A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation
Abstract
:1. Introduction
2. Proposed Unit-Cell Construction
3. Methodology
4. Equivalent Circuit Model of the Proposed Unit-Cell
5. Results and Discussion
5.1. Unit Cell Analysis
5.2. Metamaterial Arrays Configurations
5.2.1. 1 × 1 Array Analysis
5.2.2. 2 × 2 Array Analysis
5.2.3. 4 × 4 Array Analysis
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.Y.; Gao, J.S.; Liu, H. A novel metamaterial filter with stable passband performance based on frequency selective surface. AIP Adv. 2014, 4, 077114. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, M.T.; Samsuzzaman, M.; Faruque, M.R.I. Compact metamaterial antenna for UWB applications. Electron. Lett. 2015, 51, 1222–1224. [Google Scholar] [CrossRef]
- Khan, O.M.; Islam, Z.U.; Islam, Q.U.; Bhatti, F.A. Multiband High-Gain Printed Yagi Array Using Square Spiral Ring Metamaterial Structures for S-Band Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13. [Google Scholar] [CrossRef]
- Islam, S.S.; Faruque, M.R.I.; Islam, M.T. A Near Zero Refractive Index Metamaterial for Electromagnetic Invisibility Cloaking Operation. Materials 2015, 8, 4790–4804. [Google Scholar] [CrossRef]
- Sultan, K.; Abdullah, H.; Abdallah, E.; Hashish, E. Low-SAR, miniaturized printed antenna for mobile, ISM, and WLAN services. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1106–1109. [Google Scholar] [CrossRef]
- Sharma, M.M.; Deegwal, J.K.; Kumar, A.; Govil, M.C. Compact planar monopole UWB antenna with quadruple band-notched characteristics. Prog. Electromagn. Res. C 2014, 47, 29–36. [Google Scholar] [CrossRef]
- Gong, B.; Zhao, X. Numerical demonstration of a three-dimensional negative-index metamaterial at optical frequencies. Opt. Express. 2011, 19, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Fu, Q.; Zhao, X. U-Shaped multi-band negative-index bulk metamaterials with low loss at visible frequencies. Phys. Scr. 2011, 84, 035402. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, J.; Yang, Y.; Xie, K. Tunable dual-band ferrite-based metamaterials with dual negative refractions. Appl. Phys. A 2012, 106, 79–86. [Google Scholar] [CrossRef]
- Benosman, H.; Hacene, N.B. Design and Simulation of Double “S” Shaped Metamaterial. Int. J. Comput. Sci. 2012, 9, 534–537. [Google Scholar]
- Mallik, A.; Kundu, A.S.; Goni, M.O. Design of a novel two-rectangular U-shaped double negative metamaterial. In Proceedings of the 2013 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bnagladesh, 17–18 May 2013.
- Ekmekci, E.; Turhan-Sayan, G. Investigation of effective permittivity and permeability for a novel V-shaped metamaterial using S-parameters. In Proceedings of the 5th International Conference on Electrical and Electronics Engineering, Bursa, Turkey, 5–9 December 2007.
- Rizwan, M.; Jin, H.-B.; Rehman, F.; Hou, Z.-L.; Li, J.-B.; Butt, F.K.; Ali, Z. Dual-Band tunable negative refractive index metamaterial with F-Shape structure. Cent. Eur. J. Phys. 2014, 12, 578–581. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, H. Triple-Band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial. Appl. Phys. A 2015, 119, 115–119. [Google Scholar] [CrossRef]
- Islam, S.S.; Faruque, M.R.I.; Islam, M.T. The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications. Materials 2014, 7, 4994–5011. [Google Scholar] [CrossRef]
- Hossain, M.I.; Faruque, M.R.I.; Islam, M.T.; Ullah, M.H. A New Wide-Band Double-Negative Metamaterial for C- and S-B and Applications. Materials 2015, 8, 57–71. [Google Scholar] [CrossRef]
- Alam, T.; Faruque, M.R.I.; Islam, M.T. A Double-Negative Metamaterial-Inspired Mobile Wireless Antenna for Electromagnetic Absorption Reduction. Materials 2015, 8, 4817–4828. [Google Scholar] [CrossRef]
- Liu, R.; Degiron, A.; Mock, J.J.; Smith, D.R. Negative index material composed of electric and magnetic resonators. Appl. Phys. Lett. 2007, 90, 263504. [Google Scholar] [CrossRef]
- Islam, S.S.; Faruque, M.R.I.; Islam, M.T. A New Direct Retrieval Method of Refractive Index for Metamaterials. Curr. Sci. 2015, 109, 337–341. [Google Scholar]
- Alu, A.; Bilotti, F.; Vegni, L. Analysis of L-L transmission line metamaterials with coupled inductance. Microw. Opt. Technol. Lett. 2006, 49, 94–97. [Google Scholar] [CrossRef]
- Grover, F.W. Inductance Calculation; Dover Publication, Inc.: New York, NY, USA, 1946. [Google Scholar]
- Clayton, R.P. Inductance: Loop and Partial; Wiley-IEEE Press: Hoboken, NJ, USA, 2009. [Google Scholar]
Parameters | Dimensions (mm) | Parameters | Dimensions (mm) |
---|---|---|---|
a | 10 | d | 0.5 |
b | 10 | g | 0.5 |
l | 8 | t | 1.6 |
w | 8 | h | 0.035 |
Structure | Frequency (GHz) | Rotation Angle | Value of Permittivity (ε) | Value of Permeability (μ) | Value of Refractive Index (η) | Refractive Index Bandwidth | Metamaterial Type |
---|---|---|---|---|---|---|---|
Unit cell | 8.79 | 0-degree | −8.35 | −34.04 | −16.92 | 3.61 GHz | DNG |
90-degree | −6.43 | −34.16 | −24.91 | 3.57 GHz | |||
1 × 1 Array | 8.60 | 0-degree | −5.45 | −29.83 | −13.19 | 3.96 GHz | DNG |
90-degree | −2.31 | −35.08 | −9.06 | 4.05 GHz | |||
2 × 2 Array | 8.60 | 0-degree | −0.68 | −45.04 | −5.55 | 2.68 GHz | DNG |
90-degree | −2.63 | −34.47 | −9.53 | 3.90 GHz | |||
4 × 4 Array | 8.60 | 0-degree | −4.17 | −31.75 | −12.80 | 4.10 GHz | DNG |
90-degree | −4.66 | −31.01 | −12.94 | 3.74 GHz |
Author Name | Year | MMs Shape | Array Analysis |
---|---|---|---|
Mallik et al. [14] | 2013 | U | 1 × 1, 2 × 2 orthogonal array |
Islam et al. [18] | 2014 | H | 1 × 1, 2 × 2 array |
Hossain et al. [19] | 2015 | G | 2 × 2 open & interconnect array |
Proposed Design | 2016 | Z | 1 × 1, 2 × 2, 4 × 4 open array for 0-degree & 90-degree rotation |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.M.; Faruque, M.R.I.; Islam, S.S.; Islam, M.T. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation. Materials 2016, 9, 830. https://doi.org/10.3390/ma9100830
Hasan MM, Faruque MRI, Islam SS, Islam MT. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation. Materials. 2016; 9(10):830. https://doi.org/10.3390/ma9100830
Chicago/Turabian StyleHasan, Md. Mehedi, Mohammad Rashed Iqbal Faruque, Sikder Sunbeam Islam, and Mohammad Tariqul Islam. 2016. "A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation" Materials 9, no. 10: 830. https://doi.org/10.3390/ma9100830
APA StyleHasan, M. M., Faruque, M. R. I., Islam, S. S., & Islam, M. T. (2016). A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation. Materials, 9(10), 830. https://doi.org/10.3390/ma9100830