Improvement of the Impact Resistance of Epoxy Prepregs Through the Incorporation of Polyamide Nonwoven Fabric
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hegde, S.; Satish Shenoy, B.; Chethan, K.N. Review on Carbon Fiber Reinforced Polymer (CFRP) and Their Mechanical Performance. Mater. Today Proc. 2019, 19, 658–662. [Google Scholar] [CrossRef]
- Öchsner, A.; Altenbach, H. Engineering Design Applications III; Springer: Berlin/Heidelberg, Germany, 2020; Volume 4, ISBN 9783030390617. [Google Scholar]
- Siddiquee, S.; Hong, M.G.J.; Rahman, M.M. Carbon Fibre Reinforced Polymer (CFRP) Composites: Machining Aspects and Opportunities for Manufacturing Industries; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783030454890. [Google Scholar]
- Soutis, C. FAILURE OF NOTCHED CFRP LAMINATES DUE TO FIBRE MICROBUCKLING: A TOPICAL REVIEW. J. Mech. Behav. Mater. 1996, 6, 309–330. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, W.; Li, B.; Zhu, J.; Wang, C.; Song, G.; Wu, G.; Yang, X.; Huang, Y.; Ma, L. Recent Advances of Interphases in Carbon Fiber-Reinforced Polymer Composites: A Review. Compos. Part B Eng. 2022, 233, 109639. [Google Scholar] [CrossRef]
- Jain, S.; Yang, D.C.H. Effects of federate and chisel edge on delamination in composite drilling. Process. Manuf. Compos. Mater. ASME PED 1991, 27, 49. [Google Scholar] [CrossRef]
- Li, Y.; Hori, N.; Arai, M.; Hu, N.; Liu, Y.; Fukunaga, H. Improvement of Interlaminar Mechanical Properties of CFRP Laminates Using VGCF. Compos. Part A Appl. Sci. Manuf. 2009, 40, 2004–2012. [Google Scholar] [CrossRef]
- Li, H.; Chen, W.; Xu, J.; Li, J.; Gan, L.; Chu, X.; Yao, Y.; He, Y.; Li, B.; Kang, F.; et al. Enhanced Thermal Conductivity by Combined Fillers in Polymer Composites. Thermochem. Acta 2019, 676, 198–204. [Google Scholar] [CrossRef]
- Nash, N.H.; Young, T.M.; McGrail, P.T.; Stanley, W.F. Inclusion of a Thermoplastic Phase to Improve Impact and Post-Impact Performances of Carbon Fibre Reinforced Thermosetting Composites—A Review. Mater. Des. 2015, 85, 582–597. [Google Scholar] [CrossRef]
- Basha, M.; Wagih, A.; Melaibari, A.; Lubineau, G.; Eltaher, M.A. On the Impact Damage Resistance and Tolerance Improvement of Hybrid CFRP/Kevlar Sandwich Composites. Microporous Mesoporous Mater. 2022, 333, 111732. [Google Scholar] [CrossRef]
- Cartié, D.D.R.; Irving, P.E. Effect of Resin and Fibre Properties on Impact and Compression after Impact Performance of CFRP. Compos.—Part A Appl. Sci. Manuf. 2002, 33, 483–493. [Google Scholar] [CrossRef]
- Kostopoulos, V.; Baltopoulos, A.; Karapappas, P.; Vavouliotis, A.; Paipetis, A. Impact and After-Impact Properties of Carbon Fibre Reinforced Composites Enhanced with Multi-Wall Carbon Nanotubes. Compos. Sci. Technol. 2010, 70, 553–563. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Wang, X.; Ding, G.; Pan, Y.; Xie, H.; Chen, Q.; Cheng, R. Effects of Amino-Functionalized Carbon Nanotubes on the Properties of Amine-Terminated Butadiene-Acrylonitrile Rubber-Toughened Epoxy Resins. J. Appl. Polym. Sci. 2014, 131, 1–7. [Google Scholar] [CrossRef]
- Mahdi, T.H.; Islam, M.E.; Hosur, M.V.; Jeelani, S. Low-Velocity Impact Performance of Carbon Fiber-Reinforced Plastics Modified with Carbon Nanotube, Nanoclay and Hybrid Nanoparticles. J. Reinf. Plast. Compos. 2017, 36, 696–713. [Google Scholar] [CrossRef]
- Newman, B.; Creighton, C.; Henderson, L.C.; Stojcevski, F. A Review of Milled Carbon Fibres in Composite Materials. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107249. [Google Scholar] [CrossRef]
- Dong, J.; Jia, C.; Wang, M.; Fang, X.; Wei, H.; Xie, H.; Zhang, T.; He, J.; Jiang, Z.; Huang, Y. Improved Mechanical Properties of Carbon Fiber-Reinforced Epoxy Composites by Growing Carbon Black on Carbon Fiber Surface. Compos. Sci. Technol. 2017, 149, 75–80. [Google Scholar] [CrossRef]
- Dong, W.; Liu, H.C.; Park, S.J.; Jin, F.L. Fracture Toughness Improvement of Epoxy Resins with Short Carbon Fibers. J. Ind. Eng. Chem. 2014, 20, 1220–1222. [Google Scholar] [CrossRef]
- Zhang, G.; Karger-Kocsis, J.; Zou, J. Synergetic Effect of Carbon Nanofibers and Short Carbon Fibers on the Mechanical and Fracture Properties of Epoxy Resin. Carbon N. Y. 2010, 48, 4289–4300. [Google Scholar] [CrossRef]
- Pappa, E.J.; Quinn, J.A.; Murray, J.J.; Davidson, J.R.; Ó Brádaigh, C.M.; McCarthy, E.D. Experimental Study on the Interlaminar Fracture Properties of Carbon Fibre Reinforced Polymer Composites with a Single Embedded Toughened Film. Polymers 2021, 13, 4103. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Z.; Hei, Y.; Zhang, B.; Bao, J.; Chen, X. Improving Compression-after-Impact Performance of Carbon-Fiber Composites by CNTs/Thermoplastic Hybrid Film Interlayer. Compos. Sci. Technol. 2014, 95, 75–81. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.W. Impact Response of Carbon Fibre Fabric/Thermoset-Thermoplastic Combined Polymer Composites. Adv. Compos. Lett. 2017, 26, 82–88. [Google Scholar] [CrossRef]
- Sohn, M.S.; Hu, X.Z. Mode II Delamination Toughness of Carbon-Fibre/Epoxy Composites with Chopped Kevlar Fibre Reinforcement. Compos. Sci. Technol. 1994, 52, 439–448. [Google Scholar] [CrossRef]
- Kutovaya, I.V.; Aleksanova, A.A.; Erdni-Goryaev, E.M.; Lipatov, Y.V.; Afanas’eva, E.S.; Morozov, O.S.; Babkin, A.V.; Kepman, A.V. Enhancement of the Fracture Toughness of Carbon-Reinforced Plastics by Introducing a Thermoplastic Phase into an Epoxy Matrix. Russ. J. Appl. Chem. 2023, 96, 474–483. [Google Scholar] [CrossRef]
- Kutovaya, I.V.; Poliakova, D.I.; Erdni-Goryaev, E.M.; Lipatov, Y.V.; Afanaseva, E.S.; Morozov, O.S.; Babkin, A.V.; Kepman, A.V. Enhancement of Crack Resistance of Phthalonitrile-Based Carbon Fiber Reinforced Plastics by Introducing Polyamide Nonwoven Materials. Polym. Sci.—Ser. B 2023, 65, 672–680. [Google Scholar] [CrossRef]
- Dydek, K.; Latko-Durałek, P.; Boczkowska, A.; Sałaciński, M.; Kozera, R. Carbon Fiber Reinforced Polymers Modified with Thermoplastic Nonwovens Containing Multi-Walled Carbon Nanotubes. Compos. Sci. Technol. 2019, 173, 110–117. [Google Scholar] [CrossRef]
- Tarih, Y.S.; Coskun, T.; Yar, A.; Gundogdu, Ö.; Sahin, Ö.S. The Influences of Low-Velocity Impact Loading on the Vibration Responses of the Carbon/Glass Fiber-Reinforced Epoxy Composites Interleaved with Various Non-Woven Thermoplastic Veils. J. Appl. Polym. Sci. 2023, 140, 1–19. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, X. Influence of Addition of Silica Particles on Reaction-Induced Phase Separation and Properties of Epoxy/PEI Blends. Compos. Part B Eng. 2011, 42, 2163–2169. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, Z.; Tusiime, R.; Cheng, C.; Sun, Z.; Xu, L.; Liu, Y.; Jiang, M.; Zhou, J.; Zhang, H.; et al. Highly Improving the Mechanical and Thermal Properties of Epoxy Resin via Blending with Polyetherketone Cardo. Compos. Commun. 2019, 13, 80–84. [Google Scholar] [CrossRef]
- Palazzetti, R.; Zucchelli, A. Electrospun Nanofibers as Reinforcement for Composite Laminates Materials—A Review. Compos. Struct. 2017, 182, 711–727. [Google Scholar] [CrossRef]
- Ognibene, G.; Latteri, A.; Mannino, S.; Saitta, L.; Recca, G.; Scarpa, F.; Cicala, G. Interlaminar Toughening of Epoxy Carbon Fiber Reinforced Laminates: Soluble versus Non-Soluble Veils. Polymers 2019, 11, 1029. [Google Scholar] [CrossRef]
- Mujika, F.; De Benito, A.; Fernández, B.; Vázquez, A.; Llano-Ponte, R.; Mondragon, I. Mechanical Properties of Carbon Woven Reinforced Epoxy Matrix Composites. A Study on the Influence of Matrix Modification with Polysulfone. Polym. Compos. 2002, 23, 372–382. [Google Scholar] [CrossRef]
- Ramji, A.; Xu, Y.; Yasaee, M.; Grasso, M.; Webb, P. Influence of Veil Interleave Distribution on the Delamination Resistance of Cross-Ply CFRP Laminates under Low Velocity Impact. Int. J. Impact Eng. 2021, 157, 103997. [Google Scholar] [CrossRef]
- Beylergil, B.; Tanoğlu, M.; Aktaş, E. Effect of Polyamide-6,6 (PA 66) Nonwoven Veils on the Mechanical Performance of Carbon Fiber/Epoxy Composites. Compos. Struct. 2018, 194, 21–35. [Google Scholar] [CrossRef]
- Kudrin, A.M.; Karaeva, O.A.; Gabriel`s, K.S.; Solopchenko, A.V. Opredelenie Predela Prochnosti Polimernogo Kompozicionnogo Materiala Na Szhatie Posle Udara v Sootvetstvii so Standartom ASTM D 7137. Vestn. Vor. Gos. texnicheskogo Univ. 2018, 14, 164–169. [Google Scholar]
- Yuan, B.; Tan, B.; Hu, Y.; Shaw, J.; Hu, X. Improving Impact Resistance and Residual Compressive Strength of Carbon Fibre Composites Using Un-Bonded Non-Woven Short Aramid Fibre Veil. Compos. Part A Appl. Sci. Manuf. 2019, 121, 439–448. [Google Scholar] [CrossRef]
- Afanasyeva, E.S.; Apukhtina, T.L.; Avdeev, V.V.; Morozov, O.S.; Kepman, A.V. Non-woven thermoplastic material made of polyamide melt: Formation and properties. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil'noi Promyshlennosti. Available online: https://www.scopus.com/sourceid/57620 (accessed on 25 January 2025).
- Heflin, D.G.; Mansson, J.-A.E. Mechanisms for combining polyamide and epoxy and their effects on mechanical performance—A review. Polym. Polym. Compos. 2022, 30, 1–19. [Google Scholar] [CrossRef]
- Page, I.B. Polyamides as Engineering Thermoplastic Materials; No. 1; iSmithers Rapra Publishing: Akron, OH, USA, 2000; Volume 11. [Google Scholar]
- Razumovskii, L.P.; Markin, V.S.; Zaikov, G.Y. Sorption of water by aliphatic polyamides. Review. Polym. Sci. USSR 1985, 27, 751–768. [Google Scholar] [CrossRef]
- Gilbert, M. Aliphatic polyamides. In Brydson’s Plastics Materials; Butterworth-Heinemann: Oxford, UK, 2017; pp. 487–511. [Google Scholar]
- Favre, J.-P. Improving the fracture energy of carbon fibre-reinforced plastics by delamination promoters. J. Mater. Sci. 1977, 12, 43–50. [Google Scholar] [CrossRef]
- ASTM Standard D7137; Standard Test Method for Compression Residual Strength Properties of Damaged Polymer Matrix Composite Plates. American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- ASTM Standard D2344; Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- ISO 9864; Geosynthetics—Test Method for the Determination of Mass per Unit Area of Geotextiles and Geotextile-Related Products. ISO: Geneva, Switzerland, 2014.
- ASTM Standard D3039; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2014.
- ASTM Standard D6641Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture, American Society for Testing and Materials: West Conshohocken, PA, USA, 2014.
- ASTM Standard D5379Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method, American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
Test Type | Regulatory Documentation | T107 | T107 with One Layer of Nonwoven Material | T107 with Two Layers of Nonwoven Material |
---|---|---|---|---|
Compressive strength after impact σ11−, MPa | ASTM D7137 [42] | 260 ± 5.2 | 290 ± 5.6 | 320 ± 6.6 |
Interlaminar shear strength τ13, MPa | ASTM D2344 [43] | 106 ± 3.7 | 100 ± 1.5 | 97 ± 2.3 |
Prepreg surface density, g/m2 | ISO 9864 [44] | 308 ± 5.1 | 315 ± 10.3 | 328 ± 13.6 |
Monolayer thickness, mm | – | 0.2 ± 0.03 | 0.21 ± 0.03 | 0.22 ± 0.04 |
Test Type | Regulatory Documentation | T107 | T107 with Nonwoven Material |
---|---|---|---|
Tensile strength σ11+, MPa | ASTM D3039 [45] | 2136 ± 31.5 | 2300 ± 51.0 |
Tensile modulus Ε11+, GPa | ASTM D3039 [45] | 139 ± 3.2 | 141 ± 2.9 |
Compressive strength σ11−, MPa | ASTM D 6641 [46] | 957 ± 21.2 | 1264 ± 25.8 |
Interlaminar shear strength τ13, MPa | ASTM D2344 [43] | 106 ± 3.7 | 97 ± 2.3 |
Shear strength τ12, MPa | ASTM D5379 [47] | 147 ± 4.1 | 143 ± 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondrateva, A.; Morozov, O.; Erdni-Goryaev, E.; Afanaseva, E.; Avdeev, V. Improvement of the Impact Resistance of Epoxy Prepregs Through the Incorporation of Polyamide Nonwoven Fabric. Materials 2025, 18, 661. https://doi.org/10.3390/ma18030661
Kondrateva A, Morozov O, Erdni-Goryaev E, Afanaseva E, Avdeev V. Improvement of the Impact Resistance of Epoxy Prepregs Through the Incorporation of Polyamide Nonwoven Fabric. Materials. 2025; 18(3):661. https://doi.org/10.3390/ma18030661
Chicago/Turabian StyleKondrateva, Anastasia, Oleg Morozov, Erdni Erdni-Goryaev, Ekaterina Afanaseva, and Viktor Avdeev. 2025. "Improvement of the Impact Resistance of Epoxy Prepregs Through the Incorporation of Polyamide Nonwoven Fabric" Materials 18, no. 3: 661. https://doi.org/10.3390/ma18030661
APA StyleKondrateva, A., Morozov, O., Erdni-Goryaev, E., Afanaseva, E., & Avdeev, V. (2025). Improvement of the Impact Resistance of Epoxy Prepregs Through the Incorporation of Polyamide Nonwoven Fabric. Materials, 18(3), 661. https://doi.org/10.3390/ma18030661