Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia
Abstract
:1. Introduction
2. Results
2.1. Bacterial Growth
2.2. Bacterial Biofilm Formation
2.3. Bacterial Co-Culture
2.3.1. Rm8530 WT–Rm8530 Exoyexpa Co-Culture
2.3.2. Rm8530 Exoy–Rm8530 Exoyexpa Co-Culture
3. Discussion
4. Materials and Methods
4.1. Bacterial Growth Conditions
4.1.1. Bacterial Strains, Culture Media, and Growth Conditions
4.1.2. Stock Solutions of Arsenic and Mercury
4.1.3. Growth Response to Metals
4.2. Biofilm Formation Assay
4.3. Co-Culture Assays
4.4. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gage, D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 2004, 68, 280–300. [Google Scholar] [CrossRef]
- Jones, K.M.; Kobayashi, H.; Davies, B.W.; Taga, M.E.; Walker, G.C. How rhizobial symbionts invade plants: The Sinorhizobium-Medicago model. Nature Rev. Microbiol. 2007, 5, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Janczarek, M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int. J. Mol. Sci. 2011, 12, 7898–7933. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.P.; Walker, G.C. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 1998, 180, 5183–5191. [Google Scholar] [PubMed]
- Reuber, T.L.; Walker, G.C. Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 1993, 74, 269–280. [Google Scholar] [CrossRef]
- Spaink, H.P. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol. 2000, 54, 257–288. [Google Scholar] [CrossRef] [PubMed]
- Skorupska, A.; Janczarek, M.; Marczak, M.; Mazur, A.; Król, J. Rhizobial exopolysaccharides: Genetic control and symbiotic functions. Microb. Cell Fact. 2006, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Pellock, B.J.; Teplitski, M.; Boinay, R.P.; Bauer, W.D.; Walker, G.C. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J. Bacteriol. 2002, 184, 5067–5076. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, J.; Walker, G.C. A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 1989, 56, 661–672. [Google Scholar] [CrossRef]
- Davey, M.E.; O’Toole, G.A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2000, 64, 847–867. [Google Scholar] [CrossRef] [PubMed]
- Branda, S.S.; Vik, S.; Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Rinaudi, L.V.; Giordano, W. An integrated view of biofilm formation in rhizobia. FEMS Microbiol. Lett. 2010, 304, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rinaudi, L.; Fujishige, N.A.; Hirsch, A.M.; Banchio, E.; Zorreguieta, A.; Giordano, W. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res. Microbiol. 2006, 157, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Fujishige, N.A.; Kapadia, N.N.; De Hoff, P.L.; Hirsch, A.M. Investigations of Rhizobium biofilm formation. FEMS Microbiol. Ecol. 2006, 56, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Rinaudi, L.V.; González, J.E. The low-molecular-weight fraction of the exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J. Bacteriol. 2009, 191, 7216–7224. [Google Scholar] [CrossRef] [PubMed]
- Sorroche, F.G.; Rinaudi, L.V.; Zorreguieta, A.; Giordano, W. EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Curr. Microbiol. 2010, 61, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Sorroche, F.G.; Spesia, M.B.; Zorreguieta, A.; Giordano, W. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl. Environ. Microbiol. 2012, 78, 4092–4101. [Google Scholar] [CrossRef] [PubMed]
- Ledin, M. Accumulation of metals by microorganisms-processes and importance for soil systems. Earth Sci. Rev. 2000, 51, 1–31. [Google Scholar] [CrossRef]
- Kazy, S.K.; Sar, P.; Singh, S.P.; Sen Asish, K.; D’Souza, S.F. Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: Synthesis, chemical nature and copper binding. World J. Microbiol. Biotechnol. 2002, 18, 583–588. [Google Scholar] [CrossRef]
- González, A.G.; Shirokova, L.S.; Pokrovsky, O.S.; Emnova, E.E.; Martínez, R.E.; Santana-Casiano, J.M.; González-Dávila, M.; Pokrovski, G.S. Adsorption of copper on Pseudomonas aureofaciens: Protective role of surface exopolysaccharides. J. Colloid Interface Sci. 2010, 350, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Corzo, J.; León-Barrios, M.; Hernando-Rico, V.; Gutierrez-Navarro, A.M. Precipitation of Metallic Cations by the Acidic Exopolysaccharides from Bradyrhizobium japonicum and Bradyrhizobium (Chamaecytisus) Strain BGA-1. Appl. Environ. Microbiol. 1994, 12, 4531–4536. [Google Scholar]
- Foster, L.J.R.; Moy, Y.P.; Rogers, P.L. Metal binding capabilities of Rhizobium etli and its extracellular polymeric substances. Biotechnol. Lett. 2000, 22, 1757–1760. [Google Scholar] [CrossRef]
- Slaveykova, V.I.; Parthasarathy, N.; Dedieu, K.; Toescher, D. Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti. Environ. Pollut. 2010, 158, 2561–2565. [Google Scholar] [CrossRef] [PubMed]
- Avelar Ferreira, P.A.; Bomfeti, C.A.; Lima Soares, B.; de Souza Moreira, F.M. Efficient nitrogen-fixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium. World J. Microbiol. Biotechnol. 2012, 28, 1947–1959. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.C.; Hu, G.S.; Chiang, S.M.; Su, M.C. Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour. Technol. 2006, 97, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Younis, M. Responses of Lablab purpureus-Rhizobium symbiosis to heavy metals in pot and field experiments. World J. Agric. Sci. 2007, 3, 111–122. [Google Scholar]
- Paul, D.; Poddar, S.; Sar, P. Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal. J. Environ. Sci. Heal. 2014, 49, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Armendariz, A.L.; Talano, M.A.; Wevar Oller, A.L.; Medina, M.I.; Agostini, E. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J. Environ. Sci. 2015, 33, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Marchal, M.; Briandet, R.; Koechler, S.; Kammerer, B.; Bertin, P.N. Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans. Microbiology 2010, 156, 2336–2342. [Google Scholar] [CrossRef] [PubMed]
- Marchal, M.; Briandet, R.; Halter, D.; Koechler, S.; DuBow, M.S.; Lett, M.C. Subinhibitory arsenite concentrations lead to population dispersal in Thiomonas sp. PLoS ONE 2011, 6, e23181. [Google Scholar] [CrossRef] [PubMed]
- Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 2003, 27, 355–384. [Google Scholar] [CrossRef]
- Schneiker, S.; Keller, M.; Dröge, M.; Lanka, E.; Pühler, A.; Selbitschka, W. The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res. 2001, 29, 5169–5181. [Google Scholar] [CrossRef] [PubMed]
- Norberg, P.; Bergström, M.; Hermansson, M. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm. PLoS ONE 2014, 9, e92321. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-C.; Cheng, J.; Finan, T.M.; Rosen, B.P.; Bhattacharjee, H. Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 2005, 187, 6991–6997. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Yang, H.C.; Rosen, B.P.; Bhattacharjee, H. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett. 2007, 581, 3996–4000. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.F.; Ma, Z.Q.; Hao, X.L.; Rensing, C.; Wei, G.H. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper contaminated soil. Appl. Environ. Microbiol. 2014, 80, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Letelier, M.E.; Sebastian, S.J.; Liliana, P.S.; Cortés-Troncoso, J.; Aracena-Parks, P. Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chem. Biol. Interact. 2010, 188, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.F.; Ma, Z.Q.; Hao, X.L.; Wei, G.H. Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead–zinc mine tailings. J. Bacteriol. 2012, 194, 1267–1268. [Google Scholar] [CrossRef] [PubMed]
- Raimunda, D.; Elso-Berberián, G. Functional characterization of the CDF transporter SMc02724 (SmYiiP) in Sinorhizobium meliloti: Roles in manganese homeostasis and nodulation. Biochim. Biophys. Acta 2014, 1838, 3203–3211. [Google Scholar] [CrossRef] [PubMed]
- Teitzel, G.M.; Parsek, M.R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2003, 69, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.; Médigue, C.; Koechler, S. A tale of two oxidation states: Bacterial colonization of arsenic-rich environments. PLoS Genet. 2007, 3, e53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, S.; Carapito, C.; Cleiss, J.; Koechler, S.; Turlin, E.; Coppee, J.-Y.; Heymann, M.; Kugler, V.; Stauffert, M.; Cruveiller, S.; et al. Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie 2009, 91, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.; Lièvremont, D.; Simeonova, D.D.; Hubert, J.-C.; Lett, M.-C. Arsenite oxidase aox genes from a metal-resistant β-proteobacterium. J. Bacteriol. 2003, 185, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Carapito, C.; Muller, D.; Turlin, E. Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant β-proteobacterium with an unsequenced genome. Biochimie 2006, 88, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Cody, G.D.; Harding, A.K.; Wilmes, P.; Schrenk, M.; Wheeler, K.E.; Banfield, J.F.; Thelen, M.P. Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl. Environ. Microbiol. 2010, 76, 2916–2922. [Google Scholar] [CrossRef] [PubMed]
- Burmølle, M.; Webb, J.S.; Rao, D.; Hansen, L.H.; Sørensen, S.J.; Kjelleberg, S. Enhanced biofilm formation and increased resistance towards antimicrobial agents and bacterial invasion are caused by synergistic interactions in multi-species biofilms. Appl. Environ. Microbiol. 2006, 72, 3916–3923. [Google Scholar] [CrossRef] [PubMed]
- Kawarai, T.; Furukawa, S.; Ogihara, H.; Yamasaki, M. Mixed-species biofilm formation by lactic acid bacteria and rice wine yeasts. Appl. Environ. Microbiol. 2007, 73, 4673–4676. [Google Scholar] [CrossRef] [PubMed]
- Palmer, R.J.; Stoodley, P. Biofilms 2007: Broadened horizons and new emphases. J. Bacteriol. 2007, 189, 7948–7960. [Google Scholar] [CrossRef] [PubMed]
- Filoche, S.K.; Anderson, S.A.; Sissons, C.H. Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans. Oral Microbiol. Immun. 2004, 19, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Ogawa, N.; Fujii, T.; Tsushima, S. Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1. J. Appl. Microbiol. 2009, 106, 790–800. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Danhorn, T.; Fuqua, C.; Parsek, M.R. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl. Acad. Sci. USA 2006, 7, 3828–3833. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Debarati, P.; Rakesh, K.J. Biofilms: Implications in bioremediation. Trends Microbiol. 2006, 14, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Wagner-Döbler, I.; Lünsdorf, H.; Lübbehü Sen, T.; von Canstein, H.F.; Li, Y. Structure and species composition of mercury-reducing biofilms. Appl. Environ. Microbiol. 2000, 66, 4559–4563. [Google Scholar] [CrossRef] [PubMed]
- Von Canstein, H.; Li, Y.; Leonhauser, J.; Haase, E.; Felske, A.; Deckwer, W.D.; Wagner-Döbler, I. Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl. Environ. Microbiol. 2002, 68, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Ngwenya, B.T.; French, C.E. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J. Hazard. Mater. 2012, 241, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. Relevance of microbial extracellular polymeric substances (EPSs). Part I. Structural and ecological aspects. Water Sci. Technol. 2001, 43, 1–8. [Google Scholar] [PubMed]
- Denton, B. Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. Basic Biotechnol. 2007, 3, 1–5. [Google Scholar]
- Gupta, G.; Bhaskaran, H.; Kananen, G.; Okoh, J. Biodegradation of 2,4-dinitrotoluene using poultry litter leachate. J. Hazard Mater. 2004, 113, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Wani, P.A.; Khan, M.S.; Zaidi, A. Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol. Lett. 2008, 30, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Wani, P.A.; Khan, M.S.; Zaidi, A. Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch. Environ. Contam. Toxicol. 2008, 55, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Wani, P.A.; Khan, M.S.; Zaidi, A. Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agron. Sustain. Dev. 2008, 28, 449–455. [Google Scholar] [CrossRef]
- Jian, S.G.; Shen, W.J.; Yang, Z.Y. Enhanced adaptability of Sesbania rostrata to Pb/Zn tailings via stem nodulation. J. Environ. Sci. 2009, 21, 1135–1141. [Google Scholar] [CrossRef]
- Xie, P.; Hao, X.; Herzberg, M.; Luo, Y.; Nies, D.H.; Wei, G. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. J. Environ. Sci. 2015, 27, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Beringer, J.E. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 1974, 84, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Somasegaran, P.; Hoben, H.J. Handbook for Rhizobia. Methods in Legume-Rhizobium Technology; Springer-Verlag Inc.: New York, NY, USA, 1994. [Google Scholar]
- O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: A genetic analysis. Mol. Microbiol. 1998, 28, 449–461. [Google Scholar] [CrossRef] [PubMed]
Strain | Condition | |||||
---|---|---|---|---|---|---|
Control | As 100 | Hg 20 | ||||
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
Rm 8530 WT | 3.83 × 107aA | 7.06 × 109aA* | 1.71 × 105aB | 3.49 × 109aA* | 2.77 × 105aB | 1.23 × 109aA* |
Rm 8530 exoY | 4.97 × 107aA | 6.16 × 109aA* | 2.94 × 105aB | 1.09 × 107bB* | 2.95 × 105aB | 2.56 × 107bB* |
Rm 8530 expA | 1.19 × 106aA | 1.98 × 107bA | 2.00 × 104aB | 2.98 × 105cB | 1.60 × 104aB | 2.70 × 105cB |
Rm8530 exoYexpA | 2.93 × 106aA | 4.75 × 108aA* | 1.17 × 104aB | 2.08 × 106bcB* | 1.90 × 104aB | 2.04 × 106bcB* |
Strain | Condition | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | As 100 | Hg 20 | |||||||
PC | SC | Ef (%) | PC | SC | Ef (%) | PC | SC | Ef (%) | |
Rm 8530 WT | 7.46 × 109 | 1.10 × 109 | 12.85 | 2.96 × 109 | 6.33 × 107 | 2.09 | 1.45 × 109 | 4.35 × 107 | 2.91 |
Rm 8530 exoY | 6.90 × 109 | 2.37 × 109 | 25.57 | 4.34 × 107 | 2.16 × 108 | 83.27 | 3.01 × 107 | 3.05 × 108 | 91.02 |
Rm 8530 expA | 2.14 × 109 | 3.35 × 103 | 1.56 × 10−4 | 1.92 × 105 | 2.04 × 102 | 0.11 | 1.28 × 105 | 1.84 × 102 | 0.14 |
Rm8530 exoYexpA | 5.56 × 108 | 5.25 × 102 | 9.44 × 10−5 | 2.34 × 106 | 2.14 × 102 | 0.091 | 1.44 × 106 | 2.26 × 102 | 0.016 |
S. meliloti WT and exoYexpA Strains | Planktonic Cells | ||||||
Bacterial Count | Rescue Parameters | ||||||
Individual Culture | Co-Culture | Co-Culture Composition (%) | Rescue Index * | ||||
Condition | WT | exoYexpA | WT | exoYexpA | WT | exoYexpA | |
Control | 7.98 × 109 | 4.02 × 108 | 6.18 × 109 | 8.01 × 108 | 88.55 | 11.45 | 1.99 |
As 100 | 3.49 × 109 | 2.18 × 106 | 4.64 × 107 | 3.52 × 107 | 56.86 | 43.14 | 16.15 |
Hg 20 | 1.23 × 109 | 2.01 × 106 | 2.14 × 107 | 1.97 × 106 | 91.57 | 8.43 | 0.98 |
S. meliloti WT and exoYexpA Strains | Sessile Cells | ||||||
Bacterial Count | Rescue Parameters | ||||||
Individual Culture | Co-Culture | Co-Culture Composition (%) # | Rescue Index * | ||||
Condition | WT | exoYexpA | WT | exoYexpA | WT | exoYexpA | |
Control | 2.82 × 109 | 2.99 × 102 | 9.15 × 109 | 2.46 × 109 | 78.81 | 21.19 | 8.23 × 106 |
As 100 | 6.59 × 107 | 2.35 × 102 | 4.15 × 108 | 8.25 × 107 | 83.42 | 16.58 | 3.51 × 105 |
Hg 20 | 4.05 × 107 | 2.12 × 102 | 9.03 × 109 | 1.04 × 108 | 98.86 | 1.14 | 4.91 × 105 |
S. meliloti exoY and exoYexpA Strains | Planktonic Cells | ||||||
Bacterial Count | Rescue Parameters | ||||||
Individual Culture | Co-Culture | Co-Culture Composition (%) | Rescue Index * | ||||
Condition | exoY | exoYexpA | exoY | exoYexpA | exoY | exoYexpA | |
Control | 6.24 × 109 | 2.69 × 108 | 3.22 × 109 | 2.13 × 109 | 60.19 | 39.81 | 7.92 |
As 100 | 5.18 × 107 | 3.17 × 106 | 3.92 × 109 | 1.34 × 109 | 74.52 | 25.48 | 422.71 |
Hg 20 | 2.51 × 107 | 1.92 × 106 | 3.04 × 108 | 2.11 × 108 | 59.03 | 40.97 | 109.89 |
S. meliloti exoY and exoYexpA Strains | Sessile Cells | ||||||
Bacterial Count | Rescue Parameters | ||||||
Individual Culture | Co-Culture | Co-Culture Composition (%) # | Rescue Index * | ||||
Condition | exoY | exoYexpA | exoY | exoYexpA | exoY | exoYexpA | |
Control | 2.04 × 109 | 6.04 × 102 | 3.24 × 109 | 1.25 × 109 | 72.16 | 27.84 | 2.07 × 106 |
As 100 | 1.73 × 108 | 4.13 × 102 | 3.30 × 108 | 2.05 × 108 | 61.68 | 38.32 | 4.96 × 105 |
Hg 20 | 2.67 × 108 | 2.35 × 102 | 2.91 × 108 | 2.34 × 108 | 55.43 | 44.57 | 9.96 × 105 |
S. meliloti Strains | Relevant Properties | Reference |
---|---|---|
Rm8530 | SU47 str21 expR101 (expR+) | [9] |
Rm8530 exoY | Rm8530 exoY210::Tn5, NeoR | [16] |
Rm8530 expA | Rm8530 expA3::Tn5–233, GmR | [16] |
Rm8530 exoYexpA | Rm8530 exoY210::Tn5, expA3::Tn5-233 NeoR GmR | [16] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocelli, N.; Bogino, P.C.; Banchio, E.; Giordano, W. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia. Materials 2016, 9, 418. https://doi.org/10.3390/ma9060418
Nocelli N, Bogino PC, Banchio E, Giordano W. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia. Materials. 2016; 9(6):418. https://doi.org/10.3390/ma9060418
Chicago/Turabian StyleNocelli, Natalia, Pablo C. Bogino, Erika Banchio, and Walter Giordano. 2016. "Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia" Materials 9, no. 6: 418. https://doi.org/10.3390/ma9060418
APA StyleNocelli, N., Bogino, P. C., Banchio, E., & Giordano, W. (2016). Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia. Materials, 9(6), 418. https://doi.org/10.3390/ma9060418