When Blood Is Touched
Abstract
:1. The First Events
1.1. Early history
1.2. The intrinsic versus extrinsic clotting systems
1.3. Earliest contact—General
1.4. Factors affecting rate and extent of these events
1.4.1. Chemical composition of the substrate
1.4.2. Physical circumstances
Flow
Space width
Surface energy
2. Subsequent Events
2.1. Platelets
2.2. White blood cells
3. Theoretical Approaches
4. The Other Solutions
4.1. Coatings
4.1.1. Albumin
4.1.2. Heparin
4.1.3. Chitosan
4.2. Building live vessels: Tissue engineering
5. Conclusions
References and Notes
- Vroman, L. Surface contact and thromboplastin generation. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 1958. [Google Scholar]
- Davie, E.W.; Ratnoff, O.D. Waterfall sequence for intrinsic blood clotting. Science 1964, 145, 1310–1312. [Google Scholar] [CrossRef] [PubMed]
- Vroman, L.; Lukosevicius, A. Ellipsometer recordings of change in optical thickness of adsorbed films associated with surface activation of blood clotting. Nature 1964, 701–702. [Google Scholar] [CrossRef]
- Rothen, A. Optical properties of surface films. Ann. New York Acad. Sci. 1951, 53, 1054–1063. [Google Scholar] [CrossRef]
- Norde, W.; Lyklema, J. Why proteins prefer interfaces. J. Biomat. Sci. Polymer Edn. 1991, 2, 183–202. [Google Scholar] [CrossRef]
- Brash, J.L.; ten Hove, P. Effect of plasma dilution on adsorption of fibrinogen to solid surfaces. Thromb. Haemost. 1984, 51, 326–330. [Google Scholar] [PubMed]
- Horbett, T.A. Mass action effects on competitive adsorption of fibrinogen from hemoglobin solutions and from plasma. Thromb. Haemost. 1984, 51, 174–181. [Google Scholar] [PubMed]
- Vroman, L.; Adams, A.L.; Fischer, G.C.; Munoz, P.C.; Stanford, M. Proteins, plasma, and blood in narrow spaces of clot-promoting surfaces. Adv. Chem. Ser. 1982, 199, 265–276. [Google Scholar]
- Vroman, L.; Adams, A.L.; Fischer, G.C.; Munoz, P.C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980, 55, 156–159. [Google Scholar] [PubMed]
- Schmaier, A.H.; Silver, L.; Adams, A.L.; Fischer, G.C.; Munoz, P.C.; Vroman, L.; Colman, R.W. The effect of high molecular weight kininogen on surface-adsorbed fibrinogen. Thromb. Res. 1983, 33, 51–67. [Google Scholar] [CrossRef]
- Sawyer, P.N.; Srinivasan, S. The role of electrochemical surface properties in thrombosis at vascular interfaces: Cumulative studies in animals and man. Bull. N.Y. Acad. Med. 1972, 48, 2235–2256. [Google Scholar]
- Adams, A.L.; Fischer, G.C.; Vroman, L. The complexity of blood at simple interfaces. J. Colloid Interface Sci. 1978, 65, 468–478. [Google Scholar] [CrossRef]
- Stanford, M.F; Munoz, P.C.; Vroman, L. Platelets adhere where flow has left fibrinogen on glass. Ann. N.Y. Acad. Sci. 1983, 416, 504–512. [Google Scholar] [CrossRef]
- Vroman, L; Leonard, E.F. The effect of flow on displacement of proteins at interfaces in plasma. Biofouling 1991, 4, 81–87. [Google Scholar] [CrossRef]
- Leduc, C.; Depaola, N; Konath, S.; Vroman, L.; Leonard, E.F. Adsorption of proteins out of plasma onto glass from a separated flow. J. Biomater. Sci. Polymer Edn. 1994, 6, 7599–7608. [Google Scholar]
- Adams, A.L.; Fischer, G.C.; Munoz, PC.; Vroman, L. Convex-lens-on-slide: A simple system for the study of human plasma and blood in narrow spaces. J. Biomed. Mater. Res. 1984, 18, 6643–6654. [Google Scholar] [CrossRef]
- Elwing, H.; Tengvall, P.; Askendal, A.; Lundström, I. ’Lens-on-surface’: A versatile method for the investigation of plasma protein exchange reactions on solid surfaces. In The Vroman Effect; Bamford, C.H., Cooper, S.L., Tsuruta, T., Eds.; VSP: Utecht, The Netherlands, Tokyo, Japan, 1992; pp. 85–93. [Google Scholar]
- Baier, R.E. The role of surface energy in thrombogenesis. Bull. N.Y. Acad. Med. 1972, 48, 2257–2272. [Google Scholar]
- Vroman, L. Use of barium stearate to remove labile factor from plasma. J. Mount Sinai Hosp. New York 1958, 25, 261–262. [Google Scholar]
- Vroman, L. Effects of hydrophobic surfaces upon blood coagulation. Thromb. Diath. Haem. 1963, 10, 455–493. [Google Scholar]
- Zucker, M.B; Vroman, L. Platelet adhesion induced by fibrinogen adsorbed onto glass. Proc. Soc. Exp. Biol. Med. 1969, 131, 318–320. [Google Scholar] [CrossRef]
- Gartner, T.K.; Taylor, D.B. The amino acid sequence gly-ala-pro-leu appears to be a fibrinogen binding site in the platelet integrin, glycoprotein IIb. Thromb. Res. 1990, 60, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.L.; Fischer, G.C.; Vroman, L. The complexity of blood at simple interfaces. J. Colloid Interface Sci. 1978, 65, 468–478. [Google Scholar] [CrossRef]
- Vroman, L.; Adams, A.L.; Klings, M.; Fischer, G. Fibrinogen, globulins, albumin and plasma at interfaces. Adv. Chem. Ser. 1975, 145, 255–289. [Google Scholar]
- Gasque, P. Complement: A unique innate immune sensor for danger signals. Mol. Immunol. 2004, 41, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Craddock, P.R.; Fehr, J.; Brigham, K.L.; Kronenberg, R.S.; Jacob, H.S. Complement- and leukocyte-mediated pulmonary dysfunction in hemodialysis. N. Engl. J. Med. 1977, 296, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Willems, G.M.; Hermens, W.Th.; Hemker, H.C. Suface exclusion and molecular mobility may explain Vroman effects in protein asorption. In The Vroman Effect; Bamford, C.H., Cooper, S.L., Tsuruta, T., Eds.; VSP: Utecht, The Netherlands, Tokyo, Japan, 1992; pp. 21–30. [Google Scholar]
- Noh, H.; Vogler, E.A. Volumetric interpetation of protein adsorption: competition from mixtures and the Vroman effect. Biomaterials 2007, 28, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.F.; Nadaraha, A; Chittur, K.K. A comprehensive model of multiprotein adsorption on surfaces. J. Colloid Interface Sci. 1994, 168, 152–161. [Google Scholar] [CrossRef]
- LeDuc, C.A.; Vroman, L.; Leonard, E.F. A mathematical model for the Vroman effect. Ind. Eng. Chem. Res. 1995, 34, 3488–3495. [Google Scholar] [CrossRef]
- Chan, B.M.C.; Brash, J.L. Adsorption of fibrinogen on glass: Reversibility aspects. J. Colloid Interface Sci. 1981, 82, 217–225. [Google Scholar] [CrossRef]
- Rapoza, R.J.; Horbett, T.A. Changes in the SDS elutability of fibrinogen adsorbed from plasma to polymers. J. Biomater. Sci. Polym. Ed. 1989, 1, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Fedel, M; Motta, A.; Maniglio, D.; Migliaresi, C. Surface properties and blood compatibility of commercially available diamond-like carbon coatings for cardiovascular devices. J. Biomed. Mat. Res. 2009, 90B, 338–349. [Google Scholar]
- Maalej, N.; Albrecht, R.; Loscalzo, J.; Folts, J.D. The potent platelet inhibitory effects of S-nitrosated albumin coating on artificial surfaces. J. Am. Coll. Cardiol. 1999, 33, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Gott, V.L.; Whiffen, J.D.; Dutton, R.C. Heparin bonding on colloidal graphite surfaces. Science 1963, 142, 1297–1298. [Google Scholar] [CrossRef] [PubMed]
- Gott, V.L.; Daggett, R.L. Serendipity and the development of heparin and carbon surfaces. Ann. Thorac. Surg. 1999, 68 (Suppl. 3), S19–S22. [Google Scholar] [CrossRef]
- Niimi, Y; Ichinose, F; Ishiguro, Y.; Terui, K.; Uezono, S.; Morita, S.; Yamane, S. The effects of heparin coating of oxygenator fibers on platelet adhesion and protein adsorption. Anesth Analg. 1999, 89, 573–579. [Google Scholar] [PubMed]
- Gaylord, M.S.; Pittman, P.A.; Bartness, J.; Tuinman, A.A.; Lorch, V. Release of benzalkonium chloride from a heparin-bonded umbilical catheter with resultant facticious hypernatremia and hyperkalemia. Peidatrics 1991, 87, 631–635. [Google Scholar]
- Mangoush, O.; Purkayastha, S.; Haj-Yahia, S.; Kinross, J.; Hayward, M.; Bartolozzi, F.; Darzi, A.; Athanasiou, T. Heparin-bonded circuits versus nonheparin-bondedcircuits: An evaluation of their effect on clinical outcomes. Eur. J. Cardiothorac. Surg. 2007, 31, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhang, N.; Kang, Q.; An, Y.; Wen, X. Fabrication of permeable tubular constructs from chemically modified chitosan with enhanced antithrombogenic property. J. Biomed. Mat. Res. 2009, 90B, 668–678. [Google Scholar] [CrossRef]
- Herring, M; Gardner, A; Glover, J. A single staged technique for seeding vascular grafts with autologous endothelium. Surgery 1978, 84, 498–504. [Google Scholar] [PubMed]
- Nugent, H.M.; Edelman, E.R. Tissue engineering therapy for cardiovascular disease. Circ. Res. 2003, 92, 1068–1078. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Vrana, N.E.; Cahill, P.A.; McGuinness, G.B. Physically crosslinked composite hydrogels of PVA with natural macromolecules: Structure, mechanical properties, and endothelial cell compatibility. J. Biomed. Mat. Res. 2009, 90B, 492–502. [Google Scholar] [CrossRef]
- Belden, T.A.; Schmidt, S.P.; Falkw, L.J.; Sharp, W.V. Endothelial cell seeding of small-diameter vascular grafts. Trans. Am. Soc. Artif. Intern. Organs 1982, 28, 173–177. [Google Scholar] [PubMed]
- Moza, A.K.; Mertsching, H.; Herden, T.; Bader, A.; Haverich, A. Heart valves from pigs and the porcine endogenous retrovirus: Experimental and clinical data to assess the possibility of porcine endogenous retrovirus infection in human subjects. J. Thorac. Cardiovasc. Surg. 2001, 121, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Numata, S.; Fujisato, T.; Niwaya, K.; Ishibashi-Ueda, H.; Nakatani, T.; Kitamura, S. Immunological and histological evaluation of decellularized allograft in a pig model: Comparison with cryopreserved allograft. J. Heart Valve Dis. 2004, 13, 984–990. [Google Scholar] [PubMed]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vroman, L. When Blood Is Touched. Materials 2009, 2, 1547-1557. https://doi.org/10.3390/ma2041547
Vroman L. When Blood Is Touched. Materials. 2009; 2(4):1547-1557. https://doi.org/10.3390/ma2041547
Chicago/Turabian StyleVroman, Leo. 2009. "When Blood Is Touched" Materials 2, no. 4: 1547-1557. https://doi.org/10.3390/ma2041547
APA StyleVroman, L. (2009). When Blood Is Touched. Materials, 2(4), 1547-1557. https://doi.org/10.3390/ma2041547