Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method
Abstract
:1. Introduction
2. Results
2.1. Microemulsion Formulation and Synthesis of Cu/Ce Nanoparticles
2.2. Characterization of Cu/Ce Oxide NPs
2.2.1. High Resolution Transmission Electron Microscopy (HRTEM)
2.2.2. X-ray Diffraction
2.2.3. Raman Spectroscopy
2.3. Magnetic Properties
2.4. Optical Properties and Photocatalytic Degradation of Indigo Carmine
3. Discussion
3.1. Microemulsion Formation and Particle Synthesis
3.2. Characterization of Cu/Ce Oxide Nanoparticles
3.3. Magnetic Properties
3.4. Optical Properties and Photocatalytic Activity
4. Materials and Methods
4.1. Materials
4.2. Preparation of NPs by the O/W Microemulsion Reaction Method
4.3. Characterization of NPs
4.4. Magnetic Properties, Optical Properties and Photocatalytic Performance
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mogensen, M.; Sammes, N.M.; Tompsett, G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 2000, 129, 63–94. [Google Scholar] [CrossRef]
- Imanaka, N.; Masui, T.; Hirai, H.; Adachi, G. Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials. Chem. Mater. 2003, 15, 2289–2291. [Google Scholar] [CrossRef]
- Kakuta, N.; Morishima, N.; Kotobuki, M.; Iwase, T.; Mizushima, T.; Sato, Y.; Matsuura, S. Oxygen storage capacity (OSC) of aged Pt/CeO2/Al2O3 catalysts: Roles of Pt and CeO2 supported on Al2O3. Appl. Surf. Sci. 1997, 121, 408–412. [Google Scholar] [CrossRef]
- Lira-Cantu, M.; Krebs, F.C. Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation. Sol. Energy Mater. Sol. Cells 2006, 90, 2076–2086. [Google Scholar] [CrossRef]
- Morshed, A.; Moussa, M.E.; Bedair, S.M.; Leonard, R.; Liu, S.X.; El-Masry, N. Violet/blue emission from epitaxial cerium oxide films on silicon substrates. Appl. Phys. Lett. 1997, 70, 1647–1649. [Google Scholar] [CrossRef]
- Wen, B.; He, M. Study of the Cu-Ce Synergism for NO Reduction with CO in the Presence of O2, H2O and SO2 in FCC Operation. Appl. Catal. B Environ. 2002, 37, 75–82. [Google Scholar] [CrossRef]
- Bera, P.; Aruna, S.T.; Patil, K.C.; Hegde, M.S. Studies on Cu/CeO2: A new NO reduction catalyst. J. Catal. 1999, 186, 36–44. [Google Scholar] [CrossRef]
- Liu, W.; Flytzani-Stephanopoulos, M. Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu CeO2. Chem. Eng. J. Biochem. Eng. J. 1996, 64, 283–294. [Google Scholar] [CrossRef]
- Pradhan, S.; Reddy, A.S.; Devi, R.N.; Chilukuri, S. Copper-based catalysts for water gas shift reaction: Influence of support on their catalytic activity. Catal. Today 2009, 141, 72–76. [Google Scholar] [CrossRef]
- Liu, G.; Rodriguez, J.A.; Chang, Z.; Hrbek, J. Adsorption and reaction of SO2 on model Ce1-x Zr x O2 (111) catalysts. J. Phys. Chem. B 2004, 108, 2931–2938. [Google Scholar] [CrossRef]
- Overbury, S.H.; Mullins, D.R.; Trovarelli, A. Ceria surfaces and films for model catalytic studies using surface analysis techniques. Catal. Sci. Ser. 2002, 2, 311–337. [Google Scholar]
- Fornasiero, P.; Balducci, G.; Di Monte, R.; Kaspar, J.; Sergo, V.; Gubitosa, G.; Ferrero, A.; Graziani, M. Modification of the redox behaviour of CeO 2 induced by structural doping with ZrO2. J. Catal. 1996, 164, 173–183. [Google Scholar] [CrossRef]
- Rodriguez, J.A. Electronic and chemical properties of mixed-metal oxides: Basic principles for the design of DeNO x and DeSO x catalysts. Catal. Today 2003, 85, 177–192. [Google Scholar] [CrossRef]
- Mariño, F.; Baronetti, G.; Laborde, M.; Bion, N.; Le Valant, A.; Epron, F.; Duprez, D. Optimized CuO–CeO2 catalysts for COPROX reaction. Int. J. Hydrog. Energy 2008, 33, 1345–1353. [Google Scholar] [CrossRef]
- Chowdhuri, A.; Gupta, V.; Sreenivas, K.; Kumar, R.; Mozumdar, S.; Patanjali, P.K. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Appl. Phys. Lett. 2004, 84, 1180–1182. [Google Scholar] [CrossRef]
- Uzunoglu, A.; Stanciu, L.A. Novel CeO2-CuO-decorated Enzymatic Lactate Biosensors Operating in Low Oxygen Environments. Anal. Chim. Acta 2016, 909, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-W.; Yi, T.-H.; Chen, C.-H. Cu nanoparticles derived from CuO electrodes in lithium cells. Nanotechnology 2005, 16, 2338. [Google Scholar] [CrossRef] [PubMed]
- Lake, B.; Rønnow, H.M.; Christensen, N.B.; Aeppli, G.; Lefmann, K.; McMorrow, D.F.; Vorderwisch, P.; Smeibidl, P.; Mangkorntong, N.; Sasagawa, T.; et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 2002, 415, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Murugesa, S.; Suresh, S.; Raj, S.P. Nanostructured CuO thin films prepared through sputtering for solar selective absorbers. J. Sol. Energy 2013, 2013, 147270. [Google Scholar]
- Hsieh, C.-T.; Chen, J.-M.; Lin, H.-H.; Shih, H.-C. Field emission from various CuO nanostructures. Appl. Phys. Lett. 2003, 83, 3383–3385. [Google Scholar] [CrossRef]
- Jammi, S.; Sakthivel, S.; Rout, L.; Mukherjee, T.; Mandal, S.; Mitra, R.; Saha, P.; Punniyamurthy, T. CuO nanoparticles catalyzed C−N, C−O, and C−S cross-coupling reactions: Scope and mechanism. J. Org. Chem. 2009, 74, 1971–1976. [Google Scholar] [CrossRef] [PubMed]
- Caputo, T.; Lisi, L.; Pirone, R.; Russo, G. On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H 2-rich gases. Appl. Catal. A Gen. 2008, 348, 42–53. [Google Scholar] [CrossRef]
- Martínez-Arias, A.; Fernández-García, M.; Gálvez, O.; Coronado, J.M.; Anderson, J.A.; Conesa, J.C.; Soria, J.; Munuera, G. Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts. J. Catal. 2000, 195, 207–216. [Google Scholar] [CrossRef]
- Zhu, P.; Li, J.; Huang, Q.; Yan, S.; Liu, M.; Zhou, R. High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen: Effect of hydrothermal preparation conditions. J. Nat. Gas Chem. 2009, 18, 346–353. [Google Scholar] [CrossRef]
- Szabová, L.; Skála, T.; Matolínová, I.; Fabris, S.; Camellone, M.F.; Matolín, V. Copper-ceria interaction: A combined photoemission and DFT study. Appl. Surf. Sci. 2013, 267, 12–16. [Google Scholar] [CrossRef]
- Gurbani, A.; Ayastuy, J.L.; González-Marcos, M.P.; Gutiérrez-Ortiz, M.A. CuO–CeO2 catalysts synthesized by various methods: Comparative study of redox properties. Int. J. Hydrog. Energy 2010, 35, 11582–11590. [Google Scholar] [CrossRef]
- Sanchez-Dominguez, M.; Boutonnet, M.; Solans, C. A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method. J. Nanopart. Res. 2009, 11, 1823–1829. [Google Scholar] [CrossRef]
- Boutonnet, M.; Kizling, J.; Stenius, P.; Maire, G. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf. 1982, 5, 209–225. [Google Scholar] [CrossRef]
- Lopez-Quintela, M.A. Synthesis of nanomaterials in microemulsions: Formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 2003, 8, 137–144. [Google Scholar] [CrossRef]
- López-Quintela, M.A.; Tojo, C.; Blanco, M.C.; García Rio, L.; Leis, J.R. Microemulsion dynamics and reactions in microemulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 264–278. [Google Scholar] [CrossRef]
- Sanchez-Dominguez, M.; Pemartin, K.; Boutonnet, M. Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach. Curr. Opin. Colloid Interface Sci. 2012, 17, 297–305. [Google Scholar] [CrossRef]
- Margarita, S.-D.; Pemartin, K.; Solans, C.; Boutonnet, M. Oil-in-Water Microemulsions for the Synthesis of Nanocrystalline, Mesoporous and Ultrafine CeO2 Powders. In Colloid and Interface Chemistry for Nanotechnology; CRC Press: Boca Raton, FL, USA, 2013; pp. 177–197. [Google Scholar]
- Keramidas, V.G.; White, W.B. Raman spectra of oxides with the fluorite structure. J. Chem. Phys. 1973, 59, 1561–1562. [Google Scholar] [CrossRef]
- Reddy, B.M.; Khan, A.; Lakshmanan, P.; Aouine, M.; Loridant, S.; Volta, J.-C. Structural characterization of nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 catalysts by XRD, Raman, and HREM techniques. J. Phys. Chem. B 2005, 109, 3355–3363. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.M.; Khan, A.; Yamada, Y.; Kobayashi, T.; Loridant, S.; Volta, J.-C. Structural characterization of CeO2-MO2 (M = Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques. J. Phys. Chem. B 2003, 107, 11475–11484. [Google Scholar] [CrossRef]
- McBride, J.; Hass, K.C.; Poindexter, B.D.; Weber, W.H. Raman and X-ray studies of Ce1−xRExO2−y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J. Appl. Phys. 1994, 76, 2435–2441. [Google Scholar] [CrossRef]
- Kubelka, P. Ein beitrag zur optik der farban striche. Z Tech. Phys. 1931, 12, 593–603. [Google Scholar]
- De Oliveira, R.J.; Brown, P.; Correia, G.B.; Rogers, S.E.; Heenan, R.; Grillo, I.; Galembeck, A.; Eastoe, J. Photoreactive surfactants: A facile and clean route to oxide and metal nanoparticles in reverse micelles. Langmuir 2011, 27, 9277–9284. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Flytzani-Stephanopoulos, M. Reduction and sulfidation kinetics of cerium oxide and Cu-modified cerium oxide. Ind. Eng. Chem. Res. 2002, 41, 3115–3123. [Google Scholar] [CrossRef]
- Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.-W.; Herman, I.P. Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Phys. Rev. B 2001, 64, 245407. [Google Scholar] [CrossRef]
- Wang, X.; Rodriguez, J.A.; Hanson, J.C.; Gamarra, D.; Martínez-Arias, A.; Ferández-García, M. Unusual Physical and Chemical Properties of Cu in Ce1-xCuxO2 Oxides. J. Phys. Chem. B 2005, 109, 19595–19603. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Arias, A.; Hungría, A.B.; Fernández-García, M.; Conesa, J.C.; Munuera, G. Interfacial redox processes under CO/O2 in a nanoceria-supported copper oxide catalyst. J. Phys. Chem. B 2004, 108, 17983–17991. [Google Scholar] [CrossRef]
- Sanchez-Dominguez, M.; Liotta, L.F.; Di Carlo, G.; Pantaleo, G.; Venezia, A.M.; Solans, C.; Boutonnet, M. Synthesis of CeO2, ZrO2, Ce 0.5 Zr 0.5 O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catal. Today 2010, 158, 35–43. [Google Scholar] [CrossRef]
- Pu, Z.-Y.; Lu, J.-Q.; Luo, M.F.; Xie, Y.L. Study of oxygen vacancies in Ce0. 9Pr0. 1O2-δ solid solution by in situ X-ray diffraction and in situ Raman spectroscopy. J. Phys. Chem. C 2007, 111, 18695–18702. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, Q.; Fei, X.; He, Y.; Zhang, P.; Zhang, G.; Peng, L.; Xie, W. Synthesis of CuO nano-and micro-structures and their Raman spectroscopic studies. CrystEngComm 2010, 12, 2232–2237. [Google Scholar] [CrossRef]
- Pati, R.K.; Lee, I.C.; Hou, S.; Akhuemonkhan, O.; Gaskell, K.J.; Wang, Q.; Frenkel, Al.; Chu, D.; Salamanca-Riba, L.G.; Ehrman, S.H. Flame Synthesis of Nanosized Cu−Ce−O, Ni−Ce−O, and Fe−Ce−O Catalysts for the Water-Gas Shift (WGS) Reaction. ACS Appl. Mater. Interfaces 2009, 1, 2624–2635. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, D.; Xu, D.; Wang, X. Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion. J. Nat. Gas Chem. 2009, 18, 458–466. [Google Scholar] [CrossRef]
- Zheng, X.-C.; Wu, S.-H.; Wang, S.-P.; Wang, S.-R.; Zhang, S.-M.; Huang, W.-P. The preparation and catalytic behavior of copper–cerium oxide catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. A Gen. 2005, 283, 217–223. [Google Scholar] [CrossRef]
- Tian, J.-J.; Na, W.; Wang, H.; Gao, W.-G. Preparation and characterization of Cu-doped mesoporous CeO2 for CO oxidation. J. Cent. South Univ. 2014, 21, 482–486. [Google Scholar] [CrossRef]
- Luo, M.-F.; Song, Y.-P.; Lu, J.-Q.; Wang, X.-Y.; Pu, Z.-Y. Identification of CuO species in high surface area CuO-CeO2 catalysts and their catalytic activities for CO oxidation. J. Phys. Chem. C 2007, 111, 12686–12692. [Google Scholar] [CrossRef]
- Fotopoulos, A.; Arvanitidis, J.; Christofilos, D.; Papaggelis, K.; Kalyva, M.; Triantafyllidis, K.; Niarchos, D.; Boukos, N.; Basina, G.; Tzitzios, V. One pot synthesis and characterization of ultra fine CeO2 and Cu/CeO2 nanoparticles. Application for low temperature CO oxidation. J. Nanosci. Nanotechnol. 2011, 11, 8593–8598. [Google Scholar] [CrossRef] [PubMed]
- Slusser, P.; Kumar, D.; Tiwari, A. Unexpected magnetic behavior of Cu-doped CeO2. Appl. Phys. Lett. 2010, 96, 2506. [Google Scholar] [CrossRef]
- She, Y.; Zheng, Q.; Li, L.; Zhang, Y.; Chen, C.; Zheng, Y.; Lin, X. Rare earth oxide modified CuO/CeO2 catalysts for the water–gas shift reaction. Int. J. Hydrog Energy 2009, 34, 8929–8936. [Google Scholar] [CrossRef]
- Tiwari, A.; Bhosle, V.M.; Ramachandran, S.; Sudhakar, N.; Narayan, J.; Budak, S.; Gupta, A. Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high Curie temperature. Appl. Phys. Lett. 2006, 88, 142511. [Google Scholar] [CrossRef]
- Thurber, A.; Reddy, K.M.; Shutthanandan, V.; Engelhard, M.H.; Wang, C.; Hays, J.; Punnoose, A. Ferromagnetism in chemically synthesized CeO2 nanoparticles by Ni doping. Phys. Rev. B 2007, 76, 165206. [Google Scholar] [CrossRef]
- Sharma, S.; Thakur, P.; Kumar, S.; Shukla, D.K.; Brookes, N.B.; Lee, C.G.; Pirota, K.R.; Koo, B.H.; Knobel, M. Room temperature ferromagnetism in Fe-doped CeO2 thin films grown on LaAlO3 (001). Thin Solid Films 2010, 519, 410–413. [Google Scholar] [CrossRef]
- Ho, C.; Yu, J.C.; Kwong, T.; Mak, A.C.; Lai, S. Morphology-controllable synthesis of mesoporous CeO2 nano-and microstructures. Chem. Mater. 2005, 17, 4514–4522. [Google Scholar] [CrossRef]
- Chen, H.-I.; Chang, H.-Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram. Int. 2005, 31, 795–802. [Google Scholar] [CrossRef]
- Masui, T.; Fujiwara, K.; Machida, K.-I.; Adachi, G.-Y.; Sakata, T.; Mori, H. Characterization of cerium (IV) oxide ultrafine particles prepared using reversed micelles. Chem. Mater. 1997, 9, 2197–2204. [Google Scholar] [CrossRef]
- Patsalas, P.; Logothetidis, S.; Sygellou, L.; Kennou, S. Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys. Rev. B 2003, 68, 035104. [Google Scholar] [CrossRef]
- Tsunekawa, S.; Sahara, R.; Kawazoe, Y.; Kasuya, A. Blueshifts in the ultraviolet absorption spectra of cerium oxide nanocrystallites. J. Appl. Phys. 2003, 94, 3654–3656. [Google Scholar] [CrossRef]
- Vinu, R.; Akki, S.U.; Madras, G. Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2. J. Hazard. Mater. 2010, 176, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, L.M.; Ruiz-Gómez, M.A.; Figueroa-Torres, M.Z.; Juárez-Ramírez, I.; Moctezuma, E. Sm2FeTaO7 photocatalyst for degradation of indigo carmine dye under solar light irradiation. Int. J. Photoenergy 2012, 2012, 939608. [Google Scholar] [CrossRef]
Molar Ratio Cu/Ce | ME Temperature Range (°C) | Reaction Temperature (°C) |
---|---|---|
0/0 | 24–26 | - |
0/100 | 26–28 | 27 |
5/95 | 26–29 | 27.5 |
10/90 | 26–29 | 27.5 |
20/80 | 27–29 | 28 |
30/70 | 28–30 | 29 |
35/65 | 28–30 | 29 |
40/60 | 29–31 | 30 |
50/50 | 29–31 | 30 |
Sample Cu/Ce Molar Ratio | Crystallite Size (dXRD in nm) | 2θ (°) |
---|---|---|
CeO2 | 3.1 | 28.71 |
Cu/Ce 5/95 | 2.9 | 28.73 |
Cu/Ce 10/90 | 2.5 | 28.88 |
Cu/Ce 20/80 | 2.4 | 28.93 |
Cu/Ce 30/70 | 2.1 | 29.12 |
Cu/Ce 35/65 | 1.8 | 29.35 |
Cu/Ce 40/60 | 2.1 | 29.30 |
Cu/Ce 50/50 | 2.1 | 29.30 |
Cu/Ce Molar Ratio Calcination Temperature | Crystallite Size (dXRD in nm) | 2θ (°) |
---|---|---|
Cu/Ce 20/80 500 °C | 5.2 | 28.76 |
Cu/Ce 30/70 500 °C | 6.9 | 28.74 |
Cu/Ce 20/80 400 °C | 4.4 | 28.77 |
Cu/Ce 30/70 400 °C | 4.3 | 28.75 |
Material | Band Gap (eV) |
---|---|
CeO2 | 2.91 |
CuCe 5/95 | 2.85 |
CuCe 10/90 | 2.75 |
CuCe 20/80 | 2.67 |
CuCe 30/70 | 2.65 |
CuCe 35/65 | 2.27 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pemartin-Biernath, K.; Vela-González, A.V.; Moreno-Trejo, M.B.; Leyva-Porras, C.; Castañeda-Reyna, I.E.; Juárez-Ramírez, I.; Solans, C.; Sánchez-Domínguez, M. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method. Materials 2016, 9, 480. https://doi.org/10.3390/ma9060480
Pemartin-Biernath K, Vela-González AV, Moreno-Trejo MB, Leyva-Porras C, Castañeda-Reyna IE, Juárez-Ramírez I, Solans C, Sánchez-Domínguez M. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method. Materials. 2016; 9(6):480. https://doi.org/10.3390/ma9060480
Chicago/Turabian StylePemartin-Biernath, Kelly, Andrea V. Vela-González, Maira B. Moreno-Trejo, César Leyva-Porras, Iván E. Castañeda-Reyna, Isaías Juárez-Ramírez, Conxita Solans, and Margarita Sánchez-Domínguez. 2016. "Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method" Materials 9, no. 6: 480. https://doi.org/10.3390/ma9060480
APA StylePemartin-Biernath, K., Vela-González, A. V., Moreno-Trejo, M. B., Leyva-Porras, C., Castañeda-Reyna, I. E., Juárez-Ramírez, I., Solans, C., & Sánchez-Domínguez, M. (2016). Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method. Materials, 9(6), 480. https://doi.org/10.3390/ma9060480