A Review on Electroactive Polymers for Waste Heat Recovery
Abstract
:1. Introduction
2. Waste Heat Sources and Current Recovery Technologies
3. Thermoelectric Effects and Thermoelectric Parameters
- The first generation materials with ZT about 1.0 and conversion efficiency of 4%–5%;
- The second generation materials (developed in 1990s) with ZT up to 1.7 and conversion efficiency of 11%–15%;
- The third generation materials (under development) with ZT up to 1.8 and predicted conversion efficiency of 15%–20%.
4. Review of Inorganic Thermoelectric Materials for Waste Heat Recovery
5. Review of Electroactive Polymers for Waste Heat Recovery
6. Conclusions
- Industrial and distributed waste heat sources can be divided, by temperature range, into three groups: high-grade, medium-grade and low-grade. The heat source temperature range is the main criterion when selecting the appropriate recovery technology.
- Present waste heat recovery technologies, such as ORCs, Kalina systems and Stirling engines, are not suitable for direct waste heat recovery from solid surfaces of installations and machines, and are mechanically complicated.
- A comparison between thermoelectric materials and currently used waste heat recovery technologies highlights advantages of the former (lack of moving parts, working fluids, etc.). Thermoelectric materials may be employed for direct waste heat recovery. The heat source temperature range is an important parameter when selecting the thermoelectric material.
- Alloy- and oxide-based materials are suitable for thermoelectric waste heat recovery from medium- and high-grade sources.
- Tellurium-, antimony- and germanium-based alloys achieve the largest thermoelectric performance.
- The thermoelectric efficiencies and temperature ranges of alloy-based materials can be improved by compounding into segmented generators.
- Oxide-based materials are less efficient than alloys, are more toxic, and are worse for the environment. However, they are more stable.
- Oxide-based materials with the highest thermoelectric performance are NaxCoO2, Co3Co4O9, doped CoMnO3, doped SrTiO3 and doped ZnO.
- Electroactive polymers show potential for direct waste heat recovery from low-grade sources, and polyaniline based materials are the most promising due to their good chemical and thermal stability and low manufacturing costs.
- The thermoelectric efficiency of polyaniline is poor compared to inorganic materials. However, there are a number of chemical and physical modification methods available for improving its properties.
- Polyaniline exhibits thermoelectric performance in the low temperature range, where inorganic materials are not fully active.
- Polyaniline based materials may be formed in a variety of shapes and combined with other materials. Such material properties are particularly advantageous direct waste heat recovery from solid surfaces, since the material can be spread on surfaces of different geometries, e.g., flat, curved.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Collective Work on Energy Efficiency; Directive 2012/27/EU; European Parliament: Brussels, Belgium, 2012.
- Collective Work on the Improve and Extend the Greenhouse Gas Emission Allowance Trending Scheme of the Community; Directive 2009/29/EC; European Parliament: Brussels, Belgium, 2009.
- Kolasiński, P. Thermodynamics of Energy Conversion Systems with Variable Amount of Working Substance. Ph.D. Thesis, Institute of Heat Engineering and Fluid Mechanics, Wrocław University of Technology, Wrocław, Poland, 16 June 2010. [Google Scholar]
- Szargut, J. Exergy Method: Technical and Ecological Applications; WIT Press: Ashurst Lodge, UK, 2005. [Google Scholar]
- Szargut, J. Industrial Waste Energy—Utilization and Equipment; WNT: Warsaw, Poland, 1993. [Google Scholar]
- Dinçer, I.; Rosen, M.A. Energy Storage: Systems and Applications, 2nd ed.; John Wiley & Sons: Chichester, UK, 2010. [Google Scholar]
- Ushak, A.G.; Fernández, M.G. Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems. In Advances in Thermal Energy Storage Systems: Methods and Applications, 1st ed.; Cabeza, L.F., Ed.; Woodhead: Cambridge, UK, 2014; pp. 49–63. [Google Scholar]
- Furbo, S. Using water for heat storage in thermal energy storage (TES) systems. In Advances in Thermal Energy Storage Systems: Methods and Applications, 1st ed.; Cabeza, L.F., Ed.; Woodhead: Cambridge, UK, 2014; pp. 31–47. [Google Scholar]
- Fernández, A.I.; Barreneche, C.; Miró, L.; Brückner, S.; Cabeza, L.F. Thermal energy storage (TES) systems using heat from waste. In Advances in Thermal Energy Storage Systems: Methods and Applications, 1st ed.; Cabeza, L.F., Ed.; Woodhead: Cambridge, UK, 2014; pp. 479–492. [Google Scholar]
- Cabeza, L.F.; de Gracia, A. Thermal energy storage (TES) systems for cooling in residential buildings. In Advances in Thermal Energy Storage Systems: Methods and Applications, 1st ed.; Cabeza, L.F., Ed.; Woodhead: Cambridge, UK, 2014; pp. 549–572. [Google Scholar]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 13, 1675–1695. [Google Scholar] [CrossRef]
- Podesser, E. Electricity production in rural villages with a biomass Stirling engine. Renew. Energy 1999, 16, 1049–1052. [Google Scholar] [CrossRef]
- Kong, X.Q.; Wang, R.Z.; Huang, X.H. Energy efficiency and economic feasibility of CCHP driven by stirling engine. Energy Convers. Manag. 2004, 45, 1433–1442. [Google Scholar] [CrossRef]
- Perry, S.; Klemeš, J.; Bulatov, I. Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors. Energy 2008, 33, 1489–1497. [Google Scholar] [CrossRef]
- Kongtragool, B.; Wongwises, S. A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew. Sustain. Energy Rev. 2003, 7, 131–154. [Google Scholar] [CrossRef]
- Jadhao, J.S.; Thombare, D.G. Review on Exhaust Gas Heat Recovery for I.C. Engine. Int. J. Eng. Innov. Technol. 2013, 2, 93–100. [Google Scholar]
- Żmudzki, S. Stirling Engines; WNT: Warsaw, Poland, 1993. [Google Scholar]
- Larsen, U.; Nguyen, T.V.; Knudsen, T.; Haglind, F. System analysis and optimization of a Kalina split-cycle for waste heat recovery on large marine diesel engines. Energy 2014, 64, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.; Knudsen, T.; Larsen, U.; Haglind, F. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications. Energy 2014, 71, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Zare, V.; Mahmoudi, S.M.S. A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor. Energy 2015, 79, 398–406. [Google Scholar] [CrossRef]
- Zare, V.; Mahmoudi, S.M.S.; Yari, M. On the exergoeconomic assessment of employing Kalina cycle for GT-MHR waste heat utilization. Energy Convers. Manag. 2015, 90, 364–374. [Google Scholar] [CrossRef]
- Hua, J.Y.; Li, G.; Chen, Y.P.; Zhao, X.B.; Li, Q.H. Optimization of thermal parameters of boiler in triple-pressure Kalina cycle for waste heat recovery. Appl. Therm. Eng. 2015, 91, 1026–1031. [Google Scholar] [CrossRef]
- Hua, J.Y.; Li, G.; Chen, Y.P.; Wu, J.F.; Zhi, Z.; Dong, C. Waste heat supply-side power regulation with variable concentration for turbine in Kalina cycle. Appl. Therm. Eng. 2015, 91, 583–590. [Google Scholar] [CrossRef]
- Kolasiński, P. The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cylce (ORC) System. Energies 2015, 8, 3351–3369. [Google Scholar] [CrossRef]
- Gnutek, Z.; Kolasiński, P. The application of rotary vane expanders in ORC systems—Thermodynamic description and experimental results. J. Eng. Gas Turbines Power 2013, 135, 1–10. [Google Scholar] [CrossRef]
- Engelhorn, H.R. Experiences with waste-heat utilization on ORC-plants. Brennst. Warme Kraft 1988, 40, 334–338. [Google Scholar]
- Larjola, J. Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC). Int. J. Prod. Econ. 1995, 41, 227–235. [Google Scholar] [CrossRef]
- Huckauf, H.; Sankol, A. Using the ORC process for waste heat utilization when burning cement clinker. ZKG Int. 2000, 53, 146–151. [Google Scholar]
- Wei, D.; Lu, X.; Lu, Z.; Gu, J. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Convers. Manag. 2007, 48, 1113–1119. [Google Scholar] [CrossRef]
- Glover, S.; Douglas, R.; De Rosa, M.; Zhang, X.; Glover, L. Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery. Energy 2015, 93, 1568–1580. [Google Scholar] [CrossRef]
- Li, S.; Dai, Y. Thermo-Economic Analysis of Waste Heat Recovery ORC Using Zeotropic Mixtures. J. Energy Eng. 2015, 141, 1568–1580. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, H.; Bei, C.; Song, S.; Wang, E. Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator. Energy 2015, 91, 128–141. [Google Scholar] [CrossRef]
- Song, J.; Gu, C. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery. Energy Convers. Manag. 2015, 105, 995–1005. [Google Scholar] [CrossRef]
- Di Battista, D.; Mauriello, M.; Cipollone, R. Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle. Appl. Energy 2015, 152, 109–120. [Google Scholar] [CrossRef]
- Han, Y.; Kang, J.; Wang, X.; Liu, Z.; Tian, J.; Wang, Y. Modelling and simulation analysis of an ORC-FPC waste heat recovery system for the stationary CNG-fuelled compressor. Appl. Therm. Eng. 2015, 87, 481–490. [Google Scholar] [CrossRef]
- Peris, B.; Navarro-Esbri, J.; Molés, F.; Mota-Babiloni, A. Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy 2015, 85, 534–542. [Google Scholar] [CrossRef]
- Song, J.; Song, Y.; Gu, C. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy 2015, 82, 976–985. [Google Scholar] [CrossRef]
- Soffiato, M.; Frangopoulos, C.A.; Manente, G.; Rech, S.; Lazzaretto, A. Design optimization of ORC systems for waste heat recovery on board a LNG carrier. Energy Convers. Manag. 2015, 92, 523–534. [Google Scholar] [CrossRef]
- Minea, V. Power generation with ORC machines using low-grade waste heat or renewable energy. Appl. Therm. Eng. 2014, 69, 143–154. [Google Scholar] [CrossRef]
- Fergus, J. Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 2012, 32, 525–540. [Google Scholar] [CrossRef]
- Fleurial, J.P.; Borshchevsky, A.; Caillant, T.; Ewell, R. New materials and devices for thermoelectric applications. In Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference, IECEC-97, Honolulu, HI, USA, 27 July–1 August 1997; pp. 1080–1085.
- Yan, H.; Ohta, T.; Toshima, N. Stretched Polyaniline Films Doped by (±)-10-Camphorsulfonic Acid: Anisotropy and Improvement of Thermoelectric Properties. Macromol. Mater. Eng. 2001, 286, 139–142. [Google Scholar] [CrossRef]
- Duda, H. Electronic Transport Forced by the Temperature Gradient in the Selected Chromium Spinels; Silesian University Publishing: Katowice, Poland, 2007. [Google Scholar]
- Rowe, D.M. General Principles and Basic Considerations, In Thermoelectrics Handbook—Macro to Nano; CRC Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 1–14. [Google Scholar]
- Ioffe, A.F. Semiconductor Thermoelements and Thermoelectric Cooling; Infosearch Limited: London, UK, 1957. [Google Scholar]
- Gray, P.E. The Dynamic Behavior of Thermoelectric Devices; The Technology Press of The Massachusetts Institute of Technology and John Wiley & Sons, Inc.: New York, NY, USA, 1960. [Google Scholar]
- Hostler, S.R.; Kaul, P.; Qu, V.; Cullen, C.; Abramson, A.R. Thermal and electrical characterization of nanocomposites for thermoelectrics. In Proceedings of The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, ITHERM’06, San Diego, CA, USA, 30 May–2 June 2006; pp. 1400–1405.
- Li, J.; Tang, X.; Li, H.; Yan, Y.; Zhang, Q. Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synth. Met. 2010, 160, 1153–1158. [Google Scholar] [CrossRef]
- Królicki, Z. Thermodynamic Basis of Lowering the Temperature; Wrocław University of Technology Publishing: Wrocław, Poland, 2006. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics, 6th ed.; PWN: Warsaw, Poland, 1974. [Google Scholar]
- Zhang, X.; Zhao, L. Thermoelectric materials: Energy conversion between heat and electricity. J. Materiomics 2015, 1, 92–105. [Google Scholar] [CrossRef]
- Xiao, J.; Yang, T.; Li, P.; Zhai, P.; Zhang, Q. Thermal design and management for performance optimization of solar thermoelectric generator. Appl. Energy 2012, 93, 33–38. [Google Scholar] [CrossRef]
- Hadjistassou, C.; Kyriakides, E.; Georgiou, J. Designing high efficiency segmented thermoelectric generators. Energy Convers. Manag. 2013, 66, 165–172. [Google Scholar] [CrossRef]
- El-Genk, M.; Saber, H.; Caillat, T. Efficient segmented thermoelectric unicouples for space power applications. Energy Convers. Manag. 2003, 44, 1755–1772. [Google Scholar] [CrossRef]
- Shinohara, Y.; Ohara, K.; Imai, Y.; Isoda, Y.; Nakanishi, H. Problems of conductive polymers as thermoelectric materials. In Proceedings of the 22nd International Conference on Thermoelectrics, La Grande Motte, France, 21 August 2003; pp. 298–300.
- Park, K.; Lee, G. Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process. Nanoscale Res. Lett. 2011, 6, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Ohtaki, M. Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion. Novel Carbon Resour. Sci. Newsl. 2010, 3. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.6072&rep=rep1&type=pdf. (accessed on 26 May 2016). [Google Scholar]
- Li, S.; Funahashi, R.; Matsubara, I.; Ueno, K.; Sodeoka, S.; Yamada, H. Synthesis and Thermoelectric Properties of the New Oxide Materials Ca3-xBixCo4O9+δ (0.0 < x < 0.75). Chem. Mater. 2000, 12, 2424–2427. [Google Scholar]
- Phaga, P.; Vora-Ud, A.; Seetawan, T. Invention of Low Cost Thermoelectric Generators. Proced. Eng. 2012, 32, 1050–1053. [Google Scholar] [CrossRef]
- Walia, S.; Balendhran, S.; Nili, H.; Zhuiykov, S.; Rosengarten, G.; Wang, Q.; Bhaskaran, M.; Sriram, S.; Strano, S.; Kalantar-zadeh, K. Transition metal oxides—Thermoelectric properties. Prog. Mater. Sci. 2013, 58, 1443–1489. [Google Scholar] [CrossRef]
- Liu, W.; Yan, X.; Chen, G.; Ren, Z. Recent advances in thermoelectric nanocomposites. Nano Energy 2012, 1, 42–56. [Google Scholar] [CrossRef]
- Shakouri, A.; Li, S. Thermoelectric Power Factor for Electrically Conductive Polymers. In Proceedings of the 18th International Conference on Thermoelectrics, Baltimore, MD, USA, 29 August–2 September 1999; pp. 402–406.
- Chatterjee, K.; Ganguly, S.; Kargupta, K.; Banerjee, D. Bismuth nitrate doped polyaniline—Characterization and properties for thermoelectric application. Synth. Met. 2011, 161, 275–279. [Google Scholar] [CrossRef]
- Ivanov, S.; Tsakova, V. Electroless versus electrodriven deposition of silver crystals in polyaniline. Electrochim. Acta 2005, 50, 5616–5623. [Google Scholar] [CrossRef]
- Toshima, N.; Yan, H.; Ohta, T. Electrically Conductive Polyaniline Films as Organic Thermoelectric Materials. In Proceedings of the 19th International Conference on Thermoelectrics, Cardiff, UK, 20–24 August 2000; Rowe, D.M., Ed.; pp. 214–217.
- Li, Y.; Zhao, Q.; Wang, Y.; Bi, K. Synthesis and characterization of Bi2Te3/polyaniline composites. Mater. Sci. Semicond. Process. 2011, 14, 219–222. [Google Scholar] [CrossRef]
- Wallace, G.; Spinks, G. Conductive Electroactive Polymers Intelligent Materials Systems, 2nd ed.; CRC Press TFG: Boca Raton, FL, USA, 2003; pp. 125–175. [Google Scholar]
- Ocko, M.; Zonja, S.; Ivanda, M. Thermoelectric materials: Problems and perspectives. In Proceedings of the 33rd International Convention, Opatija, Croatia, 24–28 May 2010; pp. 16–21.
- Park, Y.W. Structure and morphology: Relations to thermopower properties of conductive polymers. Synth. Met. 1991, 45, 173–182. [Google Scholar] [CrossRef]
- Holland, E.R.; Monkman, A.P. Thermoelectric-Power Measurements in Highly Conductive Stretch-Oriented Polyaniline Films. Synth. Met. 1995, 74, 75–79. [Google Scholar] [CrossRef]
- Salaneck, W.R.; Bredas, J.L. Conjugated Polymers. Solid State Commun. 1994, 92, 31–36. [Google Scholar] [CrossRef]
- Kaiser, A.B. Systematic Conductivity Behavior in Conducting Polymers: Effect of Heterogeneous Disorder. Adv. Mater. 2001, 13, 927–941. [Google Scholar] [CrossRef]
- Kaiser, A.B.; Flanagan, G.U.; Stewart, D.M.; Beaglehole, D. Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synth. Met. 2001, 117, 67–73. [Google Scholar] [CrossRef]
- Rogers, S.A.; Kaiser, A.B. Thermopower and resistivity of carbon nanotube networks and organic conducting polymers. Curr. Appl. Phys. 2004, 4, 407–410. [Google Scholar] [CrossRef]
- Mateeva, N.; Niculescu, H.; Schlenoff, J.; Testardi, L.R. Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole. J. Appl. Phys. 1998, 83, 3110–3117. [Google Scholar] [CrossRef]
- Kaiser, A.B.; Park, Y.W. Current-voltage characteristics of conducting polymers and carbon nanotubes. Synth. Met. 2005, 152, 181–184. [Google Scholar] [CrossRef]
- Nogami, Y.; Kaneko, H.; Ishiguro, T.; Takahashi, A.; Tsukamoto, J.; Hosoito, N. On the metallic states in highly conducting iodine-doped polyacetylene. Solid Commun. 1990, 76, 583–586. [Google Scholar] [CrossRef]
- Zuzok, R.; Kaiser, A.B.; Pukacki, W. Thermoelectric power and conductivity of iodine-doped ‘new’ polyacetylene. J. Chem. Phys. 1991, 95, 1270–1275. [Google Scholar] [CrossRef]
- Kaiser, A.B.; Liu, C.J.; Gilberd, P.W.; Chapman, B.; Kemp, N.T.; Wessling, B.; Partridge, A.C.; Smith, W.T.; Shapiro, J.S. Comparison of electronic transport in polyaniline blends, polyaniline and polypyrrole. Synth. Met. 1997, 84, 699–702. [Google Scholar] [CrossRef]
- Anand, J.; Palaniappan, S.; Sathyanarayana, D.N. Conducting Polyaniline Composites. Prog. Polym. Sci. 1998, 23, 993–1018. [Google Scholar] [CrossRef]
- Dalmolin, C.; Biaggio, S.R.; Rocha-Filho, R.C.; Bocchi, N. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/ polyaniline composite electrodes. Electrochim. Acta 2009, 55, 227–233. [Google Scholar] [CrossRef]
- Kolasińska, E.; Mazurek, B. Chemically-modified polyaniline as a new conducting filler for polymer composites. Inf. Autom. Pomiary Gospod. Ochr. Śr. 2014, 4, 94–97. [Google Scholar] [CrossRef]
- Cardoso, M.J.; Lima, M.F.; Lenz, D.M. Polyaniline Synthesized with Functionalized Sulfonic Acids for Blends Manufacture. Mater. Res. 2007, 10, 425–429. [Google Scholar] [CrossRef]
- Long, Y.; Chen, Z.; Wang, N.; Zhang, Z.; Wan, M. Resistivity study of polyaniline doped with protonic acids. Physica B 2003, 325, 208–213. [Google Scholar] [CrossRef]
- Cao, Y.; Smith, P.; Heeger, A.J. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth. Met. 1992, 48, 91–97. [Google Scholar] [CrossRef]
- Wan, M.; Liu, J.; Qiu, H.; Li, J.; Li, S. Template-free synthesized microtubules of conducting polymers. Synth. Met. 2001, 119, 71–72. [Google Scholar] [CrossRef]
- Ciric-Marjanovic, G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013, 177, 1–47. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.; Xu, W.; Zhang, Q. Investigating thermoelectric properties of doped polyaniline nanowires. Synth. Met. 2014, 189, 177–182. [Google Scholar] [CrossRef]
- Wan, M.; Huang, J.; Shen, Y. Microtubes of conducting polymers. Synth. Met. 1999, 101, 708–711. [Google Scholar] [CrossRef]
- Jun, L.; Zhang, L.-M.; Li, H.; Tang, X.-F. Synthesis and Thermoelectric Properties of Polyaniline. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2003, 18, 53–55. [Google Scholar] [CrossRef]
- Yakuphanoglu, F.; Senkal, B.F. Electrical transport properties of an organic semiconductor on polyaniline doped by boric acid. Polym. Adv. Technol. 2008, 19, 1876–1881. [Google Scholar] [CrossRef]
- Yoon, C.O.; Kim, J.H.; Sung, H.K.; Lee, H. Electrical conductivity and thermopower of phosphoric acid doped polyaniline. Synth. Met. 1997, 84, 789–790. [Google Scholar]
- Li, Z.; Ji, Q.X.; Wang, Y. Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer 2006, 47, 23–26. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y. Characterization of Polyaniline/Ag Nanocomposites Using H2O2 and Ultrasound Radiation for Enhancing Rate. Polym. Compos. 2010, 31, 1662–1668. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Hu, X.; Jiang, H.; Zhao, S.; Li, Q.; Boughton, R.I.; Jiang, M. Preparation and Thermoelectric Properties of Polyaniline/NaFe4P12 Composites. In Proceedings of the 20th Conference on Thermoelectrics, Beijing, China, 8–11 June 2001; pp. 352–355.
- Oliveira, M.M.; Zanchet, D.; Ugarte, D.; Zarbin, A.J.G. Synthesis and characterization of silver nanoparticle polyaniline nanocoposites. Prog. Colloid. Polym. Sci. 2004, 128, 126–130. [Google Scholar]
- Lee, C.Y.; Song, H.G.; Jang, K.S.; Oh, E.J.; Epstein, A.J.; Jood, J. Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth. Met. 1999, 102, 1346–1349. [Google Scholar] [CrossRef]
- Ciric-Marjanovic, G. Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synth. Met. 2013, 170, 31–56. [Google Scholar]
- Anilkumar, K.R.; Parveen, A.; Badiger, G.R.; Ambika Prasad, M.V.N. Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline. Physica B 2009, 404, 1664–1667. [Google Scholar] [CrossRef]
- Khitun, A.; Wang, K.L.; Chen, G. Thermoelectric figure of merit enhancement in a quantum dot superlattice. Nanotechnology 2000, 11, 327–331. [Google Scholar] [CrossRef]
- Lu, W.G.; Fang, J.Y.; Stokes, K.L.; Lin, J. Shape evolution and selfassembly of monodisperse PbTe nanocrystals. J. Am. Chem. Soc. 2004, 126, 11798–11799. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, A.; Ganesan, P.G.; Kumar, A.; Kim, S.; Borca-Tasciuc, T.; Ramanath, G. Molecularly-protectedbismuth telluride nanoparticles: Microemulsion synthesis, and thermoelectric transport properties. Adv. Mater. 2006, 18, 2958–2963. [Google Scholar] [CrossRef]
- Saini, P.; Choudhary, V.; Sood, K.N.; Dhawan, S.K. Electromagnetic Interference Shielding Behavior of Polyaniline/Graphite Composites Prepared by In Situ Emulsion Pathway. J. Appl. Polym. Sci. 2009, 113, 3146–3155. [Google Scholar] [CrossRef]
- Bourdo, S.; Li, Z.; Biris, A.S.; Watanabe, F.; Viswanathan, T.; Pavel, I. Structural, Electrical, and Thermal Behavior of Graphite-Polyaniline Composites with Increased Crystallinity. Adv. Funct. Mater. 2008, 18, 432–440. [Google Scholar] [CrossRef]
- Gupta, K.; Jana, P.C.; Meikap, A.K. Optical and electrical transport properties of polyaniline–silver nanocomposite. Synth. Met. 2010, 160, 1566–1573. [Google Scholar] [CrossRef]
- Kolasińska, E. The Controllable Changing of the Structure of Polyaniline and its Composites with the Thermoelectric Properties. Ph.D. Thesis, Electrotechnical Institute, Warsaw, Poland, 17 December 2015. [Google Scholar]
- Agbor, N.E.; Petty, M.C.; Monkman, A.P. Polyaniline thin films for gas sensing. Sens. Actuators B 1995, 28, 173–179. [Google Scholar] [CrossRef]
- Nicolas-Debarnot, D.; Poncin-Epaillard, F. Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 2003, 475, 1–15. [Google Scholar] [CrossRef]
- Li, D.; Jiang, Y.; Wu, Z.; Chen, X.; Li, Y. Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors. Sens. Actuators B 2000, 66, 125–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Rutledge, G.C. Electrical Conductivity of Electrospun Polyaniline and Polyaniline-Blend Fibers and Mats. Macromolecules 2012, 45, 4238–4246. [Google Scholar] [CrossRef] [Green Version]
- Kavita, B.; Siva, K.; Narsimlu, N. Synthesis and characterization of polyaniline nano-fibres. Indian J. Pure Appl. Phys. 2013, 51, 207–209. [Google Scholar]
- Nishio, K.; Fujimoto, M.; Yoshinaga, N. Electrochemical characteristics of polyaniline synthesized by various methods. J. Power Sources 1995, 56, 189–192. [Google Scholar] [CrossRef]
- Toshima, N.; Yan, N.; Kajita, M. Thermoelectric Properties of Spin-Coated Polyaniline Films. In Proceedings of the 21st International Conference on Thermoelectrics, Long Beach, CA, USA, 25–29 August 2002; pp. 147–150.
- Kim, D.H.; Lee, T.H.; Eun Kim, J.; Suh, K.S. Melt Processible Conductinig Polyaniline Blend: Mechanical and Electrical Properties. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 1–5 June 2003; pp. 726–728.
- Morgan, H.; Foot, P.J.S.; Brooks, N.W. The effects of composition and processing variables on the properties of thermoplastic polyaniline blends and composites. J. Mater. Sci. 2001, 36, 5369–5377. [Google Scholar] [CrossRef]
Industrial/Distributed Energy Conversion Process | Heat Carrier | Temperature Range (°C) |
---|---|---|
Power plant | Exhaust gases | 250–1200 |
Cooling mediums | 40–150 | |
Solid and liquid waste | 40–200 | |
Waste steam | 150–300 | |
Hot elements | 40–400 | |
Chemical plant | Process gases | 100–600 |
Liquids | 40–200 | |
Hot elements | 40–300 | |
Food processing plant | Liquids | 40–100 |
Cooling air | 50–100 | |
Hot elements | 40–400 | |
Steel-mill | Exhaust gases | 250–1200 |
Process gases | 300–1400 | |
Cooling mediums | 40–150 | |
Solid and liquid waste | 40–200 | |
Hot elements | 40–700 | |
Road and rail transport | Exhaust gases | 500–1100 |
Coolants | 40–100 | |
Hot elements | 40–500 | |
Housing and industrial building | Flue gases | 150–300 |
Liquids | 40–90 |
Material | σ (1/Ω∙cm) | α (µV/K) | α2σ (W/mK2) | k (W/mK) | Z (K−1) |
---|---|---|---|---|---|
Bi2Te3 | 1000.0 | 200.00 | 4.0 × 10−3 | 1.60 | 3.0 × 10−3 |
PbTe | 450.0 | 20.00 | 2.6 × 10−3 | 2.00 | 1.2 × 10−3 |
SiGe p-type | 758.0 | 144.00 | 1.6 × 10−3 | 4.80 | 3.3 × 10−4 |
SiGe n-type | 990.0 | −136.00 | 1.8 × 10−3 | 4.45 | 4.1 × 10−4 |
Cu | 580,000.0 | 1.83 | 1.9 × 10−4 | 398.0 | 4.8 × 10−7 |
Ni | 138,889.0 | −19.50 | 5.3 × 10−3 | 90.50 | 5.9 × 10−5 |
Ti | 23,810.0 | 9.10 | 2.0 × 10−4 | 21.90 | 9.1 × 10−6 |
Polymer | Modifier | σ ((Ω∙cm)−1) | α (µV/K) | α2σ (W/mK2) |
---|---|---|---|---|
Polyacethylene (PAC) | – | 6405 | 20.6 | 2.7 × 10−4 |
I * | 60,000 | 15.0 | 1.3 × 10−3 | |
Polyaniline (PANI) | – | 18 | 3.0 | 1.6 × 10−8 |
CSA ** | 200 | 10.0 | 2.0 × 10−6 | |
Polypyrrole (PPY) | – | 26 | 5.0 | 6.5 × 10−8 |
PANI | 15 | 7.0 | 7.4 × 10−8 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolasińska, E.; Kolasiński, P. A Review on Electroactive Polymers for Waste Heat Recovery. Materials 2016, 9, 485. https://doi.org/10.3390/ma9060485
Kolasińska E, Kolasiński P. A Review on Electroactive Polymers for Waste Heat Recovery. Materials. 2016; 9(6):485. https://doi.org/10.3390/ma9060485
Chicago/Turabian StyleKolasińska, Ewa, and Piotr Kolasiński. 2016. "A Review on Electroactive Polymers for Waste Heat Recovery" Materials 9, no. 6: 485. https://doi.org/10.3390/ma9060485
APA StyleKolasińska, E., & Kolasiński, P. (2016). A Review on Electroactive Polymers for Waste Heat Recovery. Materials, 9(6), 485. https://doi.org/10.3390/ma9060485