Determining Moisture Condition of External Thermal Insulation Composite System (ETICS) of an Existing Building
Abstract
:1. Introduction
2. Methodology
2.1. Characteristics of the Object
2.2. Inspection of Uncovering Cut-Outs
2.3. Numerical Modelling
3. Results
- Value should be at least 80 kPa at cohesive or adhesive rupture;
- If the result is less than 80 kPa, rupture must occur in the heat-insulating layer (100% cohesive fracture).
4. Discussion of the Results
- Inappropriate method of bonding thermal insulation panels to the wall (lack of perimeter application of adhesive mortar, use of mixed method of bonding polystyrene panels to the substrate, excessive thickness of adhesive mortar resulting in the formation of wide air voids between the insulation and the structural substrate);
- No filling of the joints of the polystyrene boards (leaving the thermal insulation gaps at the joints of the EPS boards can lead to the phenomenon of interstitial condensation at the crevices between the boards);
- The lack of air-tightness of the insulation against the ingress of precipitation moisture (discontinuities in the plaster coating, unsealed enclosures for electrical outlets in the balcony recesses, lack of edge flashings between the balcony slabs and the side walls of the balcony recesses, unsealed connections between the insulation system layers and the external roller shutter cassettes, cracks in the plaster coating).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Wang, H.; Huo, Q.; Qin, Y.; Zhoua, H. Comparative study of Chinese, European and ISO external thermal insulation composite system (ETICS) standards and technical recommendations. J. Build. Eng. 2023, 68, 105687. [Google Scholar] [CrossRef]
- EAD 040083-00-0404; External Thermal Insulation Composite Systems (ETICS) with Renderings. ETAs: Stuttgart, Germany, 2019.
- Luján, S.V.; Arrebola, C.V.; Sánchez, A.R.; Benito, P.A.; Cortina, M.G. Experimental comparative study of the thermal performance of the façade of a building refurbished using ETICS, and quantification of improvements. Sustain. Cities Soc. 2019, 51, 101713. [Google Scholar] [CrossRef]
- Orlik-Kożdon, B.; Nowoświat, A.; Krause, P.; Ponikiewski, T. A numerical and experimental investigation of temperature field in place of anchors in ETICS system. Constr. Build. Mater. 2018, 167, 553–565. [Google Scholar] [CrossRef]
- Almeida, M.; Leal, V.; Granadeiro, V.; Machado, J.; Mendes, A. A new tilted strips external thermal insulation composite system (TiS-ETICS): Description and performance assessment through thermal and energy simulation for a residential building. J. Build. Eng. 2021, 38, 101953. [Google Scholar] [CrossRef]
- Miskinis, K.; Dikavicius, V.; Buska, A.; Banionis, K. Influence of EPS, mineral wool and plaster layers on sound and thermal insulation of a wall: A case study. Appl. Acoust. 2018, 137, 62–68. [Google Scholar] [CrossRef]
- Amaro, B.; Saraiva, D.; de Brito, J.; Flores-Colen, I. Inspection and diagnosis system of ETICS on walls. Constr. Build. Mater. 2013, 47, 1257–1267. [Google Scholar] [CrossRef]
- Yuan, K.; Xiong, H.; Wen, M.; Xu, J. Visualization of localized deformation of external thermal insulation composite systems during aging. Appl. Therm. Eng. 2022, 206, 118108. [Google Scholar] [CrossRef]
- Ślusarek, J.; Orlik-Kożdoń, B.; Bochen, J.; Muzyczuk, T. Impact of the imperfection of thermal insulation on structural changes of thin-layer façade claddings in ETICS. J. Build. Eng. 2020, 32, 101487. [Google Scholar] [CrossRef]
- Norvaišienė, R.; Krause, P.; Buhagiar, V.; Burlingis, A. Resistance of ETICS with fire barriers to cyclic hygrothermal impact. Sustainability 2021, 13, 9220. [Google Scholar] [CrossRef]
- D’Orazio, M.; Cursio, G.; Graziani, L.; Aquilanti, L.; Osimani, A.; Clementi, F.; Yéprémian, C.; Lariccia, V.; Amoroso, S. Effects of water absorption and surface roughness on the bioreceptivity of ETICS compared to clay bricks. Build. Environ. 2014, 77, 20–28. [Google Scholar] [CrossRef]
- Parracha, J.L.; Veiga, R.; Gomes, M.G.; Flores-Colen, I.; Nunes, L. Hygrothermal behaviour of external thermal insulation composite systems (ETICS) to withstand biological colonization. J. Build. Eng. 2024, 86, 108932. [Google Scholar] [CrossRef]
- Barreira, E.; de Freitas, V.P. Experimental study of the hygrothermal behaviour of External Thermal Insulation Composite Systems (ETICS). Build. Environ. 2013, 63, 31–39. [Google Scholar] [CrossRef]
- Krueger, N.; Hofbauer, W.K.; Thiel, A.; Ilvonen, O. Resilience of biocide-free ETICS to microbiological growth in an accelerated weathering test. Build. Environ. 2023, 244, 110737. [Google Scholar] [CrossRef]
- Viegas, C.A.; Borsoi, G.; Moreira, L.M.; Parracha, J.L.; Nunes, L.; Malanho, S.; Veiga, R.; Flores-Colen, I. Diversity and distribution of microbial communities on the surface of External Thermal Insulation Composite Systems (ETICS) facades in residential buildings. Int. Biodeterior. Biodegrad. 2023, 184, 105658. [Google Scholar] [CrossRef]
- Malanho, S.; Veiga, M.d.R. Bond strength between layers of ETICS—Influence of the characteristics of mortars and insulation materials. J. Build. Eng. 2020, 28, 101021. [Google Scholar] [CrossRef]
- Norvaisien, R.; Buhagiar, V.; Burlingis, A.; Miskinis, K. Investigation of mechanical resistance of external thermal insulation composite systems (ETICS). J. Build. Eng. 2020, 32, 101682. [Google Scholar] [CrossRef]
- Kvande, T.; Bakken, N.; Bergheim, E.; Thue, J.V. Durability of ETICS with Rendering in Norway—Experimental and Field Investigations. Buildings 2018, 8, 93. [Google Scholar] [CrossRef]
- Parracha, J.L.; Veiga, R.; Flores-Colen, I.; Nunes, L. Toward the Sustainable and Efficient Use of External Thermal Insulation Composite Systems (ETICS): A Comprehensive Review of Anomalies, Performance Parameters, Requirements and Durability. Buildings 2023, 13, 1664. [Google Scholar] [CrossRef]
- Liismaa, E.; Lõhmusa, G.; Raado, L.M. The effect of temperature and humidity on the permanence of external thermal insulation composite systems. Procedia Eng. 2015, 108, 340–348. [Google Scholar] [CrossRef]
- Pereira, C.; de Brito, J.; Silvestre, J.D. Contribution of humidity to the degradation of façade claddings in current buildings. Eng. Fail. Anal. 2018, 90, 103–115. [Google Scholar] [CrossRef]
- EPA, (U.S. Environmental Protection Agency). Moisture Control. Guidance for Building Design, Construction and Maintenance, Indoor Air Quality (IAQ), U.S. Environmental Protection Agency (EPA). 2013. Available online: https://www.epa.gov/sites/production/files/2014-08/documents/moisture-control.pdf (accessed on 23 July 2024).
- Bendouma, M.; Colinart, T.; Glouannec, P.; Noël, H. Laboratory study on hygrothermal behavior of three external thermal insulation systems. Energy Build. 2020, 210, 109742. [Google Scholar] [CrossRef]
- Parracha, J.L.; Borsoi, G.; Flores-Colen, I.; Veiga, R.; Nunes, L.; Dionísio, A.; Gomes, G.M.; Faria, P. Performance parameters of ETICS: Correlating water resistance, bio-susceptibility and surface properties. Constr. Build. Mater. 2021, 272, 121956. [Google Scholar] [CrossRef]
- Rokiel, M. ETICS system—How to find operational problems—Selected issues. Inżynier Budownictwa 2023, 2, 49–53. [Google Scholar]
- Fraunhofer Institut für Bauphysik. WUFI Software. Available online: https://wufi.de/en/ (accessed on 23 July 2024).
- Sinchuk, Y.; Pannier, Y.; Antoranz-Gonzalez, R.; Gigliotti, M. Analysis of moisture diffusion induced stress in carbon/epoxy 3D textile composite materials with voids by µ-CT based Finite Element Models. Compos. Struct. 2019, 212, 561–570. [Google Scholar] [CrossRef]
- Qiu, Q. Effect of internal defects on the thermal conductivity of fiber-reinforced polymer (FRP): A numerical study based on micro-CT based computational modeling. Mater. Today Commun. 2023, 36, 106446. [Google Scholar] [CrossRef]
- DIN 863-1; Geometrical Product Specifications (GPS)—Micrometers—Part 1: Micrometers for External Measurements. Deutsches Institut für Normung: Berlin, Germany, 2017.
- EN ISO 12570; Hygrothermal Performance of Building Materials and Products—Determination of Moisture Content by Drying at Elevated Temperature. ISO: Geneva, Switzerland, 2000.
- EN ISO 15148; Hygrothermal Performance of Building Materials and Products—Determination of Water Absorption Coefficient by Partial Immersion. ISO: Geneva, Switzerland, 2002.
- EN 15026; Hygrothermal Performance of Building Components and Building Elements. Assessment of Moisture Transfer by Numerical Simulation. ISO: Geneva, Switzerland, 2023.
- Zamorowska, R.; Sieczkowski, J. Warunki Techniczne Wykonania i Odbioru Robót Budowlanych—Część C: Zabezpieczenia i Izolacje—Zeszyt 8: Złożone Systemy Ocieplania Ścian Zewnętrznych Budynków (ETICS) z Zastosowaniem Styropianu lub Wełny Mineralnej i Wypraw Tynkarskich; Instytut Techniki Budowlanej: Warszawa, Poland, 2019. [Google Scholar]
- DIN 4108-3; Heat Insulation in Buildings; Protection Against Moisture Caused by the Climate; Requirements and Directions for Planning and Construction. Deutsches Institut für Normung: Berlin, Germany, 2014.
No. | Cut-Out | Location of the Cut-Out | External Wall Construction Substrates | Thermal Insulation Layer | |
---|---|---|---|---|---|
1 | P1 | Ground floor | Lower part of the wall, fire separation zone | Concrete | Mineral wool/ EPS-P polystyrene |
2 | P2 | 2nd floor | External wall outside balcony recesses | Silicate blocks | EPS polystyrene |
3 | P3 | 2nd floor | Pillar between balcony recesses | Silicate blocks | EPS polystyrene |
4 | P4 | 3rd floor | Near the expansion joint, fire separation zone | Silicate blocks | Mineral wool |
5 | P5 | 3rd/4th floors | At the height of the balcony floor slab between the 3rd and 4th floors, at the edge of the balcony floor slab flashing | Concrete | EPS polystyrene |
6 | P6 | Ground floor | External wall near terrace recesses | Concrete | EPS polystyrene |
7 | P7 | Ground floor | North wall of the staircase overhang | Concrete | EPS polystyrene |
8 | P8 | Ground floor | West wall of the staircase overhang | Concrete | EPS polystyrene |
9 | P9 | 1st floor | Upper part of the wall | Concrete | EPS polystyrene |
10 | P10 | 2nd floor | Pillar between balcony recesses | Silicate blocks | EPS polystyrene |
11 | P11 | 2nd floor | Lower part of the wall, near northwest corner of the building | Silicate blocks | EPS polystyrene |
Layer No. | Material | Thickness [cm] |
---|---|---|
|1| | Silicate blocks masonry wall | 24.00 |
|2| | Adhesive mortar fixing the insulation to the substrate | 1.00 |
|3| | EPS polystyrene | 15.00 |
|4| | Reinforcing mesh layer | 0.03 |
|5| | Silicone plaster | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krause, P.; Pokorska-Silva, I.; Kosobucki, Ł. Determining Moisture Condition of External Thermal Insulation Composite System (ETICS) of an Existing Building. Materials 2025, 18, 614. https://doi.org/10.3390/ma18030614
Krause P, Pokorska-Silva I, Kosobucki Ł. Determining Moisture Condition of External Thermal Insulation Composite System (ETICS) of an Existing Building. Materials. 2025; 18(3):614. https://doi.org/10.3390/ma18030614
Chicago/Turabian StyleKrause, Paweł, Iwona Pokorska-Silva, and Łukasz Kosobucki. 2025. "Determining Moisture Condition of External Thermal Insulation Composite System (ETICS) of an Existing Building" Materials 18, no. 3: 614. https://doi.org/10.3390/ma18030614
APA StyleKrause, P., Pokorska-Silva, I., & Kosobucki, Ł. (2025). Determining Moisture Condition of External Thermal Insulation Composite System (ETICS) of an Existing Building. Materials, 18(3), 614. https://doi.org/10.3390/ma18030614