Utilizing Chicken Egg White and L-Cysteine for Green Synthesis of Carbon Dots: Rapid and Cost-Effective Detection of Cu2+ Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. S-C-Dot Characterization
3.2. Performance of A060 as a Metal Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oloruntoba, A.; Omoniyi, A.O.; Shittu, Z.A.; Ajala, R.O.; Kolawole, S.A. Heavy Metal Contamination in Soils, Water, and Food in Nigeria from 2000–2019: A Systematic Review on Methods, Pollution Level and Policy Implications. Water Air Soil Pollut. 2024, 235, 586. [Google Scholar] [CrossRef]
- Yin, Z.; Xie, Y.; Wang, S.; Li, Q.; Wan, S.; Chen, L.; Dai, X.; Wang, R.; Desneux, N.; Zhi, J.; et al. Bioaccumulation and transferreing for impacts on Cd and Pb by aphid consumption of the broad bean, Vicia faba L, in soil heavy metal pollution. Chemosphere 2024, 360, 142429. [Google Scholar] [CrossRef]
- Gori, A.; Armani, A.; Pedonese, F.; Benini, O.; Mancini, S.; Nuvoloni, R. Heavy metals (Pb, Ni) in insect-based products for human consumption sold by e-commerce in the EU market: Occurrence and potential health risk associated with dietary exposure. Food Control 2025, 167, 110781. [Google Scholar] [CrossRef]
- Singh, V.; Ahmed, G.; Vedika, S.; Kumar, P.; Chaturvedi, S.K.; Rai, S.N.; Vamanu, E.; Kumar, A. Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: Isotherms, thermodynamics and kinetics study. Sci. Rep. 2024, 14, 7595. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Deng, X.-Y.; Feng, Y.-L.; He, D.-S.; Zhang, Z.-Y.; Liu, D.-F.; Chi, R.-A. Synthesis of Functionalized Carbon Quantum Dots as Fluorescent Probes for Detection of Cu2+. Chin. J. Anal. Chem. 2020, 48, e20126–e20133. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health Part B 2001, 4, 341–394. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Singh, A.; Garg, N.; Kaur, N.; Singh, N. Carbon dots as analytical tools for sensing of thioredoxin reductase and screening of cancer cells. Analyst 2018, 143, 1853. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Liu, G.; Li, L.; Fu, Z.; Xu, H.; Cui, F. Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications. RSC Adv. 2015, 5, 95223–95229. [Google Scholar] [CrossRef]
- Gedda, G.; Lee, C.-Y.; Lin, Y.-C.; Wu, H.-F. Green synthesis of Carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sens. Actuators B Chem. 2015, 224, 396–403. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.S.; Zhang, H.Z.; Wang, N.; Zhang, Z.; Huang, C.Z. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosens. Bioelectron. 2017, 97, 157–163. [Google Scholar] [CrossRef]
- Essner, J.B.; Laber, C.H.; Ravula, S.; Polo-Parada, L.; Baker, G.A. Pee-dots: Biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chem. 2016, 18, 243. [Google Scholar] [CrossRef]
- Xu, P.; Wang, C.; Sun, D.; Chen, Y.; Zhuo, K. Ionic liquid as a precursor to synthesize nitrogen- and sulfur-co-doped carbon dots for detection of copper(II) ions. Chem. Res. Chin. Univ. 2015, 31, 730–735. [Google Scholar] [CrossRef]
- Shi, L.; Li, Y.; Li, X.; Zhao, B.; Wen, X.; Zhang, G.; Dong, C.; Shuang, S. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu2+ sensing in living cells. Biosens. Bioelectron. 2016, 77, 598–602. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R.; Li, G.; Chen, C.; Chi, Y.; Chen, G. Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions. Anal. Chem. 2012, 84, 6220–6224. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. (Eds.) Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practice. Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Pichardo-Molina, J.L.; Cardoso-Avila, P.E.; Flores-Villavicencio, L.L.; Gomez-Ortiz, N.M.; Rodriguez-Rivera, M.A. Fluorescent carbon nanoparticles synthesized from bovine serum albumin nanoparticles. Int. J. Biol. Macromol. 2020, 142, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Pichardo-Molina, J.L.; Cardoso-Avila, P.E.; Patakfalvi, R.J.; Aparicio-Ixta, L.; Pedro-García, F.; Ojeda-Galvan, H.J.; Flores-Villavicencio, L.L.; Villagómez-Castro, J.C. One-pot room-temperature direct synthesis of bovine serum albumin-based fluorescent carbon nanoparticles. Int. J. Biol. Macromol. 2023, 224, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Ixta, L.; Pichardo-Molina, J.L.; Cardoso-Avila, P.E.; Ojeda-Galvan, H.J.; Martínez-García, M.M. Nitrogen-doped carbon dots by means of a simple room-temperature synthesis using BSA protein and nucleosides or amino acids. Colloids Surf. A Physicochem. Eng. Asp. 2024, 686, 133394. [Google Scholar] [CrossRef]
- Cardoso-Ávila, P.E.; Pichardo-Molina, J.L.; Vázquez-Olmos, M.; González-Aguiñaga, E. Chicken egg white as a “greener” biomass source for the rapid synthesis of fluorescent carbon dots. Mater. Lett. 2024, 358, 135880. [Google Scholar] [CrossRef]
- Ma, X.; Sun, X.; Hargrove, D.; Chen, J.; Song, D.; Dong, Q.; Lu, X.; Fan, T.H.; Fu, Y.; Lei, Y. A biocompatible and biodegradable protein hydrogel with green and red autofluorescence: Preparation, characterization and in vivo biodegradation tracking and modeling. Sci. Rep. 2016, 6, 19370. [Google Scholar] [CrossRef]
- Liu, M. Optical properties of carbon dots: A review. Nanoarchitectonics 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Makgopa, J.; Elugoke, S.E. Comparative electrochemical properties of polyaniline/carbon quantum dots nanocomposites modified screen-printed carbon and gold electrodes. Mater. Res. Express 2023, 10, 125603. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Marvi, P.K.; Sherazee, M.; Tang, X.; Srinivasan, S.; Rajabzadeh, A.R. Carbon Dots Infused 3D Printed Cephalopod Mimetic Bactericidal and Antioxidant Hydrogel for Uniaxial Mechano-Fluorescent Tactile Sensor. Adv. Mater. 2024, 36, 2409819. [Google Scholar] [CrossRef]
- Rezvani, M.; Ganji, M.D.; Jameh-Bozorghi, S.; Niazi, A. DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 194, 57–66. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Sharif, M.K.; Saleem, M.; Javed, K. Food Materials Science in Egg Powder Industry. In Role of Materials Science in Food Bioengineering; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 505–537. [Google Scholar] [CrossRef]
- Hrabia, A. Chapter 35—Reproduction in the female. In Sturkie’s Avian Physiology, 7th ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 941–986. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Xu, Y.; Liu, H.; Zhou, T.; Huang, N.; Li, Y.; Ding, L. Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots. Anal. Bioanal. Chem. 2018, 410, 4301–4309. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Y.; Sun, H.; Chen, N. Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Mater. Today Chem. 2017, 5, 1–10. [Google Scholar] [CrossRef]
- Chaudhary, N.; Gupta, P.K.; Eremin, S.; Solanki, P.R. One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J. Environ. Chem. Eng. 2020, 8, 103720. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Liu, L.; Gong, H.; Li, D.; Zhao, L. Synthesis of Carbon Dots from Pear Juice for Fluorescence Detection of Cu2+ Ion in Water. J. Nanosci. Nanotechnol. 2018, 18, 5327–5332. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Lin, Y.; Periasamy, A.P.; Cangb, J.; Chang, H.-T. Parameters affecting the synthesis of carbon dots for quantitation of copper ions. Nanoscale Adv. 2019, 1, 2553–2561. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.-T.; Wu, M.B.; Sun, H.-D.; Xie, H.; Hu, C.; Wu, X.-Y.; Qiu, J.-S. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions. New Carbon Mater. 2015, 30, 550–559. [Google Scholar] [CrossRef]
- Ali, H.R.H.; Hassan, A.I.; Hassan, Y.F.; El-Wekil, M.M. Development of dual function polyamine-functionalized carbon dots derived from one step green synthesis for quantitation of Cu2+ and S2 − ions in complicated matrices with high selectivity. Anal. Bioanal. Chem. 2020, 412, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Zhu, A.; Shao, X.; Shib, G.; Tian, Y. Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Commun. 2012, 48, 5473–5475. [Google Scholar] [CrossRef]
- Sanni, S.O.; Moundzounga, T.H.G.; Oseghe, E.O.; Haneklaus, N.H.; Viljoen, E.L.; Brink, H.G. One-Step Green Synthesis of Water-Soluble Fluorescent Carbon Dots and Its Application in the Detection of Cu2+. Nanomaterials 2022, 12, 958. [Google Scholar] [CrossRef]
- Patir, K.; Gogoi, S.K. Nitrogen-doped carbon dots as fluorescence ON–OFF–ON sensor for parallel detection of copper(ii) and mercury(ii) ions in solutions as well as in filter paper-based microfluidic device. Nanoscale Adv. 2019, 1, 592–601. [Google Scholar] [CrossRef]
- Zhong, Z.; Jia, L. Room temperature preparation of water-soluble polydopamine-polyethyleneimine copolymer dots for selective detection of copper ions. Talanta 2019, 197, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions. Adv. Mater. 2012, 24, 2037–2041. [Google Scholar] [CrossRef]
Probe | Carbon Source (s) | Synthesis Method | Purification | Detection Medium | λex/λem | LOD (LR) [nM] | Ref. |
---|---|---|---|---|---|---|---|
DTPA-C-dots | TTDDA and citric acid | HT treatment at 180 °C for 6 h, DTPA Fun. | 3500 Da DM for 72 h | pH 7.4 HEPES | 340/446 | NR (0–2600) | [9] |
C-dots | Peanut shells | Pyrolysis at 400 °C for 4 h | FM, 1000 Da DM | Water | 312/413 | 4800 (0–5000) | [33] |
CPDs | Urine | Dehydration and carbonization at 200 °C for 12 h | C, FM, 1000 Da DM for 12 h | 6.4 μM EDTA | 450/510 | 1700 (0–30,000) | [13] |
C-dots | Banana juice | HT treatment at 150 °C for 4 h | FM, C, vacuum drying | pH 8 Borate buffer | 330/420 | 1650 (5500–4.4 × 106) | [34] |
C-dots | Pear juice | HT treatment at 150 °C for 2 h | C | Water | 360/455 | 1570 (0–50,000) | [36] |
I-C-dots | L-histidine | Electrochemical treatment at pH 9 | FM, 500 Da DM for 24 h | pH 3 PBS | 420/505 | 220 (300–3000) | [37] |
N-C-dots | Citric acid and L-histidine | Pyrolysis at 220 °C for 2 h in N atmosphere | 1000 Da DM | pH 4 NaAc-Hac buffer | 360/450 | 190 (600–30,000) | [32] |
N-S-C-dots | [C4mim] [Cys] | Sulfuric acid carbonization at 120 °C for 36 h | N, 500 Da DM | pH 7 PBS | 336/430 | 180 (500–5000) | [14] |
PEI-C-dots | Biomass tar and PEI | HT treatment at 180 °C for 2 h | FM, 3500 Da DM for 24 h | pH 4 PBS | 340/460 | 80 (80–400,000) | [6] |
C-dots | Leeks | Pyrolysis at 350 °C for 3 h | pH 7.4 | 360/450 | 50 (10–104) | [15] | |
C-dots | Petroleum coke | Ultrasound-assisted chemical oxidation | N, FM, 3500 Da DM for 72 h | EDTA | 420/513 | 29 (250–10,000) | [38] |
PA-C-dots | Vitis vinifera juice | Thermolysis at 200 °C for 6 h | FM | pH 7 BR | 435/498 | 20 (70–60,000) | [39] |
N-C-dots | Pak choi juice | HT treatment at 150 °C for 12 h | FM, C | pH 7.4 Tris-HAc | 380/460 | 10 (0–100) | [10] |
TPEA-C-dots | Graphite rods | Electrochemical treatment, TPEA Fun. | FM, C | pH 7 H2O/C2H5OH (9:1, v/v) | 420/500 | 10 (1000–100,000) | [40] |
C-dots | PEI | Microwave-assisted method | N, FM, 1000 Da DM for 24 h | pH 7 BR | 360/462 | 7 (10–2000) | [12] |
BPEI-C-dots | Citric acid and BPEI | Pyrolysis for 3 h | SGCC | pH 4 | 365/460 | 6 (10–1100) | [16] |
C-dots | Pine cones | Microwave pyrolysis at 1000 W for 1 h | C, FM, vacuum drying | pH 4 PBS | 360/430 | 5 (Not linear) | [41] |
C-dots | Prawn shells | HT treatment at 200 °C for 8 h | C, vacuum drying | pH 4 PBS | 330/405 | 5 (0.1–5000) | [11] |
N-C-dots | Urea and EDTA | Pyrolysis at 200 °C for 1 h | FM | Water | 360/434 | 2.3 (1–22,000) | [42] |
PDA-PEI copolymer dots | DA-HCl and BPEIDopamine hydro- Chloride | Polymerization | FM, 1000 Da DM for 4 h | pH 5 PBS | 380/530 | 1.6 (1.6–80,000) | [43] |
C-dots | Grass | HT treatment at 180 °C for 3 h | C | pH 7 PBS | 360/443 | 1 (0–50,000) | [44] |
S-C-dots | CEW and L-cysteine | Room-temperature base catalysis for 6 h | None | Water | 530/559 | 52 (0–15,700) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso-Ávila, P.E.; Pichardo-Molina, J.L. Utilizing Chicken Egg White and L-Cysteine for Green Synthesis of Carbon Dots: Rapid and Cost-Effective Detection of Cu2+ Ions. Materials 2025, 18, 637. https://doi.org/10.3390/ma18030637
Cardoso-Ávila PE, Pichardo-Molina JL. Utilizing Chicken Egg White and L-Cysteine for Green Synthesis of Carbon Dots: Rapid and Cost-Effective Detection of Cu2+ Ions. Materials. 2025; 18(3):637. https://doi.org/10.3390/ma18030637
Chicago/Turabian StyleCardoso-Ávila, Pablo Eduardo, and Juan Luis Pichardo-Molina. 2025. "Utilizing Chicken Egg White and L-Cysteine for Green Synthesis of Carbon Dots: Rapid and Cost-Effective Detection of Cu2+ Ions" Materials 18, no. 3: 637. https://doi.org/10.3390/ma18030637
APA StyleCardoso-Ávila, P. E., & Pichardo-Molina, J. L. (2025). Utilizing Chicken Egg White and L-Cysteine for Green Synthesis of Carbon Dots: Rapid and Cost-Effective Detection of Cu2+ Ions. Materials, 18(3), 637. https://doi.org/10.3390/ma18030637