Effects of Red Mud on Microstructures and Heat Resistance of ZL109 Aluminum Alloy
Abstract
:1. Introduction
2. Methods and Procedures
3. Results and Discussions
3.1. Characterization of Ni-Coated Red Mud Particles
3.2. Microstructure Analysis and Discussion of Red Mud/ZL109 Alloy
3.3. Tensile Property Analysis
4. Conclusions
- The addition of red mud improves the microstructure of the ZL109 alloy. It refines and evenly distributes the eutectic silicon. It also increases the content of heat-resistant phases, such as the Q-Al5Cu2Mg8Si6 phase and the γ-Al7Cu4Ni phase. As a result, the alloy’s tensile strength and ductility are greatly improved.
- With a red mud content of 1%, the alloy exhibits optimal mechanical properties at 25 °C and 350 °C, with tensile strengths of 295.4 MPa and 143.3 MPa, respectively.
- At the elevated temperature of 400 °C, the alloy with 1.5% red mud demonstrates the highest tensile strength of 86.2 MPa, indicating that an appropriate amount of red mud can effectively improve the alloy’s high-temperature stability and strength through the cut-through method and Orowan mechanism.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Javidani, M.; Larouche, D. Application of cast Al–Si alloys in internal combustion engine components. Int. Mater. Rev. 2014, 59, 132–158. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, F.; Ai, F.; Yan, H. Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J. Alloys Compd. 2012, 538, 21–27. [Google Scholar] [CrossRef]
- Lee, C.D. Variability in the tensile properties of squeeze-cast Al–Si–Cu–Mg alloy. Mater. Sci. Eng. A 2008, 488, 296–302. [Google Scholar] [CrossRef]
- Wazeer, A.; Das, A.; Abeykoon, C.; Sinha, A.; Karmakar, A. Composites for electric vehicles and automotive sector: A review. Green Energy Intell. Transp. 2023, 2, 100043. [Google Scholar] [CrossRef]
- Cui, X.; Cui, H.; Zhao, X.; Liu, F.; Du, Z.; Liang, S.; Bai, P. Influence of heat treatment on microorganization and mechanical properties and corrosion resistance of Al-Si-Mg-3% Cr alloy. Rare Met. Mater. Eng. 2023, 52, 3179–3185. Available online: https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq58jNsi80vzf8-BCVP2vFJg6QoPB3FIvk_HmPb-bzaJRzlMO8mMCWRFVR-P5eCUOgTro50u7AEuiHfQLgSCoteblL9Ez98plWRL9wJ5D08uCJ7vntvNzb3zWfRGii8vERt8by2iHy0phHM8GyOuZMWZG89B_P8JKwjgRqF5rDlUAsYNzn1YVL0f_DMMlChTo1k=&uniplatform=NZKPT&language=CHS (accessed on 10 October 2023). (In Chinese).
- Abdelaziz, M.H.; Elgallad, E.M.; Doty, H.W.; Samuel, F.H. Strengthening precipitates and mechanical performance of Al–Si–Cu–Mg cast alloys containing transition elements. Mater. Sci. Eng. A 2021, 820, 141497. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, K.; Li, Y.; Zhao, D.; Liu, X. Evolution of nickel-rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions. Mater. Des. 2012, 33, 220–225. [Google Scholar] [CrossRef]
- Hou, L.; Peng, Y.; Zhou, L.; Zhang, G.; Xu, Y.; Gaoming, D. High power density Diesel Engine Aluminum Ppiston Material and Casting Technology. Veh. Engine. 2013, 89–92. Available online: https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq4WImFhb35gkTPu3ijVrHEuSPW3U07LqLLR5isOCBMdMTdL3U0KrGQGbAnpnQA56ELKFh0ShqUAfcoqyr9I7nr5Z482yYxiLqToS9ymlnVD-V1Mw7gj6_1cgZSyp-aloOGJ82T97QLFT26q_z65E3hBH3Iy-wQ7cUJsfBF_GboHYCMtkBE8ouQ5&uniplatform=NZKPT&language=CHS (accessed on 14 May 2013). (In Chinese).
- Amanisha, A.; Wu, Y.; Li, W.; Meng, F.; Wu, Y.; Liu, X. Al-Ti-C-B crystal alloy on the organization and mechanical properties of Al-12Si-4 Cu-2Ni-1Mg alloy. Precis. Form. Eng. 2022, 14, 126–132. Available online: https://link.cnki.net/urlid/50.1199.TB.20210820.0943.002 (accessed on 16 February 2022). (In Chinese).
- Li, X.; Qian, W.; Sun, K.; Ge, S.; Huo, C.; Wang, J.; Wang, Y. Al-Si-Cu-Ni-Mg Alloy solidification tissue regulation and influence on high temperature tensile properties. Casting 2023, 72, 545–552. Available online: https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq5bSaRYoGsazGeKzBZ6HS9GfOEHyzmwHlQVO1qJvMHVpqHXx86WAmtxcLKlHzQ-ZrXKToPjwOldoOG_dFThEO5sVqozAZcHUXAHLHyZqyxThzu_q2XJmcWlB1qbjUpWQ3410uRACsyZ1gNaQqbqaaDrJadWxTtMNtAoHUEOZaTLGUh2LuDtoyiUHQOdkod6fsU=&uniplatform=NZKPT&language=CHS (accessed on 4 July 2023). (In Chinese).
- Awe, S.A.; Seifeddine, S.; Jarfors, A.E.; Lee, Y.C.; Dahle, A.K. Development of new Al-Cu-Si alloys for high temperature performance. Adv. Mater. Lett. 2017, 8, 695–701. [Google Scholar] [CrossRef]
- Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L. Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Cr, Ti, V and Zr. Mater. Sci. Eng. A 2016, 652, 353–364. [Google Scholar] [CrossRef]
- Rana, R.S.; Purohit, R.; Das, S. Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. Int. J. Sci. Res. Publ. 2012, 2, 1–7. [Google Scholar]
- Bian, Y.; Gao, T.; Liu, G.; Ma, X.; Ren, Y.; Liu, X. Design of an in–situ multi–scale particles reinforced (Al2O3+ZrB2+AlN)/Al composite with high strength, elasticity modulus and thermal stability. Mater. Sci. Eng. A 2020, 775, 138983. [Google Scholar] [CrossRef]
- Xia, H.; Li, M.; Zhang, G.; Huang, H.; Shi, Y.; Cai, B.; Liu, Z.; Wang, J. Effect of In-Situ TiB2 Particles on the Creep Properties of 3 Wt.% TiB2/Al-Cu-Mg-Ag Composite. JOM-US 2022, 74, 4121–4128. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, Q.; Wu, L.; Li, X.; Wang, M.; Wang, H. Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al-Cu-Li composite. Mater. Sci. Eng. A 2019, 742, 573–583. [Google Scholar] [CrossRef]
- Li, G.; Hideo, N.; Tetsuya, H.; Dai, J. Improvement of liquid aluminum wetting on Al2O3. Mater. Eng. 2000, 11–13. Available online: https://kns.cnki.net/kcms2/article/abstract?v=MdENDFpkZq40RjpGhQiEFwIlxmgw-915ciVPcJeVGl27zfmOycfm-P2uFWz0NbGwAsnNGk6eLUxAl18_bVDhU2leHCtSqw-GJEevIPIqvB0qjc2iS03MNWT3BUBg_wFAZGfqDh_HSv_k6RqHInti-9l-yB5a5GHwoKGbK9cbvGM__-Ydw6TwiAwnznSfgPFj&uniplatform=NZKPT&language=CHS (accessed on 6 February 2002). (In Chinese).
- Muñoz, M.C.; Gallego, S.; Beltrán, J.I.; Cerdá, J. Adhesion at metal–ZrO2 interfaces. Surf. Sci. Rep. 2006, 61, 303–344. [Google Scholar] [CrossRef]
- Ru, J.; He, H.; Jiang, Y.; Zhou, R.; Hua, Y. Wettability and interaction mechanism for Ni-modified ZTA particles reinforced iron matrix composites. J. Alloys Compd. 2019, 786, 321–329. [Google Scholar] [CrossRef]
- Ru, J.; He, H.; Jiang, Y.; Zhou, R.; Hua, Y. Fabrication and interaction mechanism of Ni-encapsulated ZrO2-toughened Al2O3 powders reinforced high manganese steel composites. Adv. Powder Technol. 2019, 30, 2160–2168. [Google Scholar] [CrossRef]
- Olgun, U.; Gülfen, M.; Göçmez, H.; Tuncer, M. Synthesis and room temperature coating of nano ZrB2 on copper using mechanical roll-milling. Adv. Powder Technol. 2017, 28, 2044–2051. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Q.; Yang, P.; Chen, H.; Hong, H.; Zhang, W.; Ren, J. Preparation of nickel coating on ZTA particles by electroless plating. Ceram. Int. 2018, 44, 11013–11021. [Google Scholar] [CrossRef]
- Guo, L.; Xiao, L.R.; Zhao, X.J.; Song, Y.F.; Cai, Z.Y.; Wang, H.J.; Liu, C.B. Preparation of WC/Co composite powders by electroless plating. Ceram. Int. 2017, 43, 4076–4082. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; He, F.; Gao, P.; Yuan, S. Characteristic, hazard and iron recovery technology of red mud—A critical review. J. Hazard. Mater. 2021, 420, 126542. [Google Scholar] [CrossRef]
- Khanna, R.; Konyukhov, Y.; Zinoveev, D.; Jayasankar, K.; Burmistrov, I.; Kravchenko, M.; Mukherjee, P.S. Red Mud as a Secondary Resource of Low-Grade Iron: A Global Perspective. Sustainability 2022, 14, 1258. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, X.; Gao, P.; Han, Y. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. J. Hazard. Mater. 2020, 394, 122579. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Y.; Qi, T.; Zhou, Q.; Liu, G.; Peng, Z.; Li, X. Toward sustainable green alumina production: A critical review on process discharge reduction from gibbsitic bauxite and large-scale applications of red mud. J. Environ. Chem. Eng. 2023, 11, 109433. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Han, Y.; Liu, X.; Yuan, S.; Gao, P. Research Progress in red mud recycling. Met. Mine 2021, 1–19. Available online: https://kns.cnki.net/kcms2/article/abstract?v=UjEBX92ALNGqUVFAn56YsuVKatE1hIHqg3uql87a_-oLZXCtelbjCapFXrVcTxTBQK30ozZmTMEo7F-2Y250CHheNPkDx4BWd82fDlHXNNbIpaioZQ95mZQxWc1a1Unxmu9OnFSpc_o=&uniplatform=NZKPT&language=CHS (accessed on 16 April 2021). (In Chinese).
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. J. Sustain. Metall. 2016, 2, 365–386. [Google Scholar] [CrossRef]
- Xu, Q.; Lin, H.; Liu, H. Effect of Coating Thickness on Wetting Behavior of Nickel-Coated Alumina by Molten Aluminum. J. Mater. Eng. Perform. 2022, 31, 8261–8269. [Google Scholar] [CrossRef]
- Sui, Y.; Wang, Q.; Wang, G.; Liu, T. Effects of Sr content on the microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8Mg alloys. J. Alloys Compd. 2015, 622, 572–579. [Google Scholar] [CrossRef]
- Asghar, Z.; Requena, G.; Boller, E. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys. Acta Mater. 2011, 59, 6420–6432. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pang, J.; Wang, M.; Li, S.; Zhang, Z. High-Cycle Fatigue Behavior and Damage Mechanism of Multiphase Al–Si Piston Alloy at Room and Elevated Temperatures. Adv. Eng. Mater. 2018, 20, 1700972. [Google Scholar] [CrossRef]
- Cayron, C.; Sagalowicz, L.; Beffort, O.; Buffat, P.A. Structural phase transition in Al-Cu-Mg-Si alloys by transmission electron microscopy study on an Al-4 wt.% Cu-1 wt.% Mg-Ag alloy reinforced by SiC particles. Philos. Mag. A 1999, 79, 2833–2851. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, X.; Hao, Y.; Chen, B. Ageing evolution process of theθ ′ -phase in Al-Si-Cu-Mg alloys: Atomic-scale observations and first-principles calculations. J. Alloys Compd. 2023, 968, 171787. [Google Scholar] [CrossRef]
- Biswas, A.; Siegel, D.J.; Seidman, D.N. Compositional evolution of Q-phase precipitates in an aluminum alloy. Acta Mater. 2014, 75, 322–336. [Google Scholar] [CrossRef]
- Kim, K.; Bobel, A.; Brajuskovic, V.; Zhou, B.; Walker, M.; Olson, G.B.; Wolverton, C. Energetics of native defects, solute partitioning, and interfacial energy of Q precipitate in Al-Cu-Mg-Si alloys. Acta Mater. 2018, 154, 207–219. [Google Scholar] [CrossRef]
- Liu, H.Q.; Pang, J.C.; Wang, M.; Li, S.X.; Zhang, Z.F. Effect of temperature on the mechanical properties of Al–Si–Cu–Mg–Ni–Ce alloy. Mater. Sci. Eng. A 2021, 824, 141762. [Google Scholar] [CrossRef]
- Lü, S.; Li, S.; Yan, Z.; Wu, S.; Li, J.; Ji, X. Preparation of a novel ultra-high strength Al–Si–Cu–Ni alloy at room/elevated temperature by squeeze casting combined with a new heat treatment process. Prog. Nat. Sci. Mater. Int. 2024, 34, 690–701. [Google Scholar] [CrossRef]
- Chen, H.; Wu, S.; Li, J.; Zhao, D.; Lü, S. Effects of Low Nickel Content on Microstructure and High-Temperature Mechanical Properties of Al-7Si-1.5Cu-0.4Mg Aluminum Alloy. Metals 2024, 14, 223. [Google Scholar] [CrossRef]
- Zhang, Q.; Zuo, Z.; Liu, J. High-temperature low-cycle fatigue behaviour of a cast Al–12Si–CuNiMg alloy. Fatigue Fract. Eng. M 2013, 36, 623–630. [Google Scholar] [CrossRef]
- Sui, Y.; Wang, Q.; Liu, T.; Ye, B.; Jiang, H.; Ding, W. Influence of Gd content on microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0. 8Mg alloys, J. Alloys Compd. 2015, 644, 228–235. [Google Scholar] [CrossRef]
- Zuo, L.; Ye, B.; Feng, J.; Xu, X.; Kong, X.; Jiang, H. Effect of δ-Al3CuNi phase and thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni alloys. J. Alloys Compd. 2019, 791, 1015–1024. [Google Scholar] [CrossRef]
- Hu, K.; Xu, Q.; Ma, X.; Sun, Q.; Gao, T.; Liu, X. A novel heat-resistant Al–Si–Cu–Ni–Mg base material synergistically strengthened by Ni-rich intermetallics and nano-AlNp microskeletons. J. Mater. Sci. Technol. 2019, 35, 306–312. [Google Scholar] [CrossRef]
- Qian, Z.; Liu, X.; Zhao, D.; Zhang, G. Effects of trace Mn addition on the elevated temperature tensile strength and microstructure of a low-iron Al–Si piston alloy. Mater. Lett. 2008, 62, 2146–2149. [Google Scholar] [CrossRef]
- Li, G.; Liao, H.; Suo, X.; Tang, Y.; Dixit, U.S.; Petrov, P. Cr-induced morphology change of primary Mn-rich phase in Al-Si-Cu-Mn heat resistant aluminum alloys and its contribution to high temperature strength. Mater. Sci. Eng. A 2018, 709, 90–96. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, S.; Yang, Y.; Gupta, N.; Yang, C.; Zhao, Y.; Hu, Z. High-Temperature Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Zr and Ni Trialumnides Synthesized by In Situ Reaction. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 214–225. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Wang, H.; Huang, C.; Chen, Y.; Huang, Q.; Li, A.; Pan, L. Effect of Mn/Ag Ratio on Microstructure and Mechanical Properties of Heat-Resistant Al-Cu Alloys. Materials 2024, 17, 1371. [Google Scholar] [CrossRef] [PubMed]
- Zan, Y.N.; Zhang, Q.; Zhou, Y.T.; Liu, Z.Y.; Wang, Q.Z.; Wang, D.; Xiao, B.L.; Ren, W.C.; Ma, Z.Y. Introducing graphene (reduced graphene oxide) into Al matrix composites for enhanced high-temperature strength. Compos. Part B Eng. 2020, 195, 108095. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Samuel, F.H.; Kahtani, S.A. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Mater. Sci. Eng. A 2013, 577, 64–72. [Google Scholar] [CrossRef]
- Tang, P.; He, X.; Wang, X.; Li, P. Microscopic organization and Mechanical Properties of Rapid solidification/Powder metallurgy Al-20Si-7.5Ni-3Cu-1Mg-0.25Fe Alloys. J. Aer. Mater. 2013, 33, 12–17. Available online: https://kns.cnki.net/kcms2/article/abstract?v=UjEBX92ALNGNKR0V2tviwSiMwb0lFJRVJDon2i_oETBvPGob7ueQtjj1OlTyAa4Dm83iVJmwSmqnNGyqluL3yFHKrLwx980AAhuVwqOjW1_zwg_MCf_7v6tNJk3FWZM9&uniplatform=NZKPT&language=CHS (accessed on 20 August 2023). (In Chinese).
- Meng, F.; Wu, Y.; Li, W.; Hu, K.; Zhao, K.; Yang, H.; Gao, T.; Sun, Y.; Liu, X. Influence of the evolution of heat-resistant phases on elevated-temperature strengthening mechanism and deformation behavior in Al–Si multicomponent alloys. Curr. Appl. Phys. 2022, 39, 239–247. [Google Scholar] [CrossRef]
- Bugelnig, K.; Germann, H.; Steffens, T.; Sket, F.; Adrien, J.; Maire, E.; Boller, E.; Requena, G. Revealing the Effect of Local Connectivity of Rigid Phases during Deformation at High Temperature of Cast AlSi12Cu4Ni(2,3)Mg Alloys. Materials 2018, 11, 1300. [Google Scholar] [CrossRef]
- Belov, N.A.; Eskin, D.G.; Avxentieva, N.N. Constituent phase diagrams of the Al–Cu–Fe–Mg–Ni–Si system and their application to the analysis of aluminium piston alloys. Acta Mater. 2005, 53, 4709–4722. [Google Scholar] [CrossRef]
- Sui, Y. Microstructure and High Temperature Properties of Al-Si-Cu-Ni-Mg Cast Heat-Resistant Aluminum Alloy; Shanghai Jiao Tong University: Shanghai, China, 2020. (In Chinese) [Google Scholar] [CrossRef]
- Silva, E.P.; Marques, F.; Nossa, T.S.; Alfaro, U.; Pinto, H.C. Impact of Ce-base mischmetal on the microstructure and mechanical behavior of ZK60 magnesium casting alloys. Mater. Sci. Eng. A 2018, 723, 306–313. [Google Scholar] [CrossRef]
- Yu, Y.N. Principles of metallography; Press of Metallurgy: Beijing, China, 2020; p. 418. [Google Scholar]
- Fan, M.; Cui, Y.; Zhang, Y.; Wei, X.; Cao, X.; Liaw, P.K.; Yang, Y.; Zhang, Z. Achieving high strength-ductility synergy in a Mg97Y1Zn1Ho1 alloy via a nano-spaced long-period stacking-ordered phase. J. Magnes. Alloys 2023, 11, 1321–1331. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Wu, Y.; Wang, L.; Liu, X. Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Mater. Sci. Eng. A 2010, 527, 7132–7137. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, W.; Li, X.; Chen, Z.; Sui, Y.; Qu, Y. Effect of Ni on microstructure and mechanical properties of Al-Cu-Mn alloy. Mater. Today Commun. 2024, 38, 107964. [Google Scholar] [CrossRef]
Fe2O3 | Al2O3 | SiO2 | CaO | Na2O | TiO2 | Loss |
---|---|---|---|---|---|---|
29.10 | 18.40 | 17.20 | 15.90 | 11.30 | 5.53 | 2.57 |
Component | Concentration (g·L−1) | Function |
---|---|---|
NiSO4·6H2O | 377 | Coating |
NaBH4 | 2 | Reducing agent |
NaOH | 30 | Alkaline environment |
C6H5Na3O7 | 50 | Buffer |
Area | 1 | 2 | |
---|---|---|---|
Element | |||
O | 53.52 | 52.68 | |
Fe | 12.76 | 10.57 | |
Al | 8.35 | 11.7 | |
Ni | 7.50 | 9.65 | |
Ca | 5.83 | 2.77 | |
Na | 5.28 | 3.44 | |
Si | 5.02 | 6.3 | |
Ti | 1.74 | 2.89 |
Area | Al | Si | Cu | Ni | Mg | Fe | Suggestion Phase |
---|---|---|---|---|---|---|---|
1 | 2.28 | 97.41 | 0.31 | Primary Si | |||
2 | 39.34 | 60.42 | 0.24 | Eutectic Si | |||
3 | 99.15 | 0.85 | α-Al Matrix | ||||
4 | 67.34 | 2.32 | 29.93 | 0.41 | θ’-Al2Cu | ||
5 | 63.50 | 17.13 | 4.34 | 0.27 | 14.76 | Q-Al5Cu2Mg8Si6 | |
6 | 68.21 | 15.14 | 16.13 | 0.53 | δ-Al3CuNi | ||
7 | 76.18 | 1.25 | 16.24 | 6.33 | γ-Al7Cu4Ni |
Alloys | Content of Red Mud/% | Temperature/°C | UTS (σb)/MPa | YS (σs)/MPa | FS/% | EI/% |
---|---|---|---|---|---|---|
1 | 0 | 25 | 265.8 | 215.3 | 6.87 | 5.32 |
250 | 199.6 | 179.6 | 3.59 | 2.11 | ||
300 | 143.7 | 120.5 | 4.37 | 1.69 | ||
350 | 94.6 | 91.3 | 10.69 | 2.69 | ||
400 | 50.0 | 43.9 | 10.50 | 1.99 | ||
2 | 0.5 | 25 | 275.2 | 213.6 | 6.53 | 4.98 |
250 | 240.9 | 226.6 | 2.78 | 1.77 | ||
300 | 149.8 | 88.2 | 3.94 | 1.56 | ||
350 | 135.7 | 112.2 | 4.08 | 1.99 | ||
400 | 56.7 | 49.5 | 5.50 | 2.03 | ||
3 | 1 | 25 | 295.4 | 275.8 | 7.08 | 6.40 |
250 | 267.8 | 232.9 | 3.11 | 2.16 | ||
300 | 156.7 | 123.7 | 4.51 | 2.13 | ||
350 | 143.3 | 122.9 | 5.95 | 1.98 | ||
400 | 69.0 | 59.9 | 10.90 | 2.41 | ||
4 | 1.5 | 25 | 231.7 | 206.5 | 5.21 | 3.75 |
250 | 170.3 | 144.0 | 2.47 | 1.71 | ||
300 | 155.6 | 108.7 | 2.18 | 1.80 | ||
350 | 97.8 | 87.7 | 7.04 | 2.07 | ||
400 | 86.2 | 80.3 | 6.40 | 1.34 | ||
5 | 2 | 25 | 216.5 | 197.4 | 3.66 | 2.97 |
250 | 150.4 | 121.5 | 2.39 | 1.98 | ||
300 | 139.8 | 99.5 | 3.905 | 1.60 | ||
350 | 95.4 | 84.3 | 5.97 | 1.25 | ||
400 | 79.0 | 70.1 | 6.00 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Li, A.; Zhou, W.; Li, J.; Zhang, J. Effects of Red Mud on Microstructures and Heat Resistance of ZL109 Aluminum Alloy. Materials 2025, 18, 664. https://doi.org/10.3390/ma18030664
Huang Z, Li A, Zhou W, Li J, Zhang J. Effects of Red Mud on Microstructures and Heat Resistance of ZL109 Aluminum Alloy. Materials. 2025; 18(3):664. https://doi.org/10.3390/ma18030664
Chicago/Turabian StyleHuang, Zhuofang, Anmin Li, Wendi Zhou, Jinjin Li, and Jinkai Zhang. 2025. "Effects of Red Mud on Microstructures and Heat Resistance of ZL109 Aluminum Alloy" Materials 18, no. 3: 664. https://doi.org/10.3390/ma18030664
APA StyleHuang, Z., Li, A., Zhou, W., Li, J., & Zhang, J. (2025). Effects of Red Mud on Microstructures and Heat Resistance of ZL109 Aluminum Alloy. Materials, 18(3), 664. https://doi.org/10.3390/ma18030664