The Production and Durability of Superhydrophobic Foamed Concrete
Abstract
:1. Introduction
2. Raw Materials and Test Methods
2.1. Raw Materials
2.2. Mix Design
2.3. Preparation of Superhydrophobic Foamed Concrete
2.4. Test Methods
2.4.1. Performance Test
Wettability
Water Absorption and Softening Coefficient
Compressive Strength Test
Self-Cleaning
High-Temperature Resistance Test
Low-Temperature Resistance Test
Ultraviolet Aging Test
Mechanical Wear Test
Acid–Alkali–Saline Corrosion Test
Outdoor Exposure Test
2.4.2. Microscopic Characterization
Confocal Laser Scanning Electron Microscopy
SEM
FT-IR Test
Electrochemical Test
3. Results and Discussion
3.1. Properties
3.1.1. Wettability
3.1.2. Water Absorption
3.1.3. Self-Cleaning
3.1.4. Mechanical Wear Resistance
3.1.5. Acid, Alkali, and Saline Solution Erosion
3.1.6. Ultraviolet Aging
3.1.7. Low-Temperature Resistance
3.1.8. High-Temperature Resistance
3.1.9. Outdoor Exposure
3.2. Microscopic Characterization
3.2.1. CLSM Test
3.2.2. SEM Test
3.2.3. FT-IR Test
3.2.4. Electrochemistry Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Number | Abbreviation | Full English name |
1 | PDMS | Polydimethylsiloxane |
2 | UV | Ultraviolet |
3 | SFC | Superhydrophobic foamed concrete |
4 | OFC | Ordinary foamed concrete |
5 | NS | Nano-silica |
6 | GO | Graphene oxide |
7 | PMHS | Polymethylhydrosiloxane |
8 | IBTS | Isobutyltriethoxysilane |
9 | CS | Calcium stearate |
10 | FT-IR | Fourier-transform infrared spectroscopy |
11 | CLSM | Confocal laser scanning microscopy |
12 | FA | Fly ash |
13 | TEOS | Tetraethyl orthosilicate |
14 | DD | Dibutyltin dilaurate |
15 | HPMC | Hydroxypropyl methyl cellulose |
16 | PCE | Polycarboxylate superplasticizer |
17 | CA | Contact angle |
18 | RA | Rolling angle |
19 | HCl | Hydrochloric acid |
20 | NaOH | Sodium hydroxide |
21 | NaCl | Sodium chloride |
22 | PP | Potentiodynamic polarization |
23 | Ca(OH)2 | Calcium hydroxide |
24 | Ecorr | Corrosion potential |
25 | Icorr | Corrosion current |
Number | Symbol | Implication |
1 | CA | Contact angle |
2 | RA | Rolling angle |
3 | PH | Potential of hydrogen |
4 | Ecorr | Corrosion potential |
5 | Icorr | Corrosion current |
References
- Ramamurthy, K.; Nambiar, E.K.; Ranjani, G.I.S. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Amran, Y.M.; Farzadnia, N.; Ali, A.A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, X.; Wang, L.; Li, Y. Foam Concrete: A State-of-the-Art and State-of-the-Practice Review. Adv. Mater. Sci. Eng. 2020, 2020, 6153602. [Google Scholar] [CrossRef]
- Hájek, M.; Decký, M.; Scherfel, W. Objectification of Modulus Elasticity of Foam Concrete Poroflow 17-5 on the Subbase Layer. Civ. Environ. Eng. 2016, 12, 55–62. [Google Scholar] [CrossRef]
- Sun, L.; Xu, Y.; Wang, J.; Wang, R.; Yao, L. Designing a superhydrophobic quality and strengthening mechanism for foam concrete. Constr. Build. Mater. 2022, 365, 130073. [Google Scholar] [CrossRef]
- She, W.; Zheng, Z.; Zhang, Q.; Zuo, W.; Yang, J.; Zhang, Y.; Zheng, L.; Hong, J.; Miao, C. Predesigning matrix-directed super-hydrophobization and hierarchical strengthening of cement foam. Cem. Concr. Res. 2020, 131, 106029. [Google Scholar] [CrossRef]
- Shi, D.; Geng, Y.; Li, S.; Gao, J.; Hou, D.; Jin, Z.; Liu, A. Efficacy and mechanism of graphene oxide modified silane emulsions on waterproof performance of foamed concrete. Case Stud. Constr. Mater. 2022, 16, e00908. [Google Scholar] [CrossRef]
- Luo, J.; Xu, Y.; Chu, H.; Yang, L.; Song, Z.; Jin, W.; Wang, X.; Xue, Y. Research on the Performance of Superhydrophobic Cement-Based Materials Based on Composite Hydrophobic Agents. Materials 2023, 16, 6592. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, L.; Shu, X.; Yang, Y.; She, W.; Ran, Q. A review on recent advances in the fabrication and evaluation of superhydrophobic concrete. Compos. Part B Eng. 2022, 237, 109867. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, J.; Zhang, X. Superhydrophobic Coating Deposited on Foamed Concrete with Super-Robust Mechanical and Self-Repairing Properties. Phys. Status Solidi (a) 2022, 219, 2200417. [Google Scholar] [CrossRef]
- Gao, J.; Geng, Y.; Li, S.; Chen, X.; Shi, D.; Zhou, P.; Zhou, Z.; Wu, Z. Effect of silane emulsion on waterproofing and Anti-icing performance of foamed concrete. Constr. Build. Mater. 2021, 301, 124082. [Google Scholar] [CrossRef]
- Szafraniec, M.; Barnat-Hunek, D.; Grzegorczyk-Frańczak, M.; Trochonowicz, M. Surface Modification of Lightweight Mortars by Nanopolymers to Improve Their Water-Repellency and Durability. Materials 2020, 13, 1350. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Tang, M.; Lei, X.; Feng, Z.; Cheng, F. Preparation of Ultrafine Fly Ash-Based Superhydrophobic Composite Coating and Its Application to Foam Concrete. Polymers 2020, 12, 2187. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Li, S.; Hou, D.; Zhang, W.; Jin, Z.; Li, Q.; Luo, J. Fabrication of superhydrophobicity on foamed concrete surface by GO/silane coating. Mater. Lett. 2020, 265, 127423. [Google Scholar] [CrossRef]
- Dong, C.; Shao, N.; Yan, F.; Ji, R.; Wei, X.; Zhang, Z. A novel integration strategy for the foaming and hydrophobization of geopolymer foams. Cem. Concr. Res. 2022, 160, 106919. [Google Scholar] [CrossRef]
- Xu, Y.; Mao, J.; Jiang, J.; Chu, H.; Li, W.; Kang, X.; Tong, S.; Jiang, L. Research on the performance of foamed concrete based on superhydrophobic bulk modification. Constr. Build. Mater. 2024, 438, 137231. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jitsangiam, P.; Rattanasak, U. Hydrophobicity and efflorescence of lightweight fly ash geopolymer incorporated with calcium stearate. J. Clean. Prod. 2022, 364, 132449. [Google Scholar] [CrossRef]
- Yao, H.; Xie, Z.; Huang, C.; Yuan, Q.; Yu, Z. Recent progress of hydrophobic cement-based materials: Preparation, characterization and properties. Constr. Build. Mater. 2021, 299, 124255. [Google Scholar] [CrossRef]
- JG/T 266-2011; Foamed Concrete. Chinese Standard: Beijing, China, 2011.
- Xu, Y.; Tong, S.; Xu, X.; Mao, J.; Kang, X.; Luo, J.; Jiang, L.; Guo, M.-Z. Effect of foam stabilization on the properties of foamed concrete modified by expanded polystyrene. J. Build. Eng. 2023, 73, 106822. [Google Scholar] [CrossRef]
- Dong, B.; Wang, F.; Abadikhah, H.; Hao, L.; Xu, X.; Khan, S.A.; Wang, G.; Agathopoulos, S. Simple Fabrication of Concrete with Remarkable Self-Cleaning Ability, Robust Superhydrophobicity, Tailored Porosity, and Highly Thermal and Sound Insulation. ACS Appl. Mater. Interfaces 2019, 11, 42801–42807. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, C. Study of Cement-Based Superhydrophobic Composite Coating: New Option for Water Drainage Pipeline Rehabilitation. Materials 2020, 13, 5004. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Xu, J.; Wang, Z. Inhibitive effect of sepiolite-supported MgAl-LDH on chloride-induced corrosion of steel in simulated concrete pore solution. Corros. Sci. 2023, 225, 111571. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Honda, M.; Zhu, A.L.; Rozhin, A.G.; Du, X.W. The icephobic performance of alkyl-grafted aluminum surfaces. Soft Matter 2015, 11, 856–861. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.; Cheng, Y.-B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003, 33, 1607–1611. [Google Scholar] [CrossRef]
- Beddoe, R.E. Modelling acid attack on concrete: Part II. A computer model. Cem. Concr. Res. 2016, 88, 20–35. [Google Scholar] [CrossRef]
- Zhu, C.; Lv, J.; Chen, L.; Lin, W.; Zhang, J.; Yang, J.; Feng, J. Dark, heat-reflective, anti-ice rain and superhydrophobic cement concrete surfaces. Constr. Build. Mater. 2019, 220, 21–28. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, F.; Ou, J.; Li, W.; Xue, R. Solar reflective coatings with luminescence and self-cleaning function. Surfaces Interfaces 2021, 26, 101325. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J. Fabrication of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures. Appl. Phys. A 2016, 122, 743. [Google Scholar] [CrossRef]
- Peng, C.; Hu, X.; You, Z.; Xu, F.; Jiang, G.; Ouyang, H.; Guo, C.; Ma, H.; Lu, L.; Dai, J. Investigation of anti-icing, anti-skid, and water impermeability performances of an acrylic superhydrophobic coating on asphalt pavement. Constr. Build. Mater. 2020, 264, 120702. [Google Scholar] [CrossRef]
- Ruan, S.; Chen, S.; Lu, J.; Zeng, Q.; Liu, Y.; Yan, D. Waterproof geopolymer composites modified by hydrophobic particles and polydimethylsiloxane. Compos. Part B Eng. 2022, 237, 109865. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Q.; Xu, S.; Lei, L. Fabrication of hierarchical structures on concrete surfaces with superhydrophobicity using replicated micro-nano dendritic structures. J. Ind. Eng. Chem. 2021, 103, 314–321. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Q.; Xu, S.; Wang, N.; Zheng, X. Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties. Constr. Build. Mater. 2020, 251, 118946. [Google Scholar] [CrossRef]
- Zhu, J.; Liao, K. A facile and low-cost method for preparing robust superhydrophobic cement block. Mater. Chem. Phys. 2020, 250, 123064. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Wang, X.; Zhang, X.; Zhang, J.; Xie, H.; Zhang, A. Superhydrophobic magnesium oxychloride cement based composites with integral stability and recyclability. Cem. Concr. Compos. 2021, 118, 103973. [Google Scholar] [CrossRef]
- A Climent, M.; de Vera, G.; López, J.F.; Viqueira, E.; Andrade, C. A test method for measuring chloride diffusion coefficients through nonsaturated concrete: Part I. The instantaneous plane source diffusion case. Cem. Concr. Res. 2002, 32, 1113–1123. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Q.; Li, X.; Lei, L.; Qu, L.; Mao, J.; Zhang, H. Utilization of super-hydrophobic steel slag in mortar to improve water repellency and corrosion resistance. J. Clean. Prod. 2022, 341, 130783. [Google Scholar] [CrossRef]
- Tennakoon, C.; Shayan, A.; Sanjayan, J.G.; Xu, A. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Mater. Des. 2017, 116, 287–299. [Google Scholar] [CrossRef]
- Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Critical chloride content in reinforced concrete—A review. Cem. Concr. Res. 2009, 39, 1122–1138. [Google Scholar] [CrossRef]
Specific Surface Area (m2/kg) | Loss on Ignition (%) | Setting Time (min) | Flexural Strength (MPa) | Compressive Strength (MPa) | |||
---|---|---|---|---|---|---|---|
Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
344 | 2.18 | 231 | 284 | 5.9 | 7.7 | 27.4 | 45.0 |
Sample | Cement (g) | FA (g) | Water (g) | Foam (g) | CS (g) | PDMS (g) | TEOS (g) | DD (g) |
---|---|---|---|---|---|---|---|---|
OFC | 675 | 225 | 315 | 30 | 0 | 0 | 0 | 0 |
SFC | 675 | 225 | 315 | 97 | 27 | 45 | 4.5 | 0.45 |
Sample | Ecorr (V) | Icorr (A) |
---|---|---|
OFC | −0.618 | 7.728 × 10−5 |
SFC | −0.190 | 3.177 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.; Xu, Y.; Kang, X.; Tong, S.; Chu, H.; Jiang, L. The Production and Durability of Superhydrophobic Foamed Concrete. Materials 2025, 18, 663. https://doi.org/10.3390/ma18030663
Mao J, Xu Y, Kang X, Tong S, Chu H, Jiang L. The Production and Durability of Superhydrophobic Foamed Concrete. Materials. 2025; 18(3):663. https://doi.org/10.3390/ma18030663
Chicago/Turabian StyleMao, Juntao, Yi Xu, Xuan Kang, Songru Tong, Hongqiang Chu, and Linhua Jiang. 2025. "The Production and Durability of Superhydrophobic Foamed Concrete" Materials 18, no. 3: 663. https://doi.org/10.3390/ma18030663
APA StyleMao, J., Xu, Y., Kang, X., Tong, S., Chu, H., & Jiang, L. (2025). The Production and Durability of Superhydrophobic Foamed Concrete. Materials, 18(3), 663. https://doi.org/10.3390/ma18030663