Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies
Abstract
:1. Introduction
2. Microwave Heating Theory and Mechanisms
2.1. Microwave Electric Field Heating
2.2. Microwave Magnetic Field Heating
2.3. Power Loss Owing to Microwave Heating
2.4. Penetration Depth of Microwaves
3. Effects of Microwave-Metal Interactions
3.1. Reflection Effect
3.2. Heating Effect
3.3. Discharge Effect
4. Important Ways to Improve Microwave Energy Efficiency
4.1. Specific Set of Reactor Dimension with Full Consideration of Penetration Depth, Microwave-Matter Interaction Mechanisms and Constructive Interference of Propagating Waves
4.2. Microwave Energy Conversion Enhanced by Microwave Absorber
4.3. Improved Microwave Processing and Energy Efficiency Owing to Microwave-Induced Discharge Effect and/or the Coupled Effect of Wave Absorption and Discharge/Plasma
4.4. Numerical Modeling Plays an Important Role in the Optimization of Microwave Thermal Process
5. Concluding Remarks and Future Scope
Acknowledgments
Conflicts of Interest
References
- Motshekga, S.C.; Pillai, S.K.; Sinha Ray, S.; Jalama, K.; Krause, R.W.M. Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications. J. Nanomater. 2012, 2012, 15. [Google Scholar] [CrossRef]
- Venkatesh, M.S.; Raghavan, G.S.V. An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosyst. Eng. 2004, 88, 1–18. [Google Scholar] [CrossRef]
- Mishra, P.; Upadhyaya, A.; Sethi, G. Modeling of microwave heating of particulate metals. Metall. Mater. Trans. B 2006, 37, 839–845. [Google Scholar] [CrossRef]
- Song, Z.; Jing, C.; Yao, L.; Zhao, X.; Wang, W.; Mao, Y.; Ma, C. Microwave drying performance of single-particle coal slime and energy consumption analyses. Fuel Process. Technol. 2016, 143, 69–78. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Liu, H.; Ma, C.; Song, Z. Microwave pyrolysis of wheat straw: Product distribution and generation mechanism. Bioresour. Technol. 2014, 158, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, C.; Sun, J.; Wang, X.; Zhao, X.; Mao, Y.; Li, X.; Song, Z. Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process. Energy 2015, 87, 678–685. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, M.; Zhang, J.; Li, L.; Ma, C.; Song, Z. Temperature distribution simulation of microwave heating process of straw bale. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2011, 27, 308–312. [Google Scholar]
- Zhao, X.; Song, Z.; Liu, H.; Li, Z.; Li, L.; Ma, C. Microwave pyrolysis of corn stalk bale: A promising method for direct utilization of large-sized biomass and syngas production. J. Anal. Appl. Pyrolysis 2010, 89, 87–94. [Google Scholar] [CrossRef]
- Aparna, K.; Basak, T.; Balakrishnan, A.R. Role of metallic and composite (ceramic–metallic) supports on microwave heating of porous dielectrics. Int. J. Heat Mass Transf. 2007, 50, 3072–3089. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Song, Z.; Liu, H.; Li, L.; Ma, C. Microwave pyrolysis of straw bale and energy balance analysis. J. Anal. Appl. Pyrolysis 2011, 92, 43–49. [Google Scholar] [CrossRef]
- Xiqiang, Z.; Wenlong, W.; Hongzhen, L.; Yanpeng, M.; Chunyuan, M.; Zhanlong, S. Temperature rise and weight loss characteristics of wheat straw under microwave heating. J. Anal. Appl. Pyrolysis 2014, 107, 59–66. [Google Scholar] [CrossRef]
- Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Haque, K.E. Microwave energy for mineral treatment processes—A brief review. Int. J. Miner. Process. 1999, 57, 1–24. [Google Scholar] [CrossRef]
- Araszkiewicz, M.; Koziol, A.; Lupinska, A.; Lupinski, M. IR technique for studies of microwave assisted drying. Dry. Technol. 2007, 25, 569–574. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Material Processing-A Review. Aiche J. 2012, 58, 330–363. [Google Scholar] [CrossRef]
- Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—A review. Tetrahedron 2001, 57, 10229–10229. [Google Scholar] [CrossRef]
- Hesas, R.H.; Daud, W.; Sahu, J.N.; Arami-Niya, A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. J. Anal. Appl. Pyrolysis 2013, 100, 1–11. [Google Scholar] [CrossRef]
- Roy, R.; Agrawal, D.; Cheng, J.; Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 1999, 399, 668–670. [Google Scholar]
- Upadhyaya, D.D.; Ghosh, A.; Dey, G.K.; Prasad, R.; Suri, A.K. Microwave sintering of zirconia ceramics. J. Mater. Sci. 2001, 36, 4707–4710. [Google Scholar] [CrossRef]
- Starn, T.K.; Dearth-Monroe, L.L.; Andrews, E.J.; Bair, E.J.; Jin, Q.; Hieftje, G.M. Thermal imaging of microwave fields inside the surfatron and the microwave plasma torch. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 267–275. [Google Scholar] [CrossRef]
- Nüchter, M.; Müller, U.; Ondruschka, B.; Tied, A.; Lautenschläger, W. Microwave-Assisted Chemical Reactions. Chem. Eng. Technol. 2003, 26, 1207–1216. [Google Scholar] [CrossRef]
- Ozkan, I.A.; Akbudak, B.; Akbudak, N. Microwave drying characteristics of spinach. J. Food Eng. 2007, 78, 577–583. [Google Scholar] [CrossRef]
- Olaya, A.; Moreno, S.; Molina, R. Synthesis of pillared clays with aluminum by means of concentrated suspensions and microwave radiation. Catal. Commun. 2009, 10, 697–701. [Google Scholar] [CrossRef]
- Siores, E.; Do Rego, D. Microwave applications in materials joining. J. Mater. Process. Technol. 1995, 48, 619–625. [Google Scholar] [CrossRef]
- Gupta, M.; Wong, E.; Leong, W. Microwaves and Metals. Hoboken; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Demirskyi, D.; Agrawal, D.; Ragulya, A. Neck formation between copper spherical particles under single-mode and multimode microwave sintering. Mater. Sci. Eng. A 2010, A527, 2142–2145. [Google Scholar] [CrossRef]
- Ghosh, S.; Pal, K.S.; Dandapat, N.; Mukhopadhyay, A.K.; Datta, S.; Basu, D. Characterization of microwave processed aluminium powder. Ceram. Int. 2011, 37, 1115–1119. [Google Scholar] [CrossRef]
- Anklekar, R.M.; Bauer, K.; Agrawal, D.K.; Roy, R. Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall. 2005, 48, 39–46. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Tiwari, S.K.; Mishra, P. Microwave sintering of W-Ni-Fe alloy. Scr. Mater. 2007, 56, 5–8. [Google Scholar] [CrossRef]
- Zhou, C.S.; Yi, J.H.; Luo, S.D.; Peng, Y.D.; Li, L.Y.; Chen, G. Effect of heating rate on the microwave sintered W-Ni-Fe heavy alloys. J. Alloy. Compd. 2009, 482, L6–L8. [Google Scholar] [CrossRef]
- Mondal, A.; Agrawal, D.; Upadhyaya, A. Microwave sintering of refractory metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe alloys. J. Microw. Power Electromagn. Energy 2010, 44, 28–44. [Google Scholar] [PubMed]
- Mondal, A.; Upadhyaya, A.; Agrawal, D. Effect of heating mode and sintering temperature on the consolidation of 90W-7Ni-3Fe alloys. J. Alloy. Compd. 2011, 509, 301–310. [Google Scholar] [CrossRef]
- Liu, W.S.; Ma, Y.Z.; Zhang, J.J. Properties and microstructural evolution of W-Ni-Fe alloy via microwave sintering. Int. J. Refract. Met. Hard Mater. 2012, 35, 138–142. [Google Scholar] [CrossRef]
- Padmavathia, C.; Upadhyaya, A.; Agrawal, D. Effect of microwave and conventional heating on sintering behavior and properties of Al–Mg–Si–Cu alloy. Mater. Chem. Phys. 2011, 130, 449–457. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Xie, G.Q.; Li, S.; Inoue, A.; Yoshikawa, N.; Mashiko, K.; Taniguchi, S.; Sato, M. Microwave-induced heating and sintering of metallic glasses. J. Alloy. Compd. 2009, 483, 78–81. [Google Scholar] [CrossRef]
- Roy, R.; Peelamedu, R.; Hurtt, L.; Cheng, J.P.; Agrawal, D. Definitive experimental evidence for Microwave Effects: radically new effects of separated E and H fields, such as decrystallization of oxides in seconds. Mater. Res. Innov. 2002, 6, 128–140. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Ishizuka, E.; Taniguchi, S. Heating of metal particles in a single-mode microwave applicator. Mater. Trans. 2006, 47, 898–902. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.L.; Liu, Z.; Ma, C.Y. Recycling of Waste Printed Circuit Boards by Microwave-Induced Pyrolysis and Featured Mechanical Processing. Ind. Eng. Chem. Res. 2011, 50, 11763–11769. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Liu, Z.; Ma, Q.; Zhao, C.; Ma, C. Kinetic Study of the Pyrolysis of Waste Printed Circuit Boards Subject to Conventional and Microwave Heating. Energies 2012, 5, 3295–3306. [Google Scholar] [CrossRef]
- Metaxas, R.; Meredith, R. Industrial Microwave Heating; Peter Peregriuns Ltd.: London, UK, 1983. [Google Scholar]
- Crane, C.A.; Pantoya, M.L.; Weeks, B.L. Spatial observation and quantification of microwave heating in materials. Rev. Sci. Instrum. 2013, 84. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, S.; Sumi, T.; Serpone, N. Unusual effect of the magnetic field component of the microwave radiation on aqueous electrolyte solutions. J. Microw. Power Electromagn. Energy 2012, 46, 215–228. [Google Scholar] [PubMed]
- Rosa, R.; Veronesi, P.; Leonelli, C. A review on combustion synthesis intensification by means of microwave energy. Chem. Eng. Process. Process Intensif. 2013, 71, 2–18. [Google Scholar] [CrossRef]
- Zhiwei, P.; Jiann-Yang, H.; Matthew, A. Magnetic Loss in Microwave Heating. Appl. Phys. Express 2012, 5. [Google Scholar] [CrossRef]
- Cheng, J.; Roy, R.; Agrawal, D. Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites. J. Mater. Sci. Lett. 2001, 20, 1561–1563. [Google Scholar] [CrossRef]
- Cheng, J.; Roy, R.; Agrawal, D. Radically different effects on materials by separated microwave electric and magnetic fields. Mater. Res. Innov. 2002, 5, 170–177. [Google Scholar] [CrossRef]
- Roy, R.; Peelamedu, R.; Grimes, C.; Cheng, J.; Agrawal, D. Major phase transformations and magnetic property changes caused by electromagnetic fields at microwave frequencies. J. Mater. Res. 2002, 17, 3008–3011. [Google Scholar] [CrossRef]
- Yanna, C.; Wang, Z.; Yang, T.; Zhang, Z. Crystallization kinetics of amorphous lead zirconate titanate thin films in a microwave magnetic field. Acta Mater. 2014, 71. [Google Scholar] [CrossRef]
- Cao, Z.; Yoshikawa, N.; Taniguchi, S. Microwave heating behaviors of Si substrate materials in a single-mode cavity. Mater. Chem. Phys. 2010, 124, 900–903. [Google Scholar] [CrossRef]
- Rosa, R.; Veronesi, P.; Casagrande, A.; Leonelli, C. Microwave ignition of the combustion synthesis of aluminides and field-related effects. J. Alloy. Compd. 2016, 657, 59–67. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M.; Pitaevskii, L.P. Electrodynamics of Continuous Media; Pergamon Press: Oxford, UK, 1960. [Google Scholar]
- Aguiar, P.M.; Jacquinot, J.F.; Sakellariou, D. Experimental and numerical examination of eddy (Foucault) currents in rotating micro-coils: Generation of heat and its impact on sample temperature. J. Magn. Reson. 2009, 200, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Cherradi, A.; Desgardin, G.; Provost, J.; Raveau, B. Electric &Magnetic Field Contributions to the Microwave Sintering of CeramicsElelctroceramics IV; Wasner, R., Hoffman, S., Bonnenberg, D., Hoffmann, C., Eds.; RWTN: Aachen, Germany, 1994; Volume 2, pp. 1219–1224. [Google Scholar]
- Cao, Z.; Wang, Z.; Yoshikawa, N.; Taniguchi, S. Microwave heating origination and rapid crystallization of PZT thin films in separated H field. J. Phys. D: Appl. Phys. 2008, 41. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, Y. Magnetic Induction Heating of Nano-Sized Ferrite Particle. 2011. Available online: http://www.intechopen.com/books/advances-in-induction-and-microwave-heating-of-mineral-and-organic-materials/magnetic-induction-heating-of-nano-sized-ferrite-particle (assessed on 19 March 2016).
- Haimbaugh, R.E. Theory of heating by induction. 2001. Available online: http://www.asminternational.org/documents/10192/1849770/ACFAA5C.pdf (assessed on 19 March 2016).
- Horikoshi, S.; Serpone, M. (Eds.) Microwaves in Nanoparticle Synthesis Fundamentals and Applications; Wiley-VCH, John Wiley & Sons: Berlin, Germany, 2013.
- Buschow, K.H.J. Handbook of Magnetic Materials; North Holland: Amsterdam, The Netherland, 2013; Volume 21. [Google Scholar]
- Peng, Z.; Hwang, J.-Y.; Park, C.-L.; Kim, B.-G.; Onyedika, G. Numerical Analysis of Heat Transfer Characteristics in Microwave Heating of Magnetic Dielectrics. Metallurgical and Mater. Trans. A 2012, 43, 1070–1078. [Google Scholar] [CrossRef]
- Peng, Z.; Hwang, J.-Y.; Mouris, J.; Hutcheon, R.; Huang, X. Microwave Penetration Depth in Materials with Non-zero Magnetic Susceptibility. ISIJ Int. 2010, 50, 1590–1596. [Google Scholar] [CrossRef]
- Basak, T. Influence of various shapes of annular metallic support on microwave heating of 2D cylinders. Chem. Eng. Sci. 2006, 61, 2023–2034. [Google Scholar] [CrossRef]
- Chen, W.; Gutmann, B.; Kappe, C.O. Characterization of Microwave-Induced Electric Discharge Phenomena in Metal–Solvent Mixtures. ChemistryOpen 2012, 1, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Basak, T.; Shanthi Priya, A. Role of metallic and ceramic supports on enhanced microwave heating processes. Chem. Eng. Sci. 2005, 60, 2661–2677. [Google Scholar] [CrossRef]
- Basak, T. Role of metallic, ceramic and composite plates on microwave processing of composite dielectric materials. Mater. Sci. Eng. A 2007, 457, 261–274. [Google Scholar] [CrossRef]
- Basak, T. Theoretical analysis on the role of annular metallic shapes for microwave processing of food dielectric cylinders with various irradiations. Int. J. Heat Mass Transf. 2011, 54, 242–259. [Google Scholar] [CrossRef]
- Jolly, P.; Turner, I. Non-linear field solutions of one-dimensional microwave heating. J. Microw. Power Electromagn. Energy 1990, 25, 3–15. [Google Scholar]
- Ayappa, K.G. Resonant microwave power absorption in slabs. J. Microw. Power Electromagn. Energy 1999, 34, 33–41. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T. New closed form analysis of resonances in microwave power for material processing. AIChE J. 2006, 52, 3707–3721. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T. Detailed material-invariant analysis on spatial resonances of power absorption for microwave-assisted material processing with distributed sources. Ind. Eng. Chem. Res. 2007, 46, 750–760. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T. A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface. Energy 2013, 55, 278–294. [Google Scholar] [CrossRef]
- Ripley, E.B.; Oberhaus, J.A. Melting and Heat Treating Metals Using Microwave Heating. Ind. Heat. 2005, 72, 65–66, 68–69. [Google Scholar]
- Yoshikawa, N. Fundamentals and Applications of Microwave Heating of Metals. J. Microw. Power Electromagn. Energy 2010, 44, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Hartz, C.L.; Bevan, J.W.; Jackson, M.W.; Wofford, B.A. Innovative Surface Wave Plasma Reactor Technique for PFC Abatement. Environ. Sci. Technol. 1998, 32, 682–687. [Google Scholar] [CrossRef]
- Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloy. Compd. 2010, 494, 175–189. [Google Scholar] [CrossRef]
- Luo, J.; Hunyar, C.; Feher, L.; Link, G.; Thumm, M.; Pozzo, P. Theory and experiments of electromagnetic loss mechanism for microwave heating of powdered metals. Appl. Phys. Lett. 2004, 84, 5076–5078. [Google Scholar] [CrossRef]
- Ma, J.; Diehl, J.F.; Johnson, E.J.; Martin, K.R.; Miskovsky, N.M.; Smith, C.T.; Weisel, G.J.; Weiss, B.L.; Zimmerman, D.T. Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts. J. Appl. Phys. 2007, 101. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.; Chen, Y.; Han, Z.; Wang, H.; Wang, Z.; Geng, D.; Liu, W.; Zhang, Z. Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite. Appl. Phys. Lett. 2010, 97. [Google Scholar] [CrossRef]
- Li, Y.; Xu, F.; Hu, X.; Luan, Y.; Han, Z.; Wang, Z. Focusing effect of electromagnetic fields and its influence on sintering during the microwave processing of metallic particles. J. Mater. Res. 2015, 30, 3663–3670. [Google Scholar] [CrossRef]
- Yadoji, P.; Peelamedu, R.; Agrawal, D.; Roy, R. Microwave sintering of Ni-Zn ferrites: Comparison with conventional sintering. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2003, 98, 269–278. [Google Scholar] [CrossRef]
- Clark, D.E.; Folz, D.C.; West, J.K. Processing materials with microwave energy. Mater. Sci. Eng. A 2000, 287, 153–158. [Google Scholar] [CrossRef]
- Leonelli, C.; Veronesi, P.; Denti, L.; Gatto, A.; Iuliano, L. Microwave assisted sintering of green metal parts. J. Mater. Process. Technol. 2008, 205, 489–496. [Google Scholar] [CrossRef]
- Anklekar, R.M.; Agrawal, D.K.; Roy, R. Microwave sintering and mechanical properties of PM copper steel. Powder Metall. 2001, 44, 355–362. [Google Scholar] [CrossRef]
- Spotz, M.S.; Skamser, D.J.; Johnson, D.L. Thermal stability of ceramic materials in microwave heating. J. Am. Ceram.Soc. 1995, 78, 1041–1048. [Google Scholar] [CrossRef]
- Wong, W.L.E.; Karthik, S.; Gupta, M. Development of high performance Mg-Al2O3 composites containing Al2O3 in submicron length scale using microwave assisted rapid sintering. Mater. Sci. Technol. 2005, 21, 1063–1070. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Basak, T.; Ramanathan, S. Experimental and theoretical investigation on microwave melting of metals. J. Mater. Process. Technol. 2011, 211, 482–487. [Google Scholar] [CrossRef]
- Delregno, G.E.; Mohan, V.R.; Saha, S. Method of Microwave Processing Ceramics and Microwave Hybrid Heating System for Same. US Patent Application No. WO2005027575 A3, 2005. [Google Scholar]
- Singh, S.; Gupta, D.; Jain, V.; Sharma, A.K. Microwave Processing of Materials and Applications in Manufacturing Industries: A Review. Mater. Manuf. Process. 2015, 30, 1–29. [Google Scholar] [CrossRef]
- Vaucher, S.; Stir, M.; Ishizaki, K.; Catala-Civera, J.M.; Nicula, R. Reactive synthesis of Ti–Al intermetallics during microwave heating in an E-field maximum. Thermochim. Acta 2011, 522, 151–154. [Google Scholar] [CrossRef]
- Naplocha, K.; Granat, K. Combustion synthesis of Al–Cr preforms activated in microwave field. J. Alloy. Compd. 2009, 480, 369–375. [Google Scholar] [CrossRef]
- Rosa, R.; Veronesi, P.; Leonelli, C.; Poli, G.; Casagrande, A. Single step combustion synthesis of β-NiAl-coated γ-TiAl by microwave ignition and subsequent annealing. Surf. Coat. Technol. 2013, 232, 666–673. [Google Scholar] [CrossRef]
- Naplocha, K.; Granat, K.; Kaczmar, J. Reactive melt infiltration of copper in Al–Cr preforms produced through combustion synthesis. J. Alloy. Compd. 2014, 613, 193–198. [Google Scholar] [CrossRef]
- Naplocha, K.; Granat, K. Microwave activated combustion synthesis of porous Al–Ti structures for composite reinforcing. J. Alloy. Compd. 2009, 486, 178–184. [Google Scholar] [CrossRef]
- Veronesi, P.; Colombini, E.; Rosa, R.; Leonelli, C.; Rosi, F. Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys. Mater. Lett. 2016, 162, 277–280. [Google Scholar] [CrossRef]
- Shayeganrad, G.; Mashhadi, L. For a theoretical investigation of sparking of metal objects inside a microwave cavity. In Proceedings of Progress in Electromagnetics Research Symposium (PIERS), Beijing, China, 23–27 March 2009.
- Kuffel, E.; Zaengl, W.S.; Kuffel, J. For a general theoretical treatment of breakdown processes in an electric field. In High Voltage Engineering: Fundamentals, 2nd ed.; Newnes: Oxford, UK, 2000; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Wang, W.L.; Liu, Z.; Sun, J.; Ma, Q.L.; Ma, C.Y.; Zhang, Y.L. Experimental study on the heating effects of microwave discharge caused by metals. AIChE J. 2012, 58, 3852–3857. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Zhao, C.; Zhang, Y.; Ma, C.; Yue, Q. Study on the Coupled Effect of Wave Absorption and Metal Discharge Generation under Microwave Irradiation. Ind. Eng. Chem. Res. 2014, 53, 2042–2051. [Google Scholar] [CrossRef]
- Hu, C.; Xi, X.; Huang, Z.; Zhan, Z. Simple analysis of mechanism of microwave sintering of metal powder. Mater. Rev. 2008, 22, 329–332. [Google Scholar]
- Gasner, L.L.; Denloyet, A.O.; Regan, T.M. Microwave and conentional pyrolysis of a bituminous coal. Chem. Eng. Commun. 1986, 48, 349–354. [Google Scholar] [CrossRef]
- Hussain, Z.; Khan, K.M.; Hussain, K. Microwave-metal interaction pyrolysis of polystyrene. J. Anal. Appl. Pyrolysis 2010, 89, 39–43. [Google Scholar]
- Kando, M.; Fukaya, T.; Ohishi, Y.; Mizojiri, T.; Morimoto, Y.; Shido, M.; Serita, T. Application of an antenna excited high pressure microwave discharge to compact discharge lamps. J. Phys. D Appl. Phys. 2008, 41. [Google Scholar] [CrossRef]
- Ma, Q. Research on CH4-CO2 reforming effects caused by microwave-metal discharge. Master’s Thesis, Shandong University, Jinan, China, 2014. [Google Scholar]
- Horikoshi, S.; Osawa, A.; Sakamoto, S.; Serpone, N. Control of microwave-generated hot spots. Part IV. Control of hot spots on a heterogeneous microwave-absorber catalyst surface by a hybrid internal/external heating method. Chem. Eng. Process. Process Intensif. 2013, 69, 52–56. [Google Scholar]
- Gutmann, B.; Schwan, A.M.; Reichart, B.; Gspan, C.; Hofer, F.; Kappe, C.O. Activation and Deactivation of a Chemical Transformation by an Electromagnetic Field: Evidence for Specific Microwave Effects in the Formation of Grignard Reagents. Angew. Chem. Int. Ed. 2011, 50, 7636–7640. [Google Scholar] [CrossRef] [PubMed]
- Jou, C.-J.G.; Jou, C.-J.G.; Wu, C.-R.; Lee, C.-L. Application of microwave energy to treat granular activated carbon contaminated with chlorobenzene. Environ. Progress Sustain. Energy 2010, 29, 272–277. [Google Scholar] [CrossRef]
- Bologna, M.; Petri, A.; Tellini, B.; Zappacosta, C. Effective Magnetic Permeability Measurement in Composite Resonator Structures. Instrum. Meas. IEEE Trans. 2010, 59, 1200–1206. [Google Scholar] [CrossRef]
- Ghodgaonkar, D.K.; Varadan, V.V.; Varadan, V.K. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. Instrum. Meas. IEEE Trans. 1990, 39, 387–394. [Google Scholar] [CrossRef]
- Baker-Jarvis, J.; Vanzura, E.J.; Kissick, W.A. Improved technique for determining complex permittivity with the transmission/reflection method. Microw. Theory Tech. IEEE Trans. 1990, 38, 1096–1103. [Google Scholar] [CrossRef]
- Chen, J.; Pitchai, K.; Birla, S.; Jones, D.D.; Subbiah, J.; Gonzalez, R. Development of a multi-temperature calibration method for measuring dielectric properties of food. Dielectr. Electr. Insul. IEEE Trans. 2015, 22, 626–634. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T.; Sriram, S. Generalized characterization of microwave power absorption for processing of circular shaped materials. Chem. Eng. Sci. 2014, 118, 257–279. [Google Scholar] [CrossRef]
- Basak, T.; Samanta, S.K.; Jindamwar, A. A novel concept on discrete samples for efficient microwave processing of materials. Chem. Eng. Sci. 2008, 63, 3292–3308. [Google Scholar] [CrossRef]
- Wicks, G.G.; Clark, D.E.; Schulz, R.L. Method for recovering metals from waste. United States Patent US005843287A, 1998. [Google Scholar]
- Kong, Y.; Cha, C.Y. NOx Abatement with Carbon Adsorbents and Microwave Energy. Energy Fuels 1995, 9, 971–975. [Google Scholar] [CrossRef]
- Kong, Y.; Cha, C.Y. Reduction of NOx adsorbed on char with microwave energy. Carbon 1996, 34, 1035–1040. [Google Scholar] [CrossRef]
- Cha, C.Y.; Kim, D.S. Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed. Carbon 2001, 39, 1159–1166. [Google Scholar] [CrossRef]
- Domínguez, A.; Fidalgo, B.; Fernández, Y.; Pis, J.J.; Menéndez, J.A. Microwave-assisted catalytic decomposition of methane over activated carbon for -free hydrogen production. Int. J. Hydrog. Energy 2007, 32, 4792–4799. [Google Scholar] [CrossRef]
- Fidalgo, B.; Fernández, Y.; Domínguez, A.; Pis, J.J.; Menéndez, J.A. Microwave-assisted pyrolysis of CH4/N2 mixtures over activated carbon. J. Anal. Appl. Pyrolysis 2008, 82, 158–162. [Google Scholar] [CrossRef]
- Domínguez, A.; Fernández, Y.; Fidalgo, B.; Pis, J.J.; Menéndez, J.A. Biogas to Syngas by Microwave-Assisted Dry Reforming in the Presence of Char. Energy Fuels 2007, 21, 2066–2071. [Google Scholar] [CrossRef]
- Fidalgo, B.; Domínguez, A.; Pis, J.J.; Menéndez, J.A. Microwave-assisted dry reforming of methane. Int. J. Hydrog. Energy 2008, 33, 4337–4344. [Google Scholar] [CrossRef]
- Sekiguchi, H.; Mori, Y. Steam plasma reforming using microwave discharge. Thin Solid Films 2003, 435, 44–48. [Google Scholar] [CrossRef]
- Jasiński, M.; Dors, M.; Mizeraczyk, J. Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. J. Power Source 2008, 181, 41–45. [Google Scholar] [CrossRef]
- Henriques, J.; Bundaleska, N.; Tatarova, E.; Dias, F.M.; Ferreira, C.M. Microwave plasma torches driven by surface wave applied for hydrogen production. Int. J. Hydrog. Energy 2011, 36, 345–354. [Google Scholar] [CrossRef]
- Hahn, J.; Han, J.H.; Yoo, J.-E.; Jung, H.Y.; Suh, J.S. New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet. Carbon 2004, 42, 877–883. [Google Scholar] [CrossRef]
- Rybakov, K.I.; Olevsky, E.A.; Krikun, E.V. Microwave Sintering: Fundamentals and Modeling. J. Am. Ceram. Soc. 2013, 96, 1003–1020. [Google Scholar] [CrossRef]
- Hill, J.M.; Marchant, T.R. Modelling microwave heating. Appl. Math. Model. 1996, 20, 3–15. [Google Scholar] [CrossRef]
- Ayappa, K.G. Modelling transport processes during microwave heating: A review. Rev. Chem. Eng. 1997, 13, 1–63. [Google Scholar] [CrossRef]
- Zhang, Q.; Jackson, T.H.; Ungan, A. Numerical modeling of microwave induced natural convection. Int. J. Heat Mass Transf. 2000, 43, 2141–2154. [Google Scholar] [CrossRef]
- Clemens, J.; Saltiel, C. Numerical modeling of materials processing in microwave furnaces. Int. J. Heat Mass Transf. 1996, 39, 1665–1675. [Google Scholar] [CrossRef]
- Lasri, J.; Ramesh, P.D.; Schächter, L. Energy Conversion during Microwave Sintering of a Multiphase Ceramic Surrounded by a Susceptor. J. Am. Ceram. Soc. 2000, 83, 1465–1468. [Google Scholar] [CrossRef]
- Shukla, A.K.; Mondal, A.; Upadhyaya, A. Numerical modeling of microwave heating. Sci. Sinter. 2010, 42, 99–124. [Google Scholar] [CrossRef]
- Klinbun, W.; Rattanadecho, P. Analysis of microwave induced natural convection in a single mode cavity (Influence of sample volume, placement, and microwave power level). Appl. Math. Model. 2012, 36, 813–828. [Google Scholar] [CrossRef]
- Cherbański, R.; Rudniak, L. Modelling of microwave heating of water in a monomode applicator—Influence of operating conditions. Int. J. Therm. Sci. 2013, 74, 214–229. [Google Scholar] [CrossRef]
Metals | Mg | Zn | Cu | Fe | Ni |
---|---|---|---|---|---|
Penetration depth, μm | 2.2 | 3.2 | 2.7 | 1.3 | 2.5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Wang, W.; Yue, Q. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials 2016, 9, 231. https://doi.org/10.3390/ma9040231
Sun J, Wang W, Yue Q. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials. 2016; 9(4):231. https://doi.org/10.3390/ma9040231
Chicago/Turabian StyleSun, Jing, Wenlong Wang, and Qinyan Yue. 2016. "Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies" Materials 9, no. 4: 231. https://doi.org/10.3390/ma9040231
APA StyleSun, J., Wang, W., & Yue, Q. (2016). Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials, 9(4), 231. https://doi.org/10.3390/ma9040231