Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation of Human Primary Osteoblasts
2.2. Titanium Scaffolds
2.3. Test Setup and Seeding of the Titanium Scaffolds
2.4. Viability Testing and Quantification of Procollagen Type 1
2.5. Monitoring of Oxygen and pH Value
2.6. Statistical Evaluation
3. Results
3.1. Cell Viability and Collagen Synthesis
Time | Type of scaffold tested | |||
---|---|---|---|---|
EBM titanium | LBM titanium | |||
Periphery | Center | Periphery | Center | |
Day 2 | 69.5 ± 40.1 | 88.5 ± 32.9 | 72.1 ± 26.8 | 64.1 ± 16.2 |
Day 4 | 107.7 ± 44.2 | 109.6 ± 48.4 | 236.6 ± 106.7 | 204.7 ± 88.0 |
Day 7 | 150.7 ± 78.5 | 214.7 ± 95.1 | 307.6 ± 115.8 | 328.5 ± 132.2 |
3.2. Oxygen Supply and Acidification in Titanium Scaffolds
4. Discussion
4.1. Influence of the Bone Substitute Materials on Cell Survival and Synthesis Capacity
4.2. Oxygen Supply and Acidification within the Bone Substitute Materials
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rueger, J.M. Bone substitution materials. Current status and prospects. Orthopade 1998, 27, 72–79. [Google Scholar]
- Schieker, M.; Mutschler, W. Bridging posttraumatic bony defects. Established and new methods. Unfallchirurg 2006, 109, 715–732. [Google Scholar] [CrossRef] [PubMed]
- Schieker, M.; Seitz, S.; Gulkan, H.; Nentwich, M.; Horvath, G.; Regauer, M.; Milz, S.; Mutschler, W. Tissue engineering of bone. Integration and migration of human mesenchymal stem cells in colonized contructs in a murine model. Orthopade 2004, 33, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Grob, D. Problems at the donor site in autologous bone transplantation. Unfallchirurg 1986, 89, 339–345. [Google Scholar]
- Antonialli, A.; Bolfarini, C. Numerical evaluation of reduction of stress shielding between implant devices and bone. Mater. Res. 2011, 14, 331–334. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J. Biomater. 2011, 2011, 836587:1–836587:10. [Google Scholar]
- Li, J.P.; Habibovic, P.; van den Doel, M.; Wilson, C.E.; de Wijn, J.R.; van Blitterswijk, C.A.; de Groot, K. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 2007, 28, 2810–2820. [Google Scholar] [CrossRef] [PubMed]
- Wieding, J.; Jonitz, A.; Bader, R. The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials 2012, 5, 1336–1347. [Google Scholar] [CrossRef]
- Cachinho, S.C.; Correia, R.N. Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J. Mater. Sci. Mater. Med. 2008, 19, 451–457. [Google Scholar] [PubMed]
- Wieding, J.; Fritsche, A.; Heinl, P.; Korner, C.; Cornelsen, M.; Seitz, H.; Mittelmeier, W.; Bader, R. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium under different loading conditions. J. Appl Biomater. Funct. Mater. 2013. [Google Scholar] [CrossRef]
- Mangano, C.; de Rosa, A.; Desiderio, V.; d`Aqiuno, R.; Piattelli, A.; de Francesco, F.; Tirino, V.; Mangano, F.; Papaccio, G. The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 2010, 31, 3543–51. [Google Scholar] [CrossRef] [PubMed]
- Hollander, D.A.; von Walter, M.; Wirtz, T.; Sellei, R.; Schmidt-Rohlfing, B.; Paar, O.; Erli, H.J. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials 2006, 27, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- Naal, F.D.; Steinhauser, E.; Schauwecker, J.; Diehl, P.; Mittelmeier, W. Tissue engineering von Knochen- und Knorpelgewebe: D.ie Bedeutung von Sauerstoff und Hypoxie. Biomaterialien. 2004, 5, 34–37. [Google Scholar] [CrossRef]
- Malda, J.; Klein, T.J.; Upton, Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007, 13, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Malda, J.; Rouwkema, J.; Martens, D.E.; Le Comte, E.P.; Kooy, F.K.; Tramper, J.; van Blitterswijk, C.A.; Riesle, J. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: Measurement and modeling. Biotechnol. Bioeng. 2004, 86, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Volkmer, E.; Drosse, I.; Otto, S.; Stangelmayer, A.; Stengele, M.; Kallukalam, B.C.; Mutschler, W.; Schieker, M. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng. Part A 2008, 14, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Muschler, G.F.; Nakamoto, C.; Griffith, L.G. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 2004, 86, 1541–1558. [Google Scholar] [PubMed]
- Jonitz, A.; Wieding, J.; Lochner, K.; Cornelsen, M.; Seitz, H.; Hansmann, D.; Bader, R. Migration capacity and viability of human primary osteoblasts in synthetic three-dimensional bone scaffolds made of tricalciumphosphate. Materials 2011, 4, 1249–1259. [Google Scholar]
- Koike, M.; Greer, P.; Owen, K.; Lilly, G.; Murr, L.; Gaytan, S.; Martinez, E.; Okabe, T. Evaluation of titanium alloys fabricated using rapid prototyping technologies-electron beam cutting and laser beam melting. Materials 2011, 4, 1776–1792. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Z.; Ding, M.; Li, J.; Ye, J.; Leonard, S.S.; Shen, H.M.; Butterworth, L.; Lu, Y.; Costa, M.; et al. Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J. Biol Chem 2000, 275, 32516–32522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, C.; Li, J.; Leonard, S.S.; Lanciotti, R.; Butterworth, L.; Shi, X. Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch. Biochem Biophys. 2001, 311–320. [Google Scholar]
- Williams, D.F. Titanium and titanium alloys. In Biocompatibility of Clinical Implant. Materials I; CRC Press: Boca Raton, FL, USA, 1981; pp. 9–44. [Google Scholar]
- Tsaryk, R.; Kalbacova, M.; Hempel, U.; Scharnweber, D.; Unger, R.E.; Dieter, P.; Kirkpatrick, C.J.; Peters, K. Response of human endothelial cells to oxidative stress on Ti6Al4V alloy. Biomaterials 2007, 28, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Lochner, K.; Fritsche, A.; Jonitz, A.; Hansmann, D.; Mueller, P.; Mueller-Hilke, B.; Bader, R. The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles. Int J. Mol. Med. 2011, 28, 1055–1063. [Google Scholar] [PubMed]
- Lee, C.M.; Genetos, D.C.; You, Z.; Yellowley, C.E. Hypoxia regulates PGE(2) release and EP1 receptor expression in osteoblastic cells. J. Cell. Physiol. 2007, 212, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Utting, J.C.; Robins, S.P.; Brandao-Burch, A.; Orriss, I.R.; Behar, J.; Arnett, T.R. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp. Cell. Res. 2006, 312, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jonitz-Heincke, A.; Wieding, J.; Schulze, C.; Hansmann, D.; Bader, R. Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting. Materials 2013, 6, 5398-5409. https://doi.org/10.3390/ma6115398
Jonitz-Heincke A, Wieding J, Schulze C, Hansmann D, Bader R. Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting. Materials. 2013; 6(11):5398-5409. https://doi.org/10.3390/ma6115398
Chicago/Turabian StyleJonitz-Heincke, Anika, Jan Wieding, Christoph Schulze, Doris Hansmann, and Rainer Bader. 2013. "Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting" Materials 6, no. 11: 5398-5409. https://doi.org/10.3390/ma6115398
APA StyleJonitz-Heincke, A., Wieding, J., Schulze, C., Hansmann, D., & Bader, R. (2013). Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting. Materials, 6(11), 5398-5409. https://doi.org/10.3390/ma6115398