A New Method for Markovian Adaptation of the Non-Markovian Queueing System Using the Hidden Markov Model
Abstract
:1. Introduction
2. Analysis of the Current Solution Queueing Systems M/Er/1/∞ and Ek/Er/1/∞
- Customers do not arrive at Poisson’s arrival process—a group of “k” customers arrive at Poisson’s arrival process. For this reason, the ratio of the number of clients in the queueing systems is (3);
- Customers are not served by Erlang’s distribution—customers are served by the exponential distribution. A group of “k” customers are served by Erlang’s distribution.
3. Analytical Solution of the Queueing System M(λ)/Ek(μ)/1/∞
3.1. Elementary Case of Poison’s Birth and Erlang’s Death
3.2. The Probability of State of the Queueing System M(λ)/Ek(μ)/∞
3.3. Comparison of the System M(λ)/M(μe)/1/∞ and M(λ)/Ek(μk)/1/∞
4. Queueing System M(λ)/N(ω, σ)/1/∞
4.1. An Approximate Solution
4.2. Calibration of the Solution for a Normal Service Time
- The first Erlang system of order k′, i.e., queueing system M(λ)/E(k′, ω2/σ2)/1/∞. Let us denote its probability as si′;
- The second Erlang system of order k″, i.e., queueing system M(λ)/E(k″, ω2/σ2)/1/∞. Let us identify its probabilities with si″.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pollaczek, F. Uebereine Aufgabe der Wahrscheinlichkeits theory. Math. Z. 1930, 32, 64–100. [Google Scholar] [CrossRef]
- Kingman, J.F.C. The single server queue in heavy traffic. Math. Proc. Camb. Philos. Soc. 1961, 57, 902–904. [Google Scholar] [CrossRef]
- Kolmogorov, A. Sur le problèmed’attente. MatematicheskiiSbornik 1931, 38, 101–106. (In French) [Google Scholar]
- Koenigsberg, E. Is queueing theory dead? Omega 1991, 19, 69–78. [Google Scholar] [CrossRef]
- Schwarz, J.A.; Selinka, G.; Stolletz, R. Performance analysis of time-dependent queueing systems: Survey and classification. Omega 2016, 63, 170–189. [Google Scholar] [CrossRef] [Green Version]
- Baum, L.; Petrie, T. Statistical Inference for Probabilistic Functions of Finite State Markov Chains. Ann. Math. Stat. 1966, 37, 1554–1563. [Google Scholar] [CrossRef]
- Li, Y. Hidden Markov models with states depending on observations. Pattern Recognit. Lett. 2005, 26, 977–984. [Google Scholar] [CrossRef]
- Chen, M.Y.; Kundu, A.; Zhou, J. Off-line handwritten word recognition using a hidden Markov model type stochastic network. IEEE Trans. Pattern Recognit. Mach. Intell. 1994, 16, 481–496. [Google Scholar] [CrossRef]
- Uğuz, H.; Kodaz, H. Classification of internal carotid artery Doppler signals using fuzzy discrete hidden Markov model. Expert Syst. Appl. 2011, 38, 7407–7414. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, H.; Zhu, D. Blind separation of non-stationary sources using continuous density hidden Markov models. Digit. Signal Process. 2013, 23, 1549–1564. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kaito, K.; Lethanh, N. A statistical deterioration forecasting method using hidden Markov model for infrastructure management. Transp. Res. Part B Methodol. 2012, 46, 544–561. [Google Scholar] [CrossRef] [Green Version]
- Rongrong, F.; Hong, W.; Wenbo, Z. Dynamic driver fatigue detection using hidden Markov model in real driving condition. Expert Syst. Appl. 2016, 63, 397–411. [Google Scholar]
- Holzmann, H.; Schwaiger, F. Testing for the number of states in hidden Markov models. Comput. Stat. Data Anal. 2016, 100, 318–330. [Google Scholar] [CrossRef]
- Fadiloglu, M.M.; Yeralanm, S. Models of production lines as quasi-birth-death processes. Math. Comput. Model. 2002, 35, 913–930. [Google Scholar] [CrossRef] [Green Version]
- Ching, W.K.; Huang, X.; Ng, M.K.; Siu, T.K. Hidden Markov Chains. In Markov Chains. International Series in Operations Research & Management Science; Mamon, R.S., Elliott, R.J., Eds.; Springer: Boston, MA, USA, 2013; Volume 189, pp. 201–230. [Google Scholar]
- Tanackov, I.; Stojić, G.; Tepić, J.; Kostelac, M.; Sinani, F.; Sremac, S. Golden Ratio (Sectiona Aurea) in Markovian Ants AI Hybrid. Adaptive and Intelligent Systems, ICAIS 2011, Lecture Notes in Computer Science; Springer: Berlin, Germany, 2011; Volume 6943, pp. 356–367. [Google Scholar]
- Whitt, W. A broad view of queueing theory through one issue. Queueing Syst. 2018, 89, 3–14. [Google Scholar] [CrossRef]
- Heffer, J.C. Steady-state solution of the M/Ek/c (0, FIFO) queueing system. INFOR J. Can. Oper. Res. Soc. 1969, 17, 16–30. [Google Scholar]
- Mayhugh, J.O.; Mc Cormick, R.E. Steady state solution of the queue M/Ek/r. Manag. Sci. 1968, 14, 692–712. [Google Scholar] [CrossRef]
- Poyntz, C.D.; Jackson, R.R.P. The steady-state solution for the queueing process Ek/Em/r. Oper. Res. Q. 1973, 24, 615–625. [Google Scholar] [CrossRef]
- Adan, I.; Zhao, Y. Analyzing GI/Er/1 queues. Oper. Res. Lett. 1996, 19, 183–190. [Google Scholar] [CrossRef]
- Adan, I.J.B.F.; Van de Waarsenburg, W.A.; Wessels, J. Analyzing Ek/E/c queues. Eur. J. Oper. Res. 1996, 92, 112–124. [Google Scholar] [CrossRef]
- Martínez, J.M.V.; Vallejos, R.A.C.; Barría, M.M. On the limiting probabilities of the M/Er/1 queueing system. Stat. Probab. Lett. 2014, 88, 56–61. [Google Scholar] [CrossRef]
- Wang, K.H.; Kuo, M.Y. Profit analysis of the M/Er/1 machine repair problem with a non-reliable service station. Comput. Ind. Eng. 1997, 32, 587–594. [Google Scholar] [CrossRef]
- Adan, I.; Resing, J. Queueing Systems; Einhoven University of Technology: Eindhoven, The Netherlands, 2015. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanackov, I.; Prentkovskis, O.; Jevtić, Ž.; Stojić, G.; Ercegovac, P. A New Method for Markovian Adaptation of the Non-Markovian Queueing System Using the Hidden Markov Model. Algorithms 2019, 12, 133. https://doi.org/10.3390/a12070133
Tanackov I, Prentkovskis O, Jevtić Ž, Stojić G, Ercegovac P. A New Method for Markovian Adaptation of the Non-Markovian Queueing System Using the Hidden Markov Model. Algorithms. 2019; 12(7):133. https://doi.org/10.3390/a12070133
Chicago/Turabian StyleTanackov, Ilija, Olegas Prentkovskis, Žarko Jevtić, Gordan Stojić, and Pamela Ercegovac. 2019. "A New Method for Markovian Adaptation of the Non-Markovian Queueing System Using the Hidden Markov Model" Algorithms 12, no. 7: 133. https://doi.org/10.3390/a12070133
APA StyleTanackov, I., Prentkovskis, O., Jevtić, Ž., Stojić, G., & Ercegovac, P. (2019). A New Method for Markovian Adaptation of the Non-Markovian Queueing System Using the Hidden Markov Model. Algorithms, 12(7), 133. https://doi.org/10.3390/a12070133