Microstructure Evolution Behaviors and Mechanical Properties of 6082-0.2Zr-0.3Er Alloy During the Pre-Hardened Hot Forming Process
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results and Discussion
3.1. Microstructure Characteristics
3.2. Mechanical Properties
4. Conclusions
- Different from the traditional process, the grains in PHF-treated alloy show a certain directional arrangement, and the second phase precipitated on the grain boundary is also the same. In addition, the texture coefficients of (220) and (200) were enhanced after PHF treatment.
- Although the average size of the second phase is almost the same in the two samples, the size distribution is more concentrated in the PHF-treated sample, with a higher proportion of finer particles. The fine and evenly distributed second phase is beneficial for enhancing the mechanical properties of the alloy, particularly the plasticity.
- Compared with the traditional process, the product of strength and elongation of the sample treated by the PHF process increased by about 12.1%. PHF process can not only greatly shorten the processing time and improve the production efficiency but also is expected to improve the comprehensive mechanical properties of this 6082-0.2Zr-0.3Er alloy.
- It has been proved that the PHF process is helpful in improving the comprehensive mechanical properties of 6082-0.2Zr-0.3Er alloy. However, the strength of the alloy decreased slightly in this study, so the pre-aging and hot-forming parameters are expected to be optimized to further improve the mechanical properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salih, O.S.; Neate, N.; Ou, H.; Sun, W. Influence of process parameters on the microstructural evolution and mechanical characterisations of friction stir welded Al-Mg-Si alloy. J. Mech. Work. Technol. 2019, 275, 116366. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, H.; You, J.; Liu, S.; He, J. Research on compression deformation behavior of aging AA6082 aluminum alloy based on strain compensation constitutive equation and PSO-BP network model. Mater. Today Commun. 2021, 28, 102507. [Google Scholar] [CrossRef]
- Bouquerel, J.; Diawara, B.; Dubois, A.; Dubar, M.; Vogt, J.-B.; Najjar, D. Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy. Mater. Des. 2015, 68, 245–258. [Google Scholar] [CrossRef]
- Dong, H.-R.; Li, X.-Q.; Li, Y.; Wang, Y.-H.; Wang, H.-B.; Peng, X.-Y.; Li, D.-S. A review of electrically assisted heat treatment and forming of aluminum alloy sheet. Int. J. Adv. Manuf. Technol. 2022, 120, 7079–7099. [Google Scholar] [CrossRef]
- Zhang, Q.-D.; Sun, F.-Z.; Liu, M.; Liu, W.-C. Optimizing microstructure and mechanical properties of heat-treated Al-Zn-Mg-Cu alloy by indirect hot deformation technology. J. Central South Univ. 2022, 29, 3544–3556. [Google Scholar] [CrossRef]
- Liu, R.; Tian, Y.; Zhang, P.; Zhang, Z. Fatigue strength plateau induced by microstructure inhomogeneity. Mater. Sci. Eng. A 2017, 702, 259–264. [Google Scholar] [CrossRef]
- Zheng, J.-H.; Dong, Y.; Zheng, K.; Dong, H.; Lin, J.; Jiang, J.; Dean, T.A. Experimental investigation of novel fast–ageing treatments for AA6082 in supersaturated solid solution state. J. Alloys Compd. 2019, 810, 151934. [Google Scholar] [CrossRef]
- Zheng, K.; Dong, Y.; Zheng, J.-H.; Foster, A.; Lin, J.; Dong, H.; Dean, T.A. The effect of hot form quench (HFQ®) conditions on precipitation and mechanical properties of aluminium alloys. Mater. Sci. Eng. A 2019, 761, 138017. [Google Scholar] [CrossRef]
- Birol, Y.; Ilgaz, O. Effect of cast and extruded stock on grain structure of EN AW 6082 alloy forgings. Mater. Sci. Technol. 2014, 30, 860–866. [Google Scholar] [CrossRef]
- Hua, L.; Yuan, P.-G.; Zhao, N.; Hu, Z.-L.; Ma, H.-J. Microstructure and mechanical properties of 6082 aluminum alloy processed by preaging and hot forging. Trans. Nonferrous Met. Soc. China 2022, 32, 790–800. [Google Scholar] [CrossRef]
- Kumar, M.; Ross, N. Influence of temper on the performance of a high-strength Al–Zn–Mg alloy sheet in the warm forming processing chain. J. Mech. Work. Technol. 2016, 231, 189–198. [Google Scholar] [CrossRef]
- Takuda, H.; Mori, K.; Masuda, I.; Abe, Y.; Matsuo, M. Finite element simulation of warm deep drawing of aluminium alloy sheet when accounting for heat conduction. J. Mech. Work. Technol. 2001, 120, 412–418. [Google Scholar] [CrossRef]
- Ai, S.; Dai, R.; Long, H. Investigating formability enhancement in double side incremental forming by developing a new test method of tension under cyclic bending and compression. J. Mech. Work. Technol. 2019, 275, 116349. [Google Scholar] [CrossRef]
- Lin, J.; Dean, T.A.; Garrett, R.P. A Process in Forming High Strength and Complex-Shaped Al-Alloy Sheet Components. UK Patent WO2008059242, 22 May 2008. [Google Scholar]
- Wang, L.; Strangwood, M.; Balint, D.; Lin, J.; Dean, T. Formability and failure mechanisms of AA2024 under hot forming conditions. Mater. Sci. Eng. A 2011, 528, 2648–2656. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, B.; Zheng, K. An experimental and numerical investigation on the formability of AA7075 sheet in hot stamping condition. Int. J. Adv. Manuf. Technol. 2017, 92, 3299–3309. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, B.; Wang, Y.; Li, S.; Zhang, Y. Fast solution heat treatment of high strength aluminum alloy sheets in radiant heating furnace during hot stamping. Int. J. Light. Mater. Manuf. 2019, 3, 20–25. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, H.; Cai, M.; Chen, Y.; Liu, Y.; Zhang, Y. Investigation into the hot forming-quenching integrated process with cold dies for high strength aluminum alloy. Mater. Charact. 2019, 158, 109967. [Google Scholar] [CrossRef]
- Omer, K.; Abolhasani, A.; Kim, S.; Nikdejad, T.; Butcher, C.; Wells, M.; Esmaeili, S.; Worswick, M. Process parameters for hot stamping of AA7075 and D-7xxx to achieve high performance aged products. J. Mech. Work. Technol. 2018, 257, 170–179. [Google Scholar] [CrossRef]
- Xiao, H.; Jiang, S.; Shi, C.; Zhang, K.; Lu, Z.; Jiang, J. Study on the microstructure evolution and mechanical properties of an Al-Mg-Li alloy aged by electropulsing assisted ageing processing. Mater. Sci. Eng. A 2019, 756, 442–454. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, J.; He, D. Influence of contact solid-solution treatment on microstructures and mechanical properties of 7075 aluminum alloy. Mater. Sci. Eng. A 2018, 743, 500–503. [Google Scholar] [CrossRef]
- Zhang, W.-P.; Li, H.-H.; Hu, Z.-L.; Hua, L. Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-T6 alloy under pre-hardened hot forming process. Mater. Sci. Eng. A 2020, 792, 139749. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, W.; Ma, H.; Hu, Z. Investigation of formability, microstructures and post-forming mechanical properties of heat-treatable aluminum alloys subjected to pre-aged hardening warm forming. Int. J. Mach. Tools Manuf. 2021, 169, 103799. [Google Scholar] [CrossRef]
- Zhang, W.; Pang, Q.; Lu, J.; Hu, Z. Comparative study on deformation behavior, microstructure evolution and post-forming property of an Al Zn Mg Cu alloy in a novel warm forming process. J. Mech. Work. Technol. 2022, 312, 117854. [Google Scholar] [CrossRef]
- Wei, P.; Hu, Z.; Pang, Q. Microstructure evolution and strengthening mechanisms of high strength Al-Zn-Mg-Cu alloy via pre-hardening forming. J. Alloys Compd. 2023, 968, 172057. [Google Scholar] [CrossRef]
- Mrówka-Nowotnik, G.; Sieniawski, J. Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. J. Mater. Process. Technol. 2005, 162–163, 367–372. [Google Scholar] [CrossRef]
- Yang, L.; Bai, D.; Wang, D.; Liu, C.; Yang, S.; Huang, G. Effect of aging temperature on microstructure and corrosion behavior of 6082 aluminum alloy. Mater. Today Commun. 2023, 36, 106583. [Google Scholar] [CrossRef]
- Sahoo, J.R.; Singh, B.P.; Mishra, S. A comprehensive study on the effect of preageing temperature on formability characteristics of an Al-Mg-Si alloy. Mater. Today Commun. 2022, 34, 105175. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, H.; Sun, Q.; Hu, Z.; Yan, Y.; Chen, T.; Hua, L. Microstructural evolutions and mechanical properties of 6082 aluminum alloy part produced by a solution-forging integrated process. J. Mech. Work. Technol. 2022, 308, 117715. [Google Scholar] [CrossRef]
- Liu, B.; Lei, Q.; Xie, L.; Wang, M.; Li, Z. Microstructure and mechanical properties of high product of strength and elongation Al-Zn-Mg-Cu-Zr alloys fabricated by spray deposition. Mater. Des. 2016, 96, 217–223. [Google Scholar] [CrossRef]
Composition | Mg | Si | Mn | Cu | Zn | Cr | Fe | Ti | Zr | Er | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
Content (wt.%) | 0.8 | 1.1 | 0.8 | 0.1 | 0.2 | 0.25 | 0.5 | 0.1 | 0.2 | 0.3 | Bal. |
Process | Heat Treatment | Compression | ||
---|---|---|---|---|
Solution | Aging | Temperature | Deformation | |
Traditional | 540 °C 1 h | 175 °C 8 h | Room temperature | 10% |
PHF | 540 °C 1 h | 120 °C 4 h | 200 °C | 10% |
Sample | Tc (111) | Tc (200) | Tc (220) | Tc (311) |
---|---|---|---|---|
Traditional | 4.7 | 9.2 | 72.5 | 13.6 |
PHF | 1.4 | 12.3 | 74.8 | 11.5 |
Point | Al | Si | Mg | Mn | Cr | Fe | Zr | Er |
---|---|---|---|---|---|---|---|---|
1 | 76.42 | 10.38 | 1.18 | 8.27 | 2.19 | 1.41 | - | 0.15 |
2 | 87.17 | 6.73 | 1.19 | 0.15 | 0.12 | 0.04 | - | 4.6 |
3 | 96.7 | 0.52 | 1.94 | 0.44 | 0.22 | 0.13 | - | 0.05 |
Sample | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|
Traditional | 309 | 319 | 7.5 |
PHF | 280 | 295 | 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Zhang, D.; Deng, Y.; Cheng, Z.; Sun, Q.; Hu, Z.; Hua, L. Microstructure Evolution Behaviors and Mechanical Properties of 6082-0.2Zr-0.3Er Alloy During the Pre-Hardened Hot Forming Process. Materials 2025, 18, 616. https://doi.org/10.3390/ma18030616
Huang F, Zhang D, Deng Y, Cheng Z, Sun Q, Hu Z, Hua L. Microstructure Evolution Behaviors and Mechanical Properties of 6082-0.2Zr-0.3Er Alloy During the Pre-Hardened Hot Forming Process. Materials. 2025; 18(3):616. https://doi.org/10.3390/ma18030616
Chicago/Turabian StyleHuang, Feng, Daoling Zhang, Yingchuan Deng, Zhe Cheng, Qian Sun, Zhili Hu, and Lin Hua. 2025. "Microstructure Evolution Behaviors and Mechanical Properties of 6082-0.2Zr-0.3Er Alloy During the Pre-Hardened Hot Forming Process" Materials 18, no. 3: 616. https://doi.org/10.3390/ma18030616
APA StyleHuang, F., Zhang, D., Deng, Y., Cheng, Z., Sun, Q., Hu, Z., & Hua, L. (2025). Microstructure Evolution Behaviors and Mechanical Properties of 6082-0.2Zr-0.3Er Alloy During the Pre-Hardened Hot Forming Process. Materials, 18(3), 616. https://doi.org/10.3390/ma18030616