Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Dispersion of MWCNTs
2.3. Preparation of Specimens
2.4. Test Methods
2.4.1. Flexural and Compressive Strength Tests
2.4.2. Accelerated Chloride Permeability Tests
2.4.3. Morphology Observation
3. Results and Discussion
3.1. Mechanical Properties
3.2. Chloride Permeability
3.3. Micrograph
4. Conclusions
- A new method proposed for dispersing MWCNTs in water is effective. The FE-SEM observation shows that the MWCNTs were well dispersed, and no MWCNT agglomerate was visible in the cement matrix.
- The mechanical properties increased in the presence of the optimum percentage of MWCNTs (0.05% bwoc). Particularly, the compressive strength of UHSC containing 0.05 wt % MWCNTs at 28 days increased by 4.63% than that of UHSC without MWCNTs (116.7 MPa). Moreover, the addition of MWCNTs significantly increased the flexural strength and deformation ability of UHSC.
- Compared to the relatively small increase in strengths, a significant improvement was observed in the resistance to chloride penetration by incorporating MWCNTs. The chloride diffusion coefficient of UHSC containing 0.05 % MWCNTs bwoc decreased by 24.0%.
- The morphology of the hardened cement paste was observed by FE-SEM analysis to understand the mechanism of improvement with MWCNTs. The microstructural studies indicate that MWCNTs act as bridges across microcracks, thus guaranteeing the transfer of the tension load. Furthermore, a lot of MWCNTs were pulled out from the matrix without rupture failure.
- The application of MWCNTs in UHSC needs further study, and covalent treatment should be considered for dispersing MWCNTs.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.M.; Sato, T. Cement and Concrete Nanoscience and Nanotechnology. Materials 2010, 3, 918–942. [Google Scholar] [CrossRef]
- Lee, B.J.; Hyun, J.H.; Kim, Y.Y.; Shin, K.J. Chloride permeability of damaged high-performance fiber-reinforced cement composite by repeated compressive loads. Materials 2014, 7, 5802–5815. [Google Scholar] [CrossRef]
- Wiktor, V.; Jonkers, H.M. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Compos. 2011, 33, 763–770. [Google Scholar] [CrossRef]
- Gu, C.S.; Li, Z.C.; Xu, B. Abnormality diagnosis of cracks in the concrete dam based on dynamical structure mutation. Sci. China Technol. Sci. 2011, 54, 1930–1939. [Google Scholar] [CrossRef]
- Gao, X.F.; Lo, Y.T.; Tam, C.M. Investigation of micro-cracks and microstructure of high performance lightweight aggregate concrete. Build. Environ. 2002, 37, 485–489. [Google Scholar] [CrossRef]
- Ravi-Chandar, K.; Yang, B. On the role of microcracks in the dynamic fracture of brittle materials. J. Mech. Phys. Solids 1997, 45, 535–563. [Google Scholar] [CrossRef]
- Sain, T.; Kishen, J.M.C. Energy-based equivalence between damage and fracture in concrete under fatigue. Eng. Fract. Mech. 2007, 74, 2320–2333. [Google Scholar] [CrossRef]
- Ning, J.G. A constitutive model based on the evolution and coalescence of elliptical micro-cracks for quasi-brittle materials. Chin. Sci. Bull. 2012, 57, 3773–3781. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete. Mater. Sci. Eng. A 2012, 531, 107–111. [Google Scholar] [CrossRef]
- Kalifa, P.; Chéné, G.; Gallé, C. High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure. Cem. Concr. Res. 2001, 31, 1487–1499. [Google Scholar] [CrossRef]
- Banthia, N.; Sappakittipakorn, M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cem. Concr. Res. 2007, 37, 1366–1372. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Eng. 2010, 37, 879–886. [Google Scholar] [CrossRef]
- Kim, S.W.; Jang, S.J.; Kang, D.H.; Ahn, K.L.; Yun, H.D. Mechanical properties and eco-efficiency of steel fiber reinforced alkali-activated slag concrete. Materials 2015, 8, 7309–7321. [Google Scholar] [CrossRef]
- Lee, S.C.; Oh, J.H.; Cho, J.Y. Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers. Materials 2015, 8, 1442–1458. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, D.; Li, P.; Li, Q.; Sun, G. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Constr. Build. Mater. 2014, 70, 332–338. [Google Scholar] [CrossRef]
- Xu, S.L.; Liu, J.T.; Li, Q.H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubes of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Grobert, N. Carbon nanotubes—Becoming clean. Mater. Today 2007, 10, 28–35. [Google Scholar] [CrossRef]
- Musso, S.; Tulliani, J.M.; Ferroc, G.; Tagliaferro, A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 2009, 69, 1985–1990. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Walters, D.A.; Ericson, L.M.; Casavant, M.J.; Liu, J. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 1999, 74, 3803–3805. [Google Scholar] [CrossRef]
- Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Yakovlev, G.; Keriene, J.; Gailius, A. Cement based foam concrete reinforced by carbon nanotubes. Mater. Sci. 2006, 12, 147–151. [Google Scholar]
- Konsta-Gdouto, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotubes/cement nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Tyson, B.M.; Asce, S.M.; Al-Rub, R.K.A.; Grasley, Z. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J. Mater. Civ. Eng. 2011, 23, 1028–1035. [Google Scholar] [CrossRef]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Wang, B.M.; Han, Y.; Liu, S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Constr. Build. Mater. 2013, 46, 8–12. [Google Scholar] [CrossRef]
- Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.M.; Duan, W.H. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 2015, 85, 212–220. [Google Scholar] [CrossRef]
- Del Carmen Camacho, M.; Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Mechanical properties and durability of CNT cement composites. Materials 2014, 7, 1640–1651. [Google Scholar] [CrossRef]
- Yang, H.Q.; Yu, H.S.; Zhao, X. Reinforcement of the mechanical and durability performance of cement-based materials with multi-walled carbon nanotubes. J. Adv. Microsc. Res. 2014, 9, 93–96. [Google Scholar] [CrossRef]
- Wang, B.M.; Liu, S.; Han, Y.; Leng, P. Preparation and durability of cement-based composites doped with multi-walled carbon nanotubes. Nanosci. Nanotechnol. Lett. 2015, 7, 411–416. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X.H. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007, 29, 377–382. [Google Scholar] [CrossRef]
- Han, B.G.; Yu, X.; Ou, J.P. Effect of water content on the piezoresistivity of MWNT/cement composites. J. Mater. Sci. 2010, 45, 3714–3719. [Google Scholar] [CrossRef]
- Ouyang, D.; Yu, B. A study on mechanical properties of very high strength concrete. J. Chongqing Jianzhu Univ. 2003, 25, 38–42. (In Chinese) [Google Scholar]
- Yi, N.H.; Kim, J.H.J.; Han, T.S.; Cho, Y.G.; Lee, J.H. Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete. Constr. Build. Mater. 2012, 28, 694–707. [Google Scholar] [CrossRef]
- GB/T 50081-2002. Standard for Test Method of Mechanical Properties on Ordinary Concrete; National Standard of the P.R. China: Beijing, China, 2003. (In Chinese)
- Oh, B.H.; Cha, S.W.; Jang, B.S.; Jang, S.Y. Development of high-performance concrete having high resistance to chloride penetration. Nucl. Eng. Des. 2002, 212, 221–231. [Google Scholar] [CrossRef]
- Lu, X. Application of the Nernst-Einstein equation to concrete. Cem. Concr. Res. 1997, 27, 293–302. [Google Scholar] [CrossRef]
- Zhang, M.H.; Li, H. Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr. Build. Mater. 2011, 25, 608–616. [Google Scholar] [CrossRef]
- Zhu, H.B.; Wang, P.M.; Li, C.; Liu, X.; Yang, P.; Cao, X. Reseach on disperion of multi-walled carbon nanotubes in cement paste. J. Chin. Ceram. Soc. 2012, 40, 1431–1436. (In Chinese) [Google Scholar]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Chen, S.J.; Collins, F.G.; Macleod, A.J.N.; Pan, Z.; Duan, W.H.; Wang, C.M. Carbon nanotube-cement composites: A retrospect. IES J. Part A Civ. Struct. Eng. 2011, 4, 1–12. [Google Scholar] [CrossRef]
Diameter (nm) | Length (μm) | Purity (wt %) | Ash (wt %) | Specific Surface Area (m2/g) |
---|---|---|---|---|
20–40 | 5–15 | >97 | <3 | 80–140 |
Material | Chemical Composition (wt %) | Physical Properties | |||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | LOI | SG | SSA (m2/kg) | |
C | 20.13 | 4.53 | 4.11 | 63.88 | 1.35 | 2.28 | 2.82 | 3.10 | 331 |
SF | 93.85 | 0.69 | 0.17 | 0.75 | 1.22 | 0.41 | 1.88 | 2.20 | ~20,000 |
BS | 44.91 | 14.86 | – | 31.08 | 7.18 | 0.65 | 1.80 | 2.83 | 1228 |
NO. | w/cm | CNTs (wt %) | TP (vol %) | Quantities (kg/m3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | SF | BS | CNTs | FA | CA | W | PCs | ||||
CNT00 | 0.2 | 0.00 | 0.13 | 420 | 60 | 120 | 0 | 798 | 976 | 120 | 15 |
CNT03 | 0.2 | 0.03 | 0.13 | 420 | 60 | 120 | 0.126 | 798 | 976 | 120 | 15 |
CNT05 | 0.2 | 0.05 | 0.13 | 420 | 60 | 120 | 0.21 | 798 | 976 | 120 | 15 |
CNT10 | 0.2 | 0.10 | 0.13 | 420 | 60 | 120 | 0.42 | 798 | 976 | 120 | 15 |
CNT15 | 0.2 | 0.15 | 0.13 | 420 | 60 | 120 | 0.63 | 798 | 976 | 120 | 15 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Ouyang, D.; Xu, W. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes. Materials 2016, 9, 419. https://doi.org/10.3390/ma9060419
Lu L, Ouyang D, Xu W. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes. Materials. 2016; 9(6):419. https://doi.org/10.3390/ma9060419
Chicago/Turabian StyleLu, Liulei, Dong Ouyang, and Weiting Xu. 2016. "Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes" Materials 9, no. 6: 419. https://doi.org/10.3390/ma9060419
APA StyleLu, L., Ouyang, D., & Xu, W. (2016). Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes. Materials, 9(6), 419. https://doi.org/10.3390/ma9060419