopic Analysis
3.1.2. FTIR Analysis
3.1.3. Thermogravimetric Analysis (TGA)
3.1.4. Differential Scanning Calorimetry (DSC)
3.2. Materials After Processing
3.2.1. Fraction Analysis
3.2.2. Optical Microscopy
3.2.3. Thermogravimetric Analysis (TGA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Şahin, A.D. Progress and Recent Trends in Wind Energy. Prog. Energy Combust. Sci. 2004, 30, 501–543. [Google Scholar] [CrossRef]
- Kumar, Y.; Ringenberg, J.; Depuru, S.S.; Devabhaktuni, V.K.; Lee, J.W.; Nikolaidis, E.; Andersen, B.; Afjeh, A. Wind Energy: Trends and Enabling Technologies. Renew. Sustain. Energy Rev. 2016, 53, 209–224. [Google Scholar] [CrossRef]
- The Global Wind Energy Council (GWEC). Wind Power Is Crucial for Combating Climate Change. Available online: https://gwec.net/ (accessed on 15 September 2024).
- Available online: https://gwec.net/wp-content/uploads/2012/06/Wind-climate-fact-sheet-low-res.pdf (accessed on 15 September 2024).
- Available online: https://gwec.net/global-wind-report-2024/ (accessed on 24 September 2024).
- Available online: https://www.bankier.pl/wiadomosc/Rekordowy-wzrost-mocy-instalacji-wiatrowych-na-swiecie-w-2023-roku-8729882.html (accessed on 24 September 2024).
- Available online: https://biznesalert.pl/energetyka-oze-farmy-wiatrowe-srodowisko/ (accessed on 24 September 2024).
- Available online: http://www.chinapower.com.cn/xw/zyxw/20241023/264355.html (accessed on 5 December 2024).
- Available online: https://wind.in-en.com/html/wind-2328800.shtml (accessed on 5 December 2024).
- Available online: https://www.statista.com/statistics/264257/number-of-offshore-wind-farms-worldwide-by-country/ (accessed on 5 December 2024).
- Brøndsted, P.; Lilholt, H.; Lystrup, A. Composite Materials for Wind Power Turbine Blades. Annu. Rev. Mater. Res. 2005, 35, 505–538. [Google Scholar] [CrossRef]
- Bulińska, S.; Sujak, A.; Pyzalski, M. From Waste to Renewables: Challenges and Opportunities in Recycling Glass Fibre Composite Products from Wind Turbine Blades for Sustainable Cement Production. Sustainability 2024, 16, 5150. [Google Scholar] [CrossRef]
- Rani, M.; Choudhary, P.; Krishnan, V.; Zafar, S. A Review on Recycling and Reuse Methods for Carbon Fiber/Glass Fiber Composites Waste from Wind Turbine Blades. Compos. Part B Eng. 2021, 215, 108768. [Google Scholar] [CrossRef]
- Psomopoulos, C.S.; Kalkanis, K.; Kaminaris, S.; Ioannidis, G.C.; Pachos, P. A Review of the Potential for the Recovery of Wind Turbine Blade Waste Materials. Recycling 2019, 4, 7. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L. Environmental Impact and Waste Recycling Technologies for Modern Wind Turbines: An Overview. Waste Manag. Res. 2023, 41, 744–759. [Google Scholar] [CrossRef]
- Liu, P.; Barlow, C.Y. Wind Turbine Blade Waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef]
- Wind Europe. Accelerating Wind Turbine Blade Circularity. 2020. Available online: https://www.sciencedirect.com/science/article/pii/S2307187723000718 (accessed on 15 November 2024).
- Beauson, J.; Laurent, A.; Rudolph, D.P.; Pagh Jensen, J. The Complex End-of-Life of Wind Turbine Blades: A Review of the European Context. Renew. Sustain. Energy Rev. 2022, 155, 111847. [Google Scholar] [CrossRef]
- Korniejenko, K.; Kozub, B.; Bąk, A.; Balamurugan, P.; Uthayakumar, M.; Furtos, G. Tackling the Circular Economy Challenges—Composites Recycling: Used Tyres, Wind Turbine Blades, and Solar Panels. J. Compos. Sci. 2021, 5, 243. [Google Scholar] [CrossRef]
- Uddin, M.S.; Kumar, S. Energy, Emissions and Environmental Impact Analysis of Wind Turbine Using Life Cycle Assessment Technique. J. Clean. Prod. 2014, 69, 153–164. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B.F. Materials for Wind Turbine Blades: An Overview. Materials 2017, 10, 1285. [Google Scholar] [CrossRef] [PubMed]
- Haberkern, H. Tailor-Made Reinforcements. Reinf. Plast. 2006, 50, 28–33. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; McMahon, A. Resource and Waste Quantification Scenarios for Wind Turbine Decommissioning in the United Kingdom. Waste Dispos. Sustain. Energy 2021, 3, 117–144. [Google Scholar] [CrossRef]
- Martínez, E.; Sanz, F.; Pellegrini, S.; Jiménez, E.; Blanco, J. Life-Cycle Assessment of a 2-MW Rated Power Wind Turbine: CML Method. Int. J. Life Cycle Assess. 2009, 14, 52–63. [Google Scholar] [CrossRef]
- Mathern, A.; von der Haar, C.; Marx, S. Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends. Energies 2021, 14, 1995. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, F.; Liang, D.; Lv, G.; Chen, C. A Comprehensive Review of Waste Wind Turbine Blades in China: Current Status and Resource Utilization. J. Environ. Chem. Eng. 2024, 12, 113077. [Google Scholar] [CrossRef]
- Hernandez-Estrada, E.; Lastres-Danguillecourt, O.; Robles-Ocampo, J.B.; Lopez-Lopez, A.; Sevilla-Camacho, P.Y.; Perez-Sariñana, B.Y.; Dorrego-Portela, J.R. Considerations for the Structural Analysis and Design of Wind Turbine Towers: A Review. Renew. Sustain. Energy Rev. 2021, 137, 110447. [Google Scholar] [CrossRef]
- Steen, P. Structural Design of a Wooden Wind Tower Structure. Master’s Thesis, University of Technology Gothenburg, Gothenburg, Sweden, 2017. [Google Scholar]
- Available online: https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/rethinking-wind-powers-towers-and-turbines/ (accessed on 15 November 2024).
- Glosser, D.; Russell, L.; Striby, P. Glass Fiber Waste from Wind Turbines: Its Chemistry, Properties, and End-of-Life Uses. In Optical Fiber and Applications; IntechOpen Limited: London, UK, 2022; ISBN 978-1-83768-670-4. [Google Scholar]
- Available online: https://www.vvcresources.com/what-materials-are-used-to-make-wind-turbines (accessed on 24 September 2024).
- Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y.J.N.V.; Sohaib, S.M. Design and Analysis of Wind Turbine Blade Hub Using Aluminium Alloy AA 6061-T6. IOP Conf. Ser. Mater. Sci. Eng. 2017, 197, 012044. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Li, Y.; Wang, Y.; Li, G.; Liu, X. Wind Turbine Blade Recycling: A Review of the Recovery and High-Value Utilization of Decommissioned Wind Turbine Blades. Resour. Conserv. Recycl. 2024, 210, 107813. [Google Scholar] [CrossRef]
- Jensen, J.P. Evaluating the Environmental Impacts of Recycling Wind Turbines. Wind Energy 2019, 22, 316–326. [Google Scholar] [CrossRef]
- Gordon, J.M.; Fasquelle, T.; Nadal, E.; Vossier, A. Providing Large-Scale Electricity Demand with Photovoltaics and Molten-Salt Storage. Renew. Sustain. Energy Rev. 2021, 135, 110261. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Ma, K. Wind Energy Systems. Proc. IEEE 2017, 105, 2116–2131. [Google Scholar] [CrossRef]
- Hergul, A.S.; Yuce, M.; Ayaz, M.; Mese, E. Investigation on Aluminum Alloys as Winding Materials for Alternators in Wind Turbines. Emerg. Mater. Res. 2020, 9, 789–795. [Google Scholar] [CrossRef]
- Garolera, A.C.; Holboell, J.; Henriksen, M. Breakdown and Tracking Properties of Rubber Materials for Wind Turbine Blades. In Proceedings of the 2012 IEEE International Symposium on Electrical Insulation, San Juan, PR, USA, 10–13 June 2012; pp. 516–519. [Google Scholar]
- Firoozi, A.A.; Firoozi, A.A.; Hejazi, F. Innovations in Wind Turbine Blade Engineering: Exploring Materials, Sustainability, and Market Dynamics. Sustainability 2024, 16, 8564. [Google Scholar] [CrossRef]
- Schmidl, E.; Hinrichs, S. Geocycle Provides Sustainable Recycling of Rotor Blades in cement plant. DEWI Mag. 2010, 36, 6–14. [Google Scholar]
- Chen, Z.; Hay, J.N.; Jenkins, M.J. Ftir Spectroscopic Analysis of Poly(Ethylene Terephthalate) On Crystallization. Eur. Polym. J. 2012, 48, 1586–1610. [Google Scholar] [CrossRef]
- Pereira, A.P.D.S.; Silva, M.H.P.D.; Lima Júnior, É.P.; Paula, A.D.S.; Tommasini, F.J. Processing and Characterization of Pet Composites Reinforced with Geopolymer Concrete Waste. Mater. Res. 2017, 20 (Suppl. 2), 411–420. [Google Scholar] [CrossRef]
- González, M.G.; Cabanelas, J.C.; Baselga, J. Applications of FTIR on Epoxy Resins—Identification, Monitoring the Curing Process, Phase Separation and Water Uptake. In Infrared Spectroscopy—Materials Science, Engineering and Technology; IntechOpen Limited: London, UK, 2012. [Google Scholar] [CrossRef]
- Chukwu, M.N.; Madueke, C.I.; Ekebafe, L.O. Effects of Snail Shell as Filler on the Mechanical Properties of Terephthalic Unsaturated Polyester Resin. Niger. Res. J. Chem. Sci. 2019, 6, 21–32. [Google Scholar]
- Rodríguez, M.; Vázquez-Vélez, E.; Martinez, H.; Torres, A. Superficial Surface Treatment Using Atmospheric Plasma On Recycled Nylon 6,6. Journal of Nuclear Physics, Material Sciences. Radiat. Appl. 2021, 8, 191–196. [Google Scholar]
- D’Amelia, R.P.; Gentile, S.; Nirode, W.F.; Huang, L. Quantitative Analysis of Copolymers and Blends of Polyvinyl Acetate (PVAc) Using Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA). World J. Chem. Educ. 2016, 4, 25–31. [Google Scholar]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of Cellulosic Fibers by Ftir Spectroscopy for their Further Implementation to Building Materials. Am. J. Anal. Chem. 2018, 9, 303–310. [Google Scholar] [CrossRef]
- Karavida, S.; Peponi, A. Wind Turbine Blade Waste Circularity Coupled with Urban Regeneration: A Conceptual Framework. Energies 2023, 16, 1464. [Google Scholar] [CrossRef]
- Jakić, M.; Jozić, S.; Bandić, I.; Ključe, L. Recycling of PET Post-Consumer Bottles: Effect of the Re-Extrusion Process on the Structure, Thermal Properties, and Apparent Activation Energy. Kem. Ind. 2023, 72, 381–388. [Google Scholar] [CrossRef]
- González-Díaz, E.; Alonso-López, J.-M. Characterization by Thermogravimetric Analysis of the Wood Used in Canary Architectural Heritage. J. Cult. Herit. 2017, 23, 111–118. [Google Scholar] [CrossRef]
- Šudomová, L.; Doležalová Weissmannová, H.; Steinmetz, Z.; Řezáčová, V.; Kučerík, J. A Differential Scanning Calorimetry (DSC) Approach for Assessing the Quality of Polyethylene Terephthalate (PET) Waste for Physical Recycling: A Proof-of-Concept Study. J. Therm. Anal. Calorim. 2023, 148, 10843–10855. [Google Scholar] [CrossRef]
- Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials 2019, 12, 1746. [Google Scholar] [CrossRef]
- Vega-Leal, C.; Zárate-Pérez, C.; Gomez-Culebro, V.A.; Burelo, M.; Franco-Urquiza, E.A.; Treviño-Quintanilla, C.D. Mechanical Recycling of Carbon Fibre Reinforced Polymers. Part 1: Influence of Cutting Speed On Recycled Particles and Composites Properties. Int. J. Sustain. Eng. 2024, 17, 159–168. [Google Scholar] [CrossRef]
Part of Turbines | Materials | Percent | Reference |
---|---|---|---|
foundation | concrete | 80–90% | [23] |
steel | 10–20% | [20,21,22] | |
tower | steel | 95–98% | [24,25,26] |
others (eg.wood, concrete) | 2–5% | ||
nacelle/gearbox/generator | steel and various alloys composites and hybrids lubricants earth based permanent magnets copper | 50–60% | [27,28] |
10–20% | |||
5–10% | |||
10–15% | |||
hub | steel aluminium, iron | 80–90% | [28,29] |
10–20% | |||
blades | glass fiber, carbon fibres, wood laminates polyester resins, epoxies steel and other materials | 70-80% | [14,21,30] |
5–10% | |||
15–25% | |||
5–10% | |||
electronical and control system | copper | 60–70% | [31,32] |
silicon | 20–30% | ||
cables and busbars | plastic | 10–20% | [31,33] |
copper | 40–50% | ||
aluminium | 30–40% | ||
miscellaneous | lubricants, grease paint rubber, plastic | 40–50% | [31,34,35] |
10–20% | |||
30–40% |
Label | Photo | Label | Photo |
---|---|---|---|
WT1 | WT8 | ||
WT2 | WT9 | ||
WT3 | WT10 | ||
WT4 | WT11 | ||
WT5 | WT12 | ||
WT6 | WT13 | ||
WT7 | WT14 | ||
WT15 |
Label | Photos | ||
---|---|---|---|
mag. ×100 | mag. ×200 | mag. ×500 | |
WT1 | |||
WT2 | |||
WT3 | |||
WT4 | |||
WT5 | |||
WT6 | |||
WT7 | |||
WT8 | |||
WT9 | |||
WT10 | |||
WT11 | |||
WT12 | |||
WT13 | |||
WT14 | |||
WT15 |
Code | Temperature at 1% Weight Loss/°C | Temperature at 5% Weight Loss/°C | Temperature at Maximum Weight Change Rate/°C | Residual Mass/% |
---|---|---|---|---|
WT1 | 207.9 | 337.2 | 428.7/589.6 | 35.17 |
WT2 | 277.8 | 354.0 | 372.0 | 77.18 |
WT3 | 228.4 | 360.0 | 476.6 | 8.70 |
WT4 | 137.0 | 207.9 | 260.4/336.7/447.8 | 13.24 |
WT5 | 288.2 | 332.2 | 368.5 | 53.71 |
WT6 | 75.2 | 273.1 | 365.0 | 6.91 |
WT7 | - | - | 80.6 | 96.37 |
WT8 | 167.7 | 254.8 | 225.6/380.9 | 27.12 |
WT9 ** | - | - | - | - |
WT10 | 188.9 | 309.2 | 370.7/665.6 | 47.81 |
WT11 | 164.3 | 253.8 | 283.7/398.8 | 38.18 |
WT12 | 210.0 | 324.5 | 275.7/388.5/704.0 | 49.96 |
WT13 | 236.8 | 332.8 | 356.7/717.0 | 26.04 |
WT14 | 165.1 | 323.7 | 366.2 | 1.03 |
WT15 | 176.5 | 304.1 | 422.0 | 17.40 |
Mass/g | ||||
---|---|---|---|---|
GF1 | GF2 | GF3 | Other Components | |
>1000 µm | 190 | 3 | 32 | - |
250–1000 µm | 945.5 | 232.5 | 113.5 | - |
90–250 µm | 240 | 443 | 38.5 | - |
40–90 µm | 41 | 635.5 | 14 | - |
<40 µm | 18 | 658.5 | 14.5 | - |
sum | 1434.5 | 1972.5 | 212.5 | 546 |
Label | Photos | ||
---|---|---|---|
GF1 | GF2 | GF3 | |
>1000 µm | |||
250–1000 µm | |||
90–250 µm | |||
40–90 µm | |||
<40 µm |
Code | Temperature at 1% Weight Loss/°C | Temperature at 5% Weight Loss/°C | Temperature at Maximum Weight Change Rate 1/°C | Temperature at Maximum Weight Change Rate 2/°C | Residual Mass/% |
---|---|---|---|---|---|
GF1 < 40 µm | 224.7 | 475.3 | 330.9 | 599.8 | 89.7 |
GF1 40–90 µm | 254.0 | 361.4 | 366.2 | 640.3 | 84.4 |
GF1 90–250 µm | 238.7 | 336.2 | 375.9 | 669.6 | 60.4 |
GF1 250–1000 µm | 196.5 | 303.0 | 267.2/377.1 | 670.3 | 44.9 |
GF2 < 40 µm | 236.1 | 389.7 | 374.4 | 657.6 | 68.8 |
GF2 40–90 µm | 240.1 | 344.8 | 375.3 | 655.9 | 69.2 |
GF2 90–250 µm | 209.4 | 323.2 | 377.2 | 676.6 | 47.4 |
GF2 250–1000 µm | 188.8 | 300.4 | 375.8 | 671.5 | 27.3 |
GF2 > 1000 µm | 209.1 | 318.5 | 383.4 | 693.8 | 36.9 |
GF3 < 36 µm | 292.0 | 373.5 | 372.0 | 636.4 | 85.6 |
GF3 36–100 µm | 226.2 | 339.9 | 370.8 | 640.8 | 60.8 |
GF3 100–250 µm | 206.4 | 325.4 | 374.6 | 664.3 | 47.3 |
GF3 250–1000 µm | 179.7 | 311.9 | 371.7 | 669.8 | 25.5 |
GF3 > 1000 µm | 153.2 | 260.5 | 263.8/371.7 | 467.1 | 21.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Pakuła, D.; Frydrych, M.; Konieczna, R.; Sztorch, B.; Kozera, R.; Liu, H.; Zhou, H.; Przekop, R.E. Treatment and Valorization of Waste Wind Turbines: Component Identification and Analysis. Materials 2025, 18, 468. https://doi.org/10.3390/ma18020468
Zhao X, Pakuła D, Frydrych M, Konieczna R, Sztorch B, Kozera R, Liu H, Zhou H, Przekop RE. Treatment and Valorization of Waste Wind Turbines: Component Identification and Analysis. Materials. 2025; 18(2):468. https://doi.org/10.3390/ma18020468
Chicago/Turabian StyleZhao, Xiaohan, Daria Pakuła, Miłosz Frydrych, Roksana Konieczna, Bogna Sztorch, Rafał Kozera, Hongzhi Liu, Hui Zhou, and Robert E. Przekop. 2025. "Treatment and Valorization of Waste Wind Turbines: Component Identification and Analysis" Materials 18, no. 2: 468. https://doi.org/10.3390/ma18020468
APA StyleZhao, X., Pakuła, D., Frydrych, M., Konieczna, R., Sztorch, B., Kozera, R., Liu, H., Zhou, H., & Przekop, R. E. (2025). Treatment and Valorization of Waste Wind Turbines: Component Identification and Analysis. Materials, 18(2), 468. https://doi.org/10.3390/ma18020468