Comparative Study of the Tensile Properties of a Zircaloy-4 Alloy Characterized by Mesoscale and Standard Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Femtosecond Laser Micromachining
2.3. Tensile Tests
2.4. Microstructural Characterization
3. Results
3.1. Microstructure
3.2. Cut Surface Quality
3.3. Tensile Properties
3.4. Strain Hardening Behavior
3.5. Fracture Morphologies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lord, J.D.; Roebuck, B.; Morrell, R.; Lube, T. 25 Year Perspective Aspects of Strain and Strength Measurement in Miniaturised Testing for Engineering Metals and Ceramics. Mater. Sci. Technol. 2010, 26, 127–148. [Google Scholar] [CrossRef]
- Hosemann, P. Small-Scale Mechanical Testing on Nuclear Materials: Bridging the Experimental Length-Scale Gap. Scr. Mater. 2018, 143, 161–168. [Google Scholar] [CrossRef]
- Hosemann, P.; Shin, C.; Kiener, D. Small Scale Mechanical Testing of Irradiated Materials. J. Mater. Res. 2015, 30, 1231–1245. [Google Scholar] [CrossRef]
- Dehm, G.; Jaya, B.N.; Raghavan, R.; Kirchlechner, C. Overview on Micro- and Nanomechanical Testing: New Insights in Interface Plasticity and Fracture at Small Length Scales. Acta Mater. 2018, 142, 248–282. [Google Scholar] [CrossRef]
- Jayaram, V. Small-Scale Mechanical Testing. Annu. Rev. Mater. Res. 2022, 52, 473–523. [Google Scholar] [CrossRef]
- Gianola, D.S. Advances and Opportunities in High-Throughput Small-Scale Mechanical Testing. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101090. [Google Scholar] [CrossRef]
- Lucas, G.E. Review of Small Specimen Test Techniques for Irradiation Testing. Metall. Trans. A 1990, 21, 1105–1119. [Google Scholar] [CrossRef]
- Klueh, R.L. Miniature Tensile Test Specimens for Fusion Reactor Irradiation Studies. Nucl. Eng. Des. Fusion 1985, 2, 407–416. [Google Scholar] [CrossRef]
- Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh Strength and High Electrical Conductivity in Copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef]
- Fang, T.H.; Li, W.L.; Tao, N.R.; Lu, K. Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper. Science 2011, 331, 1587–1590. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhang, H.W.; Lu, K. Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel. Science 2013, 342, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Legros, M.; Elliott, B.R.; Rittner, M.N.; Weertman, J.R.; Hemker, K.J. Microsample Tensile Testing of Nanocrystalline Metals. Philos. Mag. A 2000, 80, 1017–1026. [Google Scholar] [CrossRef]
- Gigax, J.G.; El-Atwani, O.; McCulloch, Q.; Aytuna, B.; Efe, M.; Fensin, S.; Maloy, S.A.; Li, N. Micro- and Mesoscale Mechanical Properties of an Ultra-Fine Grained CrFeMnNi High Entropy Alloy Produced by Large Strain Machining. Scr. Mater. 2020, 178, 508–512. [Google Scholar] [CrossRef]
- Kumar, K.; Madhusoodanan, K.; Singh, R.N. Miniature Test Techniques for Life Management of Operating Equipment. Nucl. Eng. Des. 2017, 323, 345–358. [Google Scholar] [CrossRef]
- Yang, B.; Xuan, F.-Z.; Chen, J.-K. Evaluation of the Microstructure Related Strength of CrMoV Weldment by Using the In-Situ Tensile Test of Miniature Specimen. Mater. Sci. Eng. A 2018, 736, 193–201. [Google Scholar] [CrossRef]
- Wei, D.; Zaiser, M.; Feng, Z.; Kang, G.; Fan, H.; Zhang, X. Effects of Twin Boundary Orientation on Plasticity of Bicrystalline Copper Micropillars: A Discrete Dislocation Dynamics Simulation Study. Acta Mater. 2019, 176, 289–296. [Google Scholar] [CrossRef]
- Imrich, P.J.; Kirchlechner, C.; Kiener, D.; Dehm, G. In Situ TEM Microcompression of Single and Bicrystalline Samples: Insights and Limitations. JOM 2015, 67, 1704–1712. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, L.; Chai, Z.; Zhang, M.; Yang, G.; Wang, Q.; Zhang, K.; Liao, H.; Wu, X.; Wang, X.; et al. Bonding Properties Evaluation for an EBW Joint of RAFM Steel by Using Notched Small Tensile Specimens. J. Nucl. Mater. 2021, 547, 152811. [Google Scholar] [CrossRef]
- Lupo, M.; Sofia, D.; Barletta, D.; Poletto, M. Calibration of Dem Simulation of Cohesive Particles. Chem. Eng. Trans. 2019, 74, 379–384. [Google Scholar] [CrossRef]
- Zheng, P.; Chen, R.; Liu, H.; Chen, J.; Zhang, Z.; Liu, X.; Shen, Y. On the Standards and Practices for Miniaturized Tensile Test—A Review. Fusion Eng. Des. 2020, 161, 112006. [Google Scholar] [CrossRef]
- Dzugan, J.; Lucon, E.; Koukolikova, M.; Li, Y.; Rzepa, S.; Yasin, M.S.; Shao, S.; Shamsaei, N.; Seifi, M.; Lodeiro, M.; et al. ASTM Interlaboratory Study on Tensile Testing of AM Deposited and Wrought Steel Using Miniature Specimens. Theor. Appl. Fract. Mech. 2024, 131, 104410. [Google Scholar] [CrossRef]
- Wang, H.; You, Z.; Lu, L. Kinematic and Isotropic Strain Hardening in Copper with Highly Aligned Nanoscale Twins. Mater. Res. Lett. 2018, 6, 333–338. [Google Scholar] [CrossRef]
- Uchic, M.D.; Dimiduk, D.M.; Florando, J.N.; Nix, W.D. Sample Dimensions Influence Strength and Crystal Plasticity. Science 2004, 305, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Kishida, K.; Morisaki, M.; Ito, M.; Wang, Z.; Inui, H. Room-Temperature Deformation of Single Crystals of WC Investigated by Micropillar Compression. Acta Mater. 2023, 260, 119302. [Google Scholar] [CrossRef]
- Alcalá, J.; Očenášek, J.; Nowag, K.; Esqué-de los Ojos, D.; Ghisleni, R.; Michler, J. Strain Hardening and Dislocation Avalanches in Micrometer-Sized Dimensions. Acta Mater. 2015, 91, 255–266. [Google Scholar] [CrossRef]
- McCulloch, Q.; Gigax, J.G.; Hosemann, P. Femtosecond Laser Ablation for Mesoscale Specimen Evaluation. JOM 2020, 72, 1694–1702. [Google Scholar] [CrossRef]
- Greer, J.R.; De Hosson, J.T.M. Plasticity in Small-Sized Metallic Systems: Intrinsic versus Extrinsic Size Effect. Prog. Mater. Sci. 2011, 56, 654–724. [Google Scholar] [CrossRef]
- Ajantiwalay, T.; Vo, H.; Finkelstein, R.; Hosemann, P.; Aitkaliyeva, A. Towards Bridging the Experimental Length-Scale Gap for Tensile Tests on Structural Materials: Lessons Learned from an Initial Assessment of Microtensile Tests and the Path Forward. JOM 2020, 72, 113–122. [Google Scholar] [CrossRef]
- Lodh, A.; Keller, C.; Castelluccio, G.M. Fabrication and Mechanical Testing of Mesoscale Specimens. JOM 2023, 75, 2473–2479. [Google Scholar] [CrossRef]
- You, Z.; Fu, H.; Qu, S.; Bao, W.; Lu, L. Revisiting Anisotropy in the Tensile and Fracture Behavior of Cold-Rolled 316L Stainless Steel with Heterogeneous Nano-Lamellar Structures. Nano Mater. Sci. 2020, 2, 72–79. [Google Scholar] [CrossRef]
- Bao, W.; Wang, H.; Liu, J.; You, Z. Microstructural and Mechanical Characterizations on Cu Machined and Sidewise Polished by Femtosecond Laser. Mater. Sci. Eng. A 2022, 855, 143834. [Google Scholar] [CrossRef]
- Dong, A.; Duckering, J.; Peterson, J.; Lam, S.; Routledge, D.; Hosemann, P. Femtosecond Laser Machining of Micromechanical Tensile Test Specimens. JOM 2021, 73, 4231–4239. [Google Scholar] [CrossRef]
- Gigax, J.G.; Torrez, A.J.; Mculloch, Q.; Li, N. Comparison of Mechanical Testing Across Micro- and Meso-Length Scales; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2019. [Google Scholar]
- Slaughter, S.K.; Ligda, J.P.; Sano, T.; Schuster, B.E. High Throughput Femtosecond-Laser Machining of Micro-Tension Specimens; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 471–478. [Google Scholar]
- Pfeifenberger, M.J.; Mangang, M.; Wurster, S.; Reiser, J.; Hohenwarter, A.; Pfleging, W.; Kiener, D.; Pippan, R. The Use of Femtosecond Laser Ablation as a Novel Tool for Rapid Micro-Mechanical Sample Preparation. Mater. Des. 2017, 121, 109–118. [Google Scholar] [CrossRef]
- Echlin, M.P.; Husseini, N.S.; Nees, J.A.; Pollock, T.M. A New Femtosecond Laser-Based Tomography Technique for Multiphase Materials. Adv. Mater. 2011, 23, 2339–2342. [Google Scholar] [CrossRef]
- Echlin, M.P.; Burnett, T.L.; Polonsky, A.T.; Pollock, T.M.; Withers, P.J. Serial Sectioning in the SEM for Three Dimensional Materials Science. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100817. [Google Scholar] [CrossRef]
- Echlin, M.P.; Titus, M.S.; Straw, M.; Gumbsch, P.; Pollock, T.M. Materials Response to Glancing Incidence Femtosecond Laser Ablation. Acta Mater. 2017, 124, 37–46. [Google Scholar] [CrossRef]
- Feng, Q.; Picard, Y.N.; Liu, H.; Yalisove, S.M.; Mourou, G.; Pollock, T.M. Femtosecond Laser Micromachining of a Single-Crystal Superalloy. Scr. Mater. 2005, 53, 511–516. [Google Scholar] [CrossRef]
- Kumar, A.; Pollock, T.M. Mapping of Femtosecond Laser-Induced Collateral Damage by Electron Backscatter Diffraction. J. Appl. Phys. 2011, 110, 083114. [Google Scholar] [CrossRef]
- Picard, Y.N.; Yalisove, S.M. Femtosecond Laser Heat Affected Zones Profiled in Co/Si Multilayer Thin Films. Appl. Phys. Lett. 2008, 92, 014102. [Google Scholar] [CrossRef]
- Gigax, J.G.; Vo, H.; McCulloch, Q.; Chancey, M.; Wang, Y.; Maloy, S.A.; Li, N.; Hosemann, P. Micropillar Compression Response of Femtosecond Laser-Cut Single Crystal Cu and Proton Irradiated Cu. Scr. Mater. 2019, 170, 145–149. [Google Scholar] [CrossRef]
- Chen, X.; Kou, Z.; Zhang, Z.; Zhao, Y.; Huang, R.; Tang, S.; Wu, S.; Lan, S.; You, Z.; Wilde, G.; et al. Unprecedented High-Strength and Ductility in Ni Nanograined Metal via Minor Phosphorus Alloying. Mater. Sci. Eng. A 2024, 916, 147294. [Google Scholar] [CrossRef]
- Chen, J.-J.; Xie, H.; Liu, L.-Z.; Guan, H.; You, Z.; Zou, L.; Jin, H.-J. Strengthening Gold with Dispersed Nanovoids. Science 2024, 385, 629–633. [Google Scholar] [CrossRef]
- Liu, S.; Dong, W.; Ren, Z.; Ge, J.; Fu, S.; Wu, Z.; Wu, J.; Lou, Y.; Zhang, W.; Chen, H.; et al. Medium-Range Order Endows a Bulk Metallic Glass with Enhanced Tensile Ductility. J. Mater. Sci. Technol. 2023, 159, 10–20. [Google Scholar] [CrossRef]
- Yang, L.; Lu, L. The Influence of Sample Thickness on the Tensile Properties of Pure Cu with Different Grain Sizes. Scr. Mater. 2013, 69, 242–245. [Google Scholar] [CrossRef]
- ASTM E8/E8M-22; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2022. [CrossRef]
- You, Z.; Qu, S.; Luo, S.; Lu, L. Fracture Toughness Evaluation of Nanostructured Metals via a Contactless Crack Opening Displacement Gauge. Materialia 2019, 74, 100430. [Google Scholar] [CrossRef]
- Shi, H.; Li, J.; Mao, J.; Lu, W. The Elimination of the Yield Point Phenomenon in a New Zirconium Alloy: Influence of Degree of Recrystallization on the Tensile Properties. Scr. Mater. 2019, 169, 28–32. [Google Scholar] [CrossRef]
- Zhuang, Y.; An, D.; Wang, Y.; Liang, S.; Zhou, J.; Li, S.; Li, J.; Gong, W. Nano Hydride Precipitation-Induced Disappearance of Yield Drop in Zirconium Alloy at Elevated Temperature. Scr. Mater. 2025, 254, 116342. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Guo, Y.Z.; Wei, Q.; Dangelewicz, A.M.; Xu, C.; Zhu, Y.T.; Langdon, T.G.; Zhou, Y.Z.; Lavernia, E.J. Influence of Specimen Dimensions on the Tensile Behavior of Ultrafine-Grained Cu. Scr. Mater. 2008, 59, 627–630. [Google Scholar] [CrossRef]
- Wharry, J.P.; Yano, K.H.; Patki, P.V. Intrinsic-Extrinsic Size Effect Relationship for Micromechanical Tests. Scr. Mater. 2019, 162, 63–67. [Google Scholar] [CrossRef]
- Sergueeva, A.V.; Zhou, J.; Meacham, B.E.; Branagan, D.J. Gage Length and Sample Size Effect on Measured Properties during Tensile Testing. Mater. Sci. Eng. A 2009, 526, 79–83. [Google Scholar] [CrossRef]
- Miyazaki, S.; Fujita, H. Effects of Grain Size and Specimen Thickness on Mechanical Properties of Polycrystalline Copper and Copper-Aluminum Alloy. Trans. Jpn. Inst. Met. 1978, 19, 438–444. [Google Scholar] [CrossRef]
- Miyazaki, S.; Fujita, H.; Hiraoka, H. Effect of Specimen Size on the Flow Stress of Rod Specimens of Polycrystalline Cu—Al Alloy. Scr. Metall. 1979, 13, 447–449. [Google Scholar] [CrossRef]
- An, J.; Wang, Y.F.; Wang, Q.Y.; Cao, W.Q.; Huang, C.X. The Effects of Reducing Specimen Thickness on Mechanical Behavior of Cryo-Rolled Ultrafine-Grained Copper. Mater. Sci. Eng. A 2016, 651, 1–7. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Guo, Y.Z.; Wei, Q.; Topping, T.D.; Dangelewicz, A.M.; Zhu, Y.T.; Langdon, T.G.; Lavernia, E.J. Influence of Specimen Dimensions and Strain Measurement Methods on Tensile Stress–Strain Curves. Mater. Sci. Eng. A 2009, 525, 68–77. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, R.; Yu, Q.; Ell, J.; Ritchie, R.O.; Minor, A.M. Cryoforged Nanotwinned Titanium with Ultrahigh Strength and Ductility. Science 2021, 373, 1363–1368. [Google Scholar] [CrossRef]
- Yang, B.; Sun, W.-Q.; Jiang, W.-C.; Wang, M.-L.; Li, M.-C.; Chen, J.-K. Comparative Study of the Tensile Properties of a 1.25Cr-0.5Mo Steel Characterized by the Miniature Specimen and the Standard Specimen. Int. J. Press. Vessels Pip. 2019, 177, 103990. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, X.; Wei, Q. Comment on “Cryoforged Nanotwinned Titanium with Ultrahigh Strength and Ductility”. Science 2022, 376, eabo3440. [Google Scholar] [CrossRef]
- Harvey, C.; Torrez, A.J.; Lam, S.; Kim, H.; Maloy, S.A.; Gigax, J.G. Demonstration of a High-Throughput Tensile Testing Technique Using Femtosecond Laser-Fabricated Tensile Bars in AISI 316 and Additively Manufactured Grade 91 Steel. JOM 2021, 73, 4240–4247. [Google Scholar] [CrossRef]
Alloy | Sn | Fe | Cr | C | Si | Zr |
---|---|---|---|---|---|---|
Zircaloy-4 | 1.32 | 0.18 | 0.096 | 0.013 | 0.008 | Balanced |
Sample | SR (s−1) | YS (MPa) | UTS (MPa) | UE (%) | FE (%) | n |
---|---|---|---|---|---|---|
Standard | 9.1 × 10−4 | 442 ± 3 | 464 ± 1 | 8.8 ± 0.3 | 31.0 ± 0.6 | 0.092 |
Sub-sized | 9.0 × 10−4 | 428 ± 2 | 458 ± 2 | 8.9 ± 0.4 | 28.5 ± 2.9 | 0.093 |
Mesoscale | 1.0 × 10−3 | 396 ± 13 | 440 ± 15 | 7.7 ± 0.5 | 26.8 ± 1.9 | 0.085 |
Sample | Parameter | YS (MPa) | UTS (MPa) | UE (%) | FE (%) |
---|---|---|---|---|---|
Sub-sized | t statistic | 2.018 | 3.801 | −0.737 | 1.985 |
p-value | 0.115 | 0.054 | 0.503 | 0.128 | |
Accuracy (%) | −3.2 | −1.3 | 1.1 | −8 | |
Mesoscale | t statistic | 6.657 | 12.118 | 2.871 | 4.699 |
p-value | 0.001 | 0.0002 | 0.028 | 0.005 | |
Accuracy (%) | −10.4 | −5.2 | −12.5 | −13.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, R.; Zhao, N.; Tong, S.; Zhang, Z.; Li, G.; You, Z. Comparative Study of the Tensile Properties of a Zircaloy-4 Alloy Characterized by Mesoscale and Standard Specimens. Materials 2025, 18, 666. https://doi.org/10.3390/ma18030666
Dong R, Zhao N, Tong S, Zhang Z, Li G, You Z. Comparative Study of the Tensile Properties of a Zircaloy-4 Alloy Characterized by Mesoscale and Standard Specimens. Materials. 2025; 18(3):666. https://doi.org/10.3390/ma18030666
Chicago/Turabian StyleDong, Ruohan, Ning Zhao, Shenghui Tong, Zeen Zhang, Gang Li, and Zesheng You. 2025. "Comparative Study of the Tensile Properties of a Zircaloy-4 Alloy Characterized by Mesoscale and Standard Specimens" Materials 18, no. 3: 666. https://doi.org/10.3390/ma18030666
APA StyleDong, R., Zhao, N., Tong, S., Zhang, Z., Li, G., & You, Z. (2025). Comparative Study of the Tensile Properties of a Zircaloy-4 Alloy Characterized by Mesoscale and Standard Specimens. Materials, 18(3), 666. https://doi.org/10.3390/ma18030666