Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-Free Microscopy Imaging
Abstract
:1. Introduction
2. Literature
2.1. Cell Segmentation
2.2. Event Detection and Classification
2.3. Cell Tracking
3. Software
4. Data
Name | [Ref] | Task | Content | Link | # Imgs | # Events |
---|---|---|---|---|---|---|
C2C12-16 | [54] | Mitosis Detection | DIC | https://www.iti-tju.org/mitosisdetection/download/1 | 16,208 | 7159 |
CTMC | [90] | Mitosis Detection | DIC | https://ivc.ischool.utexas.edu/ctmc/1 | 80,389 | 1616 |
DeephESC | [55] | Classification | PhC | https://www.vislab.ucr.edu/SOFTWARE/software.php2 | 785 | NA |
Name | [Ref] | Content | Link | # Imgs | # Cells/Tracks | # Cell Lines |
---|---|---|---|---|---|---|
CTC | [22] | PhC, DIC, BF | http://www.celltrackingchallenge.net1 | 213 | 1980/2944 | 5 |
CTMC | [90] | DIC | https://ivc.ischool.utexas.edu/ctmc/2 | 80,389 | 1,097,223 3/1616 | 14 |
Ker et al. | [91] | PhC | https://osf.io/ysaq2/1 | 19134 | NA 4/2011 | 1 |
Usiigaci | [63] | PhC | https://github.com/ElsevierSoftwareX/SOFTX_2018_1581 | 37 | 2641/105 | 1 |
5. Metrics
5.1. Metrics for Pixel-Wise Cell Segmentation
- the Recall, also known as Sensitivity or True Positive Rate,
- the Precision, also known as Positive Prediction,
- the F-score, also known as F-measure or Figure of Merit,
5.2. Metrics for Object-Wise Cell Detection
5.3. Metrics for Cell Event Detection
5.4. Metrics for Cell Tracking
6. Open Problems and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANCIS | Attentive Neural Cell Instance Segmentation |
AOGM-D | Acyclic Oriented Graph Matching measure for Detection |
BBBC | Broad Bioimage Benchmark Collection |
BF | Bright-Field |
BU-BIL | Boston University - Biomedical Image Library |
CCS | Cellular Classification Score |
CIC | Cell-In-Cell |
CNN | Convolutional Neural Network |
COCO | Common Objects in Context |
CSB | Cell Segmentation Benchmark |
CTB | Cell Tracking Benchmark |
CTC | Cell Tracking Challenge |
CTMC | Cell Tracking with Mitosis Detection Challenge |
CVMI | Computer Vision for Microscopy Image Analysis |
DIC | Differential Interphase Contrast |
DL | Deep Learning |
DNA | Deoxyribonucleic Acid |
EVICAN | Expert VIsual Cell ANnotation |
FN | False Negative |
FNA | False Negative Association |
FP | False Positive |
GMAN | Generative Multi Adversarial Networks |
GPU | Graphics Processing Unit |
GT | Ground Truth |
HMC | Hoffman Modulation Contrast |
HOTA | Higher Order Tracking Accuracy |
IoU | Intersection over Union |
LI | Label-free Imaging |
LP | Linear Programming |
LSTM | Long Short-Term Memory |
ML | Machine Learning |
MOT | Multiple Object Tracking |
MOTA | Multiple Object Tracking Accuracy |
MOTP | Multiple Object Tracking Precision |
PhC | Phase Contrast |
PSSD | Progressive Sequence Saliency Discovery Network |
QLI | Quantitative Label-free Imaging |
QPI | Quantitative Phase Imaging |
ROI | Regions of Interest |
SSD | Single Shot multi-box Detector |
SNR | Signal-to-Noise Ratio |
SVM | Support Vector Machine |
TP | True Positive |
TWS | Trainable Weka Segmentation |
UV | Ultraviolet |
Weka | Waikato Environment for Knowledge Analysis |
References
- Sebestyén, E.; Marullo, F.; Lucini, F.; Petrini, C.; Bianchi, A.; Valsoni, S.; Olivieri, I.; Antonelli, L.; Gregoretti, F.; Oliva, G.; et al. SAMMY-seq reveals early alteration of heterochromatin and deregulation of bivalent genes in Hutchinson-Gilford Progeria Syndrome. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Marullo, F.; Cesarini, E.; Antonelli, L.; Gregoretti, F.; Oliva, G.; Lanzuolo, C. Nucleoplasmic Lamin A/C and Polycomb group of proteins: An evolutionarily conserved interplay. Nucleus 2016, 7, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Hennink, E.; Young, I.; Tanke, H. Photobleaching kinetics of fluoresce in quantitative fluorescence microscopy. Biophys J. 1995, 68, 2588–2600. [Google Scholar] [CrossRef]
- Mir, M.; Bhaduri, B.; Wang, R.; Zhu, R.; Popescu, G. Quantitative Phase Imaging. Prog. Opt. 2012, 57, 133–217. [Google Scholar] [CrossRef]
- Zernike, F. How I Discovered Phase Contrast. Science 1955, 121, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Nomarski, G. Differential microinterferometer with polarized waves. J. Phys. Radium Paris 1955, 16, 9S. [Google Scholar]
- Hoffman, R.; Gross, L. Modulation Contrast Microscope. Appl. Opt. 1975, 14, 1169–1176. [Google Scholar] [CrossRef]
- Yin, Z.; Kanade, T.; Chen, M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med. Image Anal. 2012, 16, 1047–1062. [Google Scholar] [CrossRef]
- Gregoretti, F.; Lucini, F.; Cesarini, E.; Oliva, G.; Lanzuolo, C.; Antonelli, L. Segmentation, 3D reconstruction and analysis of PcG proteins in fluorescence microscopy images in different cell culture conditions. In Methods in Molecular Biology; Springer: New York, NY, USA, 2022. [Google Scholar]
- Popescu, G. Quantitative Phase Imaging of Cells and Tissues; Mc-Graw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Helgadottir, S.; Midtvedt, B.; Pineda, J.; Sabirsh, A.; Adiels, C.B.; Romeo, S.; Midtvedt, D.; Volpe, G. Extracting quantitative biological information from bright-field cell images using deep learning. Biophys. Rev. 2021, 2, 031401. [Google Scholar] [CrossRef]
- Buggenthin, F.; Marr, C.; Schwarzfischer, M.; Hoppe, P.S.; Hilsenbeck, O.; Schroeder, T.; Theis, F.J. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC Bioinform. 2013, 14, 297. [Google Scholar] [CrossRef]
- Selinummi, J.; Ruusuvuori, P.; Podolsky, I.; Ozinsky, A.; Gold, E.; Yli-Harja, O.; Aderem, A.; Shmulevich, I. Bright Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated Analysis of Macrophage Images. PLoS ONE 2009, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naso, F.D.; Sterbini, V.; Crecca, E.; Asteriti, I.A.; Russo, A.D.; Giubettini, M.; Cundari, E.; Lindon, C.; Rosa, A.; Guarguaglini, G. Excess TPX2 interferes with microtubule disassembly and nuclei reformation at mitotic exit. Cells 2020, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Sudalagunta, P.; Meads, M.B.; Ahmed, K.T.; Rutkowski, T.; Shain, K.; Silva, A.S.; Zhang, W. An Advanced Framework for Time-lapse Microscopy Image Analysis. bioRxiv 2020. [Google Scholar] [CrossRef]
- Caldon, C.E.; Burgess, A. Label free, quantitative single-cell fate tracking of time-lapse movies. MethodsX 2019, 6, 2468–2475. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Gupta, A.; Harrison, P.J.; Wieslander, H.; Pielawski, N.; Kartasalo, K.; Partel, G.; Solorzano, L.; Suveer, A.; Klemm, A.H.; Spjuth, O.; et al. Deep Learning in Image Cytometry: A Review. Cytometry Part A 2019, 95, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Cho, H.; Lee, S.Y.; Choi, G.; Kim, G.; Min, H.s.; Park, Y. Quantitative Phase Imaging and Artificial Intelligence: A Review. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–14. [Google Scholar] [CrossRef]
- Vicar, T.; Balvan, J.; Jaros, J.; Jug, F.; Kolar, R.; Masarik, M.; Gumulec, J. Cell segmentation methods for label-free contrast microscopy: Review and comprehensive comparison. BMC Bioinform. 2019, 20, 1–25. [Google Scholar] [CrossRef]
- Emami, N.; Sedaei, Z.; Ferdousi, R. Computerized cell tracking: Current methods, tools and challenges. Visual Inform. 2021, 5, 1–13. [Google Scholar] [CrossRef]
- Ulman, V.; Maška, M.; Magnusson, K.E.G.; Ronneberger, O.; Haubold, C.; Harder, N.; Matula, P.; Matula, P.; Svoboda, D.; Radojevic, M.; et al. An objective comparison of cell-tracking algorithms. Nat. Methods 2017, 14, 1141–1152. [Google Scholar] [CrossRef]
- Van Valen, D.A.; Kudo, T.; Lane, K.M.; Macklin, D.N.; Quach, N.T.; DeFelice, M.M.; Maayan, I.; Tanouchi, Y.; Ashley, E.A.; Covert, M.W. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. PLoS Comput. Biol. 2016, 12, e1005177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lux, F.; Matula, P. Cell segmentation by combining marker-controlled watershed and deep learning. arXiv 2020, arXiv:2004.01607. [Google Scholar]
- Hilsenbeck, O.; Schwarzfischer, M.; Loeffler, D.; Dimopoulos, S.; Hastreiter, S.; Marr, C.; Theis, F.J.; Schroeder, T. fastER: A user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics 2017, 33, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Edlund, C.; Jackson, T.R.; Khalid, N.; Bevan, N.; Dale, T.; Dengel, A.; Ahmed, S.; Trygg, J.; Sjögren, R. LIVECell: A large-scale dataset for label-free live cell segmentation. Nat. Methods 2021, 18, 1038–1045. [Google Scholar] [CrossRef]
- Caicedo, J.; Goodman, A.; Karhohs, K.; Cimini, B.; Ackerman, J.; Haghighi, M.; Heng, C.; Becker, T.; Doan, M.; McQuin, C.; et al. Nucleus segmentation across imaging experiments: The 2018 Data Science Bowl. Nat. Methods 2019, 16, 1247–1253. [Google Scholar] [CrossRef]
- Casalino, L.; D’Ambra, P.; Guarracino, M.R.; Irpino, A.; Maddalena, L.; Maiorano, F.; Minchiotti, G.; Jorge Patriarca, E. Image Analysis and Classification for High-Throughput Screening of Embryonic Stem Cells. In Proceedings of the Mathematical Models in Biology: Bringing Mathematics to Life; Zazzu, V., Ferraro, M.B., Guarracino, M.R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 17–31. [Google Scholar] [CrossRef]
- Casalino, L.; Guarracino, M.R.; Maddalena, L. Imaging for High-Throughput Screening of Pluripotent Stem Cells, SIAM Conference on Imaging Science—IS18. 2018. Available online: https://www.siam-is18.dm.unibo.it/presentations/811.html (accessed on 3 August 2022).
- de Haan, K.; Rivenson, Y.; Wu, Y.; Ozcan, A. Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy. Proc. IEEE 2020, 108, 30–50. [Google Scholar] [CrossRef]
- Gregoretti, F.; Cesarini, E.; Lanzuolo, C.; Oliva, G.; Antonelli, L. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images. In Polycomb Group Proteins: Methods and Protocols; Lanzuolo, C., Bodega, B., Eds.; Springer New York: New York, NY, USA, 2016; pp. 181–197. [Google Scholar] [CrossRef]
- Yi, J.; Wu, P.; Jiang, M.; Huang, Q.; Hoeppner, D.J.; Metaxas, D.N. Attentive neural cell instance segmentation. Med. Image Anal. 2019, 55, 228–240. [Google Scholar] [CrossRef]
- Gregoretti, F.; Cortesi, A.; Oliva, G.; Bodega, B.; Antonelli, L. An Algorithm for the Analysis of the 3D Spatial Organization of the Genome. In Capturing Chromosome Conformation: Methods and Protocols; Bodega, B., Lanzuolo, C., Eds.; Springer US: New York, NY, USA, 2021; pp. 299–320. [Google Scholar] [CrossRef]
- Antonelli, L.; De Simone, V.; di Serafino, D. A view of computational models for image segmentation. In Annali dell’Universitá di Ferrara; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Arteta, C.; Lempitsky, V.S.; Noble, J.A.; Zisserman, A. Learning to Detect Cells Using Non-overlapping Extremal Regions. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012—15th International Conference, Nice, France, 1–5 October 2012; Proceedings, Part I. Ayache, N., Delingette, H., Golland, P., Mori, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 751, pp. 348–356. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, L.; Guarracino, M.R.; Maddalena, L.; Sangiovanni, M. Integrating imaging and omics data: A review. Biomed. Signal Process. Control. 2019, 52, 264–280. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015—18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III. Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef]
- Carpenter, A.; Jones, T.; Lamprecht, M.; Clarke, C.; Kang, I.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J.; et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I. Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 9905, pp. 21–37. [Google Scholar] [CrossRef]
- Beucher, S.; Meyer, F. The Morphological Approach to Segmentation: The Watershed Transformation. In Mathematical Morphology in Image Processing; Thompson, B.J., Dougherty, E., Eds.; CRC Press: Boca Raton, FL, USA, 1993; p. 49. [Google Scholar] [CrossRef]
- Scherr, T.; Löffler, K.; Böhland, M.; Mikut, R. Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy. PLoS ONE 2020, 15, e0243219. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Wang, C.; Watanabe, K.; Fei Elmer Ker, D.; Bise, R. Weakly supervised cell instance segmentation under various conditions. Med. Image Anal. 2021, 73, 102182. [Google Scholar] [CrossRef] [PubMed]
- Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A generalist algorithm for cellular segmentation. Nat. Methods 2021, 18, 100–106. [Google Scholar] [CrossRef]
- Stringer, C.; Pachitariu, M. Cellpose 2.0: How to train your own model. bioRxiv 2022. [Google Scholar] [CrossRef]
- Borensztejn, K.; Tyrna, P.; Gaweł, A.M.; Dziuba, I.; Wojcik, C.; Bialy, L.P.; Mlynarczuk-Bialy, I. Classification of Cell-in-Cell Structures: Different Phenomena with Similar Appearance. Cells 2021, 10, 2569. [Google Scholar] [CrossRef]
- Su, Y.T.; Lu, Y.; Chen, M.; Liu, A.A. Spatiotemporal joint mitosis detection using CNN-LSTM network in time-lapse phase contrast microscopy images. IEEE Access 2017, 5, 18033–18041. [Google Scholar] [CrossRef]
- Mao, Y.; Yin, Z. Two-Stream Bidirectional Long Short-Term Memory for Mitosis Event Detection and Stage Localization in Phase-Contrast Microscopy Images. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2017; Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 56–64. [Google Scholar] [CrossRef]
- Phan, H.T.H.; Kumar, A.; Feng, D.; Fulham, M.; Kim, J. Semi-supervised estimation of event temporal length for cell event detection. arXiv 2019, arXiv:1909.09946. [Google Scholar] [CrossRef]
- Nishimura, K.; Bise, R. Spatial-Temporal Mitosis Detection in Phase-Contrast Microscopy via Likelihood Map Estimation by 3DCNN. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1811–1815. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef]
- Su, Y.; Lu, Y.; Chen, M.; Liu, A. Deep Reinforcement Learning-Based Progressive Sequence Saliency Discovery Network for Mitosis Detection In Time-Lapse Phase-Contrast Microscopy Images. IEEE ACM Trans. Comput. Biol. Bioinform. 2022, 19, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.T.; Lu, Y.; Liu, J.; Chen, M.; Liu, A.A. Spatio-Temporal Mitosis Detection in Time-Lapse Phase-Contrast Microscopy Image Sequences: A Benchmark. IEEE Trans. Med. Imaging 2021, 40, 1319–1328. [Google Scholar] [CrossRef]
- Theagarajan, R.; Bhanu, B. DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC. PLoS ONE 2019, 14, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.X.; Bhanu, B.; Talbot, P.; Lin, S. Bio-Driven Cell Region Detection in Human Embryonic Stem Cell Assay. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Durugkar, I.; Gemp, I.M.; Mahadevan, S. Generative Multi-Adversarial Networks. arXiv 2017, arXiv:1611.01673. [Google Scholar]
- La Greca, A.D.; Pérez, N.; Castañeda, S.; Milone, P.M.; Scarafía, M.A.; Möbbs, A.M.; Waisman, A.; Moro, L.N.; Sevlever, G.E.; Luzzani, C.D.; et al. celldeath: A tool for detection of cell death in transmitted light microscopy images by deep learning-based visual recognition. PLoS ONE 2021, 16, e0253666. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Magnusson, K.E.G.; Jaldén, J.; Gilbert, P.M.; Blau, H.M. Global Linking of Cell Tracks Using the Viterbi Algorithm. IEEE Trans. Med. Imaging 2015, 34, 911–929. [Google Scholar] [CrossRef]
- Grah, J.S.; Harrington, J.A.; Koh, S.B.; Pike, J.A.; Schreiner, A.; Burger, M.; Schönlieb, C.B.; Reichelt, S. Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy. Methods 2017, 115, 91–99, Image Processing for Biologists. [Google Scholar] [CrossRef]
- Rea, D.; Perrino, G.; di Bernardo, D.; Marcellino, L.; Romano, D. A GPU algorithm for tracking yeast cells in phase-contrast microscopy images. Int. J. High Perform. Comput. Appl. 2019, 33. [Google Scholar] [CrossRef]
- Tsai, H.F.; Gajda, J.; Sloan, T.F.; Rares, A.; Shen, A.Q. Usiigaci: Instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning. SoftwareX 2019, 9, 230–237. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Allan, D.B.; Caswell, T.; Keim, N.C.; van der Wel, C.M. trackpy: Trackpy v0.4.1; Zenodo. 2018, 1226458. [Google Scholar] [CrossRef]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef] [PubMed]
- Von Chamier, L.; Laine, R.F.; Jukkala, J.; Spahn, C.; Krentzel, D.; Nehme, E.; Lerche, M.; Hernández-Pérez, S.; Mattila, P.K.; Karinou, E.; et al. ZeroCostDL4Mic: An open platform to use Deep-Learning in Microscopy. BioRxiv 2020. [Google Scholar] [CrossRef]
- Gómez-de Mariscal, E.; García-López-de Haro, C.; Ouyang, W.; Donati, L.; Lundberg, E.; Unser, M.; Muñoz-Barrutia, A.; Sage, D. DeepImageJ: A user-friendly environment to run deep learning models in ImageJ. bioRxiv 2021. [Google Scholar] [CrossRef]
- Ouyang, W.; Beuttenmueller, F.; Gómez-de Mariscal, E.; Pape, C.; Burke, T.; Garcia-López-de Haro, C.; Russell, C.; Moya-Sans, L.; de-la Torre-Gutiérrez, C.; Schmidt, D.; et al. BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning in BioImage Analysis. bioRxiv 2022. [Google Scholar] [CrossRef]
- Aragaki, H.; Ogoh, K.; Kondo, Y.; Aoki, K. LIM Tracker: A software package for cell tracking and analysis with advanced interactivity. Sci. Rep. 2022, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Ershov, D.; Phan, M.; Pylvänäinen, J.; Rigaud, S.; Le Blanc, L.; Charles-Orszag, A.; Conway, J.; Laine, R.; Roy, N.; Bonazzi, D.; et al. TrackMate 7: Integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 2022, 19, 829–832. [Google Scholar] [CrossRef]
- Schmidt, U.; Weigert, M.; Broaddus, C.; Myers, G. Cell Detection with Star-Convex Polygons. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018—21st International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part II. pp. 265–273. [Google Scholar] [CrossRef]
- Weigert, M.; Schmidt, U.; Haase, R.; Sugawara, K.; Myers, G. Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 2–5 March 2020; pp. 3655–3662. [Google Scholar] [CrossRef]
- Ouyang, W.; Mueller, F.; Hjelmare, M.; Lundberg, E.; Zimmer, C. ImJoy: An open-source computational platform for the deep learning era. Nat. Methods 2019, 16, 1199–1200. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Winsnes, C.F.; Hjelmare, M.; Åkesson, L.; Xu, H.; Sullivan, D.P.; Lundberg, E. Analysis of the Human Protein Atlas Image Classification competition. Nat. Methods 2019, 16, 1254. [Google Scholar] [CrossRef]
- Jaqaman, K.; Loerke, D.; Mettlen, M.; Kuwata, H.; Grinstein, S.; Schmid, S.; Danuser, G. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 2008, 5, 695–702. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT++ Better Real-Time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1108–1121. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, W. Mask R-CNN for Object Detection and Instance Segmentation on Keras and TensorFlow. 2017. Available online: https://github.com/matterport/Mask_RCNN (accessed on 3 August 2022).
- Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/detectron2 (accessed on 3 August 2022).
- Tinevez, J.Y.; Perry, N.; Schindelin, J.; Hoopes, G.M.; Reynolds, G.D.; Laplantine, E.; Bednarek, S.Y.; Shorte, S.L.; Eliceiri, K.W. TrackMate: An open and extensible platform for single-particle tracking. Methods 2017, 115, 80–90, Image Processing for 108 Biologists. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.M.; Ryder, P.V.; Li, B.; Cimini, B.A.; Eliceiri, K.W.; Carpenter, A.E. Open-source deep-learning software for bioimage segmentation. Mol. Biol. Cell 2021, 32, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Piccinini, F.; Balassa, T.; Koos, K.; Danka, T.; Azizpour, H.; Horvath, P. Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays. Cell Syst. 2018, 6, 636–653. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.; Haupt, A.; Tucker, A.; Grancharova, T.; Arakaki, J.; Fuqua, M.A.; Nelson, A.; Hookway, C.; Ludmann, S.A.; Mueller, I.A.; et al. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol. Biol. Cell 2017, 28, 2854–2874. [Google Scholar] [CrossRef]
- Gurari, D.; Theriault, D.; Sameki, M.; Isenberg, B.; Pham, T.A.; Purwada, A.; Solski, P.; Walker, M.; Zhang, C.; Wong, J.Y.; et al. How to Collect Segmentations for Biomedical Images? A Benchmark Evaluating the Performance of Experts, Crowdsourced Non-experts, and Algorithms. In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2015; pp. 1169–1176. [Google Scholar] [CrossRef]
- Schwendy, M.; Unger, R.E.; Parekh, S.H. EVICAN—A balanced dataset for algorithm development in cell and nucleus segmentation. Bioinformatics 2020, 36, 3863–3870. [Google Scholar] [CrossRef]
- Maska, M.; Ulman, V.; Svoboda, D.; Matula, P.; Matula, P.; Ederra, C.; Urbiola, A.; España, T.; Venkatesan, S.; Balak, D.M.W.; et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 2014, 30, 1609–1617. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.; Gurari, D. CTMC: Cell Tracking with Mitosis Detection Dataset Challenge. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 4228–4237. [Google Scholar] [CrossRef]
- Ker, D.; Eom, S.; Sanami, S.; Bise, R.; Pascale, C.; Yin, Z.; Huh, S.; Osuna-Highley, E.; Junkers, S.; Helfrich, C.; et al. Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations. Sci. Data 2018, 5. [Google Scholar] [CrossRef]
- Ljosa, V.; Sokolnicki, K.; Carpenter, A. Annotated high-throughput microscopy image sets for validation. Nat. Methods 2012, 9, 637. [Google Scholar] [CrossRef]
- Tian, C.; Yang, C.; Spencer, S.L. EllipTrack: A Global-Local Cell-Tracking Pipeline for 2D Fluorescence Time-Lapse Microscopy. Cell Rep. 2020, 32, 107984. [Google Scholar] [CrossRef]
- Lin, T.; Maire, M.; Belongie, S.J.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision—ECCV 2014—13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V. Fleet, D.J., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. [Google Scholar] [CrossRef]
- Matula, P.; Maška, M.; Sorokin, D.V.; Matula, P.; de Solórzano, C.O.; Kozubek, M. Cell tracking accuracy measurement based on comparison of acyclic oriented graphs. PLoS ONE 2015, 10, e0144959. [Google Scholar] [CrossRef]
- Dendorfer, P.; Ošep, A.; Milan, A.; Schindler, K.; Cremers, D.; Reid, I.; Roth, S.; Leal-Taixé, L. MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking. arXiv 2020, arXiv:2010.07548. [Google Scholar] [CrossRef]
- Bernardin, K.; Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. EURASIP J. Image Video Process. 2008, 2008. [Google Scholar] [CrossRef]
- Milan, A.; Leal-Taixe, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A Benchmark for Multi-Object Tracking. arXiv 2016, arXiv:1603.00831. [Google Scholar] [CrossRef]
- Ristani, E.; Solera, F.; Zou, R.S.; Cucchiara, R.; Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. arXiv 2016, arXiv:1609.01775. [Google Scholar] [CrossRef]
- Luiten, J.; Osep, A.; Dendorfer, P.; Torr, P.; Geiger, A.; Leal-Taixé, L.; Leibe, B. HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking. Int. J. Comput. Vis. 2020, 1–31. [Google Scholar] [CrossRef]
- Xing, F.; Xie, Y.; Su, H.; Liu, F.; Yang, L. Deep Learning in Microscopy Image Analysis: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4550–4568. [Google Scholar] [CrossRef]
Name | [Ref] | Content | Link | # Imgs | # Cells | # Cell Lines |
---|---|---|---|---|---|---|
Allen Cell Explorer | [86] | 3D Label- Free | https://www.allencell.org/data-downloading.html/#sectionLabelFreeTrainingData | ~18,000 | ~39,000 | 1 |
BU-BIL | [87] | PhC | https://www.cs.bu.edu/fac/betke/BiomedicalImageSegmentation/ | 151 | 151 | 3 |
CTC | [22] | PhC, DIC, BF | http://www.celltrackingchallenge.net | 213 | 1980 | 5 |
DeepCell | [23] | PhC | https://doi.org/10.1371/journal.pcbi.1005177.s021, https://doi.org/10.1371/journal.pcbi.1005177.s022, https://doi.org/10.1371/journal.pcbi.1005177.s023 | 45 | ~4300 | 1 |
EVICAN | [88] | PhC, BF | https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.AJBV1S | 4640 | 26,428 | 30 |
fastER | [25] | PhC, BF | https://bsse.ethz.ch/csd/software/faster.html | 39 | 1653 (+953) 1 | 2 |
LIVEcell | [26] | PhC | https://sartorius-research.github.io/LIVECell/ | 5239 | 1,686,352 | 8 |
Usiigaci | [63] | PhC | https://github.com/ElsevierSoftwareX/SOFTX_2018_158 | 37 | 2641 | 1 |
Vicar et al. | [20] | PhC, DIC, HMC | https://zenodo.org/record/1250729 | 32 | 4546 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddalena, L.; Antonelli, L.; Albu, A.; Hada, A.; Guarracino, M.R. Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-Free Microscopy Imaging. Algorithms 2022, 15, 313. https://doi.org/10.3390/a15090313
Maddalena L, Antonelli L, Albu A, Hada A, Guarracino MR. Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-Free Microscopy Imaging. Algorithms. 2022; 15(9):313. https://doi.org/10.3390/a15090313
Chicago/Turabian StyleMaddalena, Lucia, Laura Antonelli, Alexandra Albu, Aroj Hada, and Mario Rosario Guarracino. 2022. "Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-Free Microscopy Imaging" Algorithms 15, no. 9: 313. https://doi.org/10.3390/a15090313
APA StyleMaddalena, L., Antonelli, L., Albu, A., Hada, A., & Guarracino, M. R. (2022). Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-Free Microscopy Imaging. Algorithms, 15(9), 313. https://doi.org/10.3390/a15090313