Effects of Post-Fire Deadwood Management on Soil Macroarthropod Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Statistical Analyses
3. Results
3.1. Variations in Abundance, Richness, and Diversity
3.2. Richness Curves
3.3. Community Assemblages and Cluster Analysis
4. Discussion
4.1. Overall Abundance and Differences across Elevations
4.2. Differences between Dead-Wood Treatments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Class | Superorder | Order | Family | Species | Low Plot | High Plot | ||||
---|---|---|---|---|---|---|---|---|---|---|
SL | PC | SL | PC | |||||||
Bare Soil | Bare Soil | Under Logs | Bare Soil | Bare Soil | Under Logs | |||||
Malacostraca | Isopoda | 1 | 0 | 15 | 0 | 0 | 1 | |||
Diplopoda | Julida | 1 | 1 | 2 | 0 | 0 | 0 | |||
Chilopoda | Geophilomorpha | 3 | 2 | 3 | 0 | 1 | 0 | |||
Scolopendridae | 0 | 0 | 0 | 0 | 1 | 0 | ||||
Arachnida | Aranae | 1 | 1 | 0 | 0 | 0 | 1 | |||
Acariformes | 0 | 0 | 2 | 0 | 0 | 0 | ||||
Hexapoda | Diplura | 0 | 0 | 2 | 0 | 0 | 0 | |||
Embioptera | 1 | 0 | 0 | 0 | 0 | 0 | ||||
Hemiptera | 66 | 120 | 93 | 0 | 4 | 2 | ||||
Diptera | 6 | 10 | 8 | 0 | 2 | 0 | ||||
Lepidoptera | 13 | 0 | 1 | 0 | 0 | 0 | ||||
Coleoptera | 7 | 2 | 8 | 0 | 9 | 8 | ||||
Hymenoptera | 0 | 0 | 0 | 0 | 0 | 1 | ||||
Hymenoptera | Formicidae | Bothriomyrmex meridionalis | 0 | 0 | 42 | 0 | 0 | 0 | ||
Cataglyphis velox | 2 | 0 | 0 | 0 | 4 | 0 | ||||
Tapinoma nigerrimum | 0 | 10 | 0 | 0 | 0 | 0 | ||||
Proformica ferrari | 0 | 0 | 0 | 7 | 21 | 0 | ||||
Cataglyphis iberica | 0 | 0 | 0 | 0 | 1 | 0 | ||||
Aphaenogaster dulcinea | 0 | 0 | 8 | 0 | 0 | 0 | ||||
Aphaenogaster gibbosa | 0 | 7 | 0 | 0 | 0 | 0 | ||||
Tetramorium forte | 0 | 0 | 0 | 16 | 0 | 0 | ||||
Tetramorium semilaeve | 4 | 0 | 0 | 0 | 0 | 0 | ||||
Pheidole pallidula | 2 | 0 | 0 | 0 | 0 | 0 |
References
- Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- André, H.M.; Ducarme, X.; Lebrun, P. Soil biodiversity: Myth, reality or conning? Oikos 2002, 1, 3–24. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Coleman, D.C.; Crossley, D.A.; Hendrix, P.F. Laboratory and field exercises in soil ecology. In Fundamentals of Soil Ecology; Elsevier: London, UK, 2004. [Google Scholar]
- Wall, D.H.; Bardgett, R.D.; Kelly, E. Biodiversity in the dark. Nat. Geosci. 2010, 3, 297–298. [Google Scholar] [CrossRef]
- Wall, D.H.; Nielsen, U.N.; Six, J. Soil biodiversity and human health. Nature 2015, 528, 69–76. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Halley, J.M.; Rillig, M.C. Extinction risk of soil biota. Nat. Commun. 2015, 6, 8862. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Antunes, P.M.; Bennett, A.E.; Birkhofer, K.; Bissett, A.; Bowker, M.A.; Caruso, T.; Chen, B.; Coleman, D.C.; Boer, W.D.; et al. Priorities for research in soil ecology. Pedobiologia 2017, 63, 1–7. [Google Scholar] [CrossRef]
- Decaëns, T.; Jiménez, J.J.; Gioia, C.; Measey, G.J.; Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 2006, 42, S23–S38. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Swengel, A.B. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 2001, 10, 1141–1169. [Google Scholar] [CrossRef]
- McCullough, D.G.; Werner, R.A.; Neumann, D. Fire and insects in northern and boreal forest ecosystems of North America. Annu. Rev. Entomol. 1998, 43, 107–127. [Google Scholar] [CrossRef] [PubMed]
- Warren, S.D.; Scifres, C.J.; Teel, P.D. Response of Grassland arthropods to burning: A review. Agric. Ecosyst. Environ. 1987, 19, 105–130. [Google Scholar] [CrossRef]
- New, T.R. Insects, Fire and Conservation; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Cane, J.H.; Neff, J.L. Predicted fates of ground-nesting bees in soil heated by wildfire: Thermal tolerances of life stages and a survey of nesting depths. Biol. Conserv. 2011, 144, 2631–2636. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Malmström, A.; Zaitsev, A.S.; Shakhab, S.V.; Bengtsson, J.; Persson, T. Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Appl. Soil Ecol. 2012, 59, 73–86. [Google Scholar] [CrossRef]
- Mateos, E.; Santos, X.; Pujade-Villar, J. Taxonomic and functional responses to fire and post-fire management of a Mediterranean Hymenoptera community. Environ. Manag. 2011, 48, 1000–1012. [Google Scholar] [CrossRef]
- Moretti, M.; Obrist, M.K.; Duelli, P. After forest fires: Winners and losers in the arthropod biodiversity winter fire of the southern regime Alps. Ecography 2014, 27, 173–186. [Google Scholar] [CrossRef]
- Thorn, S.; Bässler, C.; Gottschalk, T.; Hothorn, T.; Bussler, H.; Raffa, K.; Müller, J. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages. PLoS ONE 2014, 9, e101757. [Google Scholar] [CrossRef]
- Stokland, J.N.; Siitonen, J.; Jonsson, B.G. Biodiversity in Dead Wood; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Zaitsev, A.S.; Gongalsky, K.B.; Malmström, A.; Persson, T.; Bengtsson, J. Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol. 2016, 98, 261–271. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Burton, P.J.; Franklin, J.F. Salvage Logging and Its Ecological Consequences; Island Press: Washington, DC, USA, 2008. [Google Scholar]
- Müller, J.; Noss, R.F.; Thorn, S.; Bässler, C.; Leverkus, A.B.; Lindenmayer, D. Increasing disturbance demands new policies to conserve intact forest. Conserv. Lett. 2019, 12, e12449. [Google Scholar] [CrossRef]
- Leverkus, A.B.; Castro, J. An ecosystem services approach to the ecological effects of salvage logging: Valuation of seed dispersal. Ecol. Appl. 2017, 27, 1057–1063. [Google Scholar] [CrossRef]
- Thorn, S.; Bässler, C.; Brandl, R.; Burton, P.J.; Cahall, R.; Campbell, J.L.; Castro, J.; Choi, C.-Y.; Cobb, T.; Donato, D.C.; et al. Impacts of salvage logging on biodiversity—A meta-analysis. J. Appl. Ecol. 2018, 55, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, D.; Thorn, S.; Banks, S. Please do not disturb ecosystems further. Nat. Ecol. Evol. 2017, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, R.; Castro, J.; Del Arco Aguilar, M.; Fernández-López, Á.B.; González-Mancebo, J.M. Post-fire salvage logging imposes a new disturbance that retards succession: The case of bryophyte communities in a Macaronesian laurel forest. Forests 2017, 8, 252. [Google Scholar] [CrossRef]
- Leverkus, A.B.; Lindenmayer, D.B.; Thorn, S.; Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 2018, 27, 1140–1154. [Google Scholar] [CrossRef]
- Ritchie, M.W.; Knapp, E.E. Establishment of a long-term fire salvage study in an interior ponderosa pine forest. J. For. 2014, 112, 395–400. [Google Scholar] [CrossRef]
- Castro, J.; Allen, C.D.; Molina-Morales, M.; Marañón-Jiménez, S.; Sánchez-Miranda, Á.; Zamora, R. Salvage Logging versus the use of burnt wood as a nurse object to promote post-fire tree seedling establishment. Restor. Ecol. 2011, 19, 537–544. [Google Scholar] [CrossRef]
- Pons, P. Delayed effects of fire and logging on cicada nymph abundance. J. Insect Conserv. 2015, 19, 601–606. [Google Scholar] [CrossRef]
- Toivio, J.; Helmisaari, H.; Palviainen, M.; Lindeman, H.; Ala-ilomäki, J.; Sirén, M.; Uusitalo, J. Impacts of timber forwarding on physical properties of forest soils in southern Finland. For. Ecol. Manag. 2017, 405, 22–30. [Google Scholar] [CrossRef]
- Wagenbrenner, J.W.; MacDonald, L.H.; Coats, R.N.; Robichaud, P.R.; Brown, R.E. Effects of post-fire salvage logging and a skid trail treatment on ground cover, soils, and sediment production in the interior western United States. For. Ecol. Manag. 2015, 335, 176–193. [Google Scholar] [CrossRef]
- Doblas-Miranda, E.; Sánchez-Piñero, F.; González-Megías, A. Different structuring factors but connected dynamics shape litter and belowground soil macrofaunal food webs. Soil Biol. Biochem. 2009, 41, 2543–2550. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Castro, J.; Kowalski, A.S.; Serrano-Ortiz, P.; Reverter, B.R.; Sánchez-Cañete, E.P.; Zamora, R. Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem. For. Ecol. Manag. 2011, 261, 1436–1447. [Google Scholar] [CrossRef]
- Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 2001, 49, 10–41. [Google Scholar]
- Edmonds, R.; Marra, J.L.; Barg, A.K.; Sparks, G.B. Influence of forest harvesting on soil organisms and decomposition in Western Washington. In General Technical Report; PSW-GTR-178; Pacific Southwest Research Station, USDA Forest Service: Redding, CA, USA, 2000. [Google Scholar]
- Marra, J.L.; Edmonds, R.L. Effects of coarse woody debris and soil depth on the density and diversity of soil invertebrates on clearcut and forested sites on the Olympic Peninsula, Washington. Environ. Entomol. 1998, 27, 1111–1124. [Google Scholar] [CrossRef]
- Siira-Pietikäinen, A.; Haimi, J. Changes in soil fauna 10 years after forest harvestings: Comparison between clear felling and green-tree retention methods. For. Ecol. Manag. 2009, 258, 332–338. [Google Scholar] [CrossRef]
- McCain, C.M.; Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 1–10. [Google Scholar]
- Leverkus, A.B.; Puerta-Piñero, C.; Guzmán-Álvarez, J.; Navarro, J.; Castro, J. Post-fire salvage logging increases restoration costs in a Mediterranean mountain ecosystem. New For. 2012, 43, 601–613. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Castro, J. Effect of decomposing post-fire coarse woody debris on soil fertility and nutrient availability in a Mediterranean ecosystem. Biogeochemistry 2013, 112, 519–535. [Google Scholar] [CrossRef]
- Molinas-González, C.R.; Leverkus, A.B.; Marañón-Jiménez, S.; Castro, J. Fall rate of burnt pines across an elevational gradient in a Mediterranean mountain. Eur. J. For. Res. 2017, 136, 401–409. [Google Scholar] [CrossRef]
- Dowdy, W.W. The Influence of Temperature on vertical migration of invertebrates inhabiting different soil types. Ecology 1944, 25, 449–460. [Google Scholar] [CrossRef]
- Sadaka, N.; Ponge, J.F. Soil animal communities in holm oak forests: Influence of horizon, altitude and year. Eur. J. Soil Biol. 2003, 39, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Lizarralde, I.; Rodríguez, F.; Bravo, F. Innovation in the Value chain of wood products: data, equations and life-cycle analysis. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravo, F., LeMay, V., Jandl, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 235–249. [Google Scholar]
- Herrero, C.; Berraondo, I.; Bravo, F.; Pando, V.; Ordóñez, C.; Olaizola, J.; Martín-Pinto, P.; de Rueda, J.A.O. Predicting mushroom productivity from long-term field-data series in mediterranean pinus pinaster ait. forests in the context of climate change. Forests 2019, 10, 206. [Google Scholar] [CrossRef] [Green Version]
- Bravo, F.; Alvarez-Gonzalez, J.G.; Del Rio, M.; Barrio, M.; Bonet, J.A.; Bravo-Oviedo, A.; Calama, R.; Castedo-Dorado, F.; Crecente-Campo, F.; Condes, S.; et al. Growth and yield models in Spain: Historical overview, contemporary examples and perspectives. For. Syst. 2011, 20, 315. [Google Scholar] [CrossRef] [Green Version]
- Leverkus, A.B.; Lorite, J.; Navarro, F.B.; Sánchez-Cañete, E.P.; Castro, J. Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities. J. Environ. Manag. 2014, 133, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Crawley, M.J. The R Book, 2nd ed.; Wiley & Sons: New Delhi, India, 2013. [Google Scholar]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002; Volume 277. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package; 2018, R package version 2.5-3. Available online: https://CRAN.R-project.org/package=vegan (accessed on 10 October 2018).
- Chapman, M.G.; Underwood, A.J. Ecological patterns in multivariate assemblages: Information and interpretation of negative values in ANOSIM test. Mar. Ecol. Ptogress Ser. 1999, 180, 257–265. [Google Scholar] [CrossRef]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. cluster: Cluster Analysis Basics and Extensions; 2018, R package version 2.0.7-1. Available online: https://svn.r-project.org/R-packages/trunk/cluster (accessed on 23 May 2019).
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available online: http://www.r-project.org (accessed on 19 November 2019).
- Doblas-Miranda, E.; Sánchez-Piñero, F.; González-Megías, A. Soil macroinvertebrate fauna of a Mediterranean arid system: Composition and temporal changes in the assemblage. Soil Biol. Biochem. 2007, 39, 1916–1925. [Google Scholar] [CrossRef]
- Broza, M.; Izhaki, I. Post-fire arthropod assemblages in Mediterranean forest soils in Israel. Int. J. Wildland Fire 1997, 7, 317–325. [Google Scholar] [CrossRef]
- Jabin, M.; Mohr, D.; Kappes, H.; Topp, W. Influence of deadwood on density of soil macro-arthropods in a managed oak-beech forest. For. Ecol. Manag. 2004, 194, 61–69. [Google Scholar] [CrossRef]
- Bengtsson, J.; Persson, T.; Lundkvist, H. Long-term effects of logging residue addition and removal on macroarthropods and enchytraeids. J. Appl. Ecol. 1997, 34, 1014–1022. [Google Scholar] [CrossRef]
- Pressler, Y.; Moore, J.C.; Cotrufo, M.F. Belowground community responses to fire: Meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 2019, 128, 309–327. [Google Scholar] [CrossRef]
- Doamba, S.W.M.F.; Savadogo, P.; Nacro, H.B. Effects of burning on soil macrofauna in a savanna-woodland under different experimental fuel load treatments. Appl. Soil Ecol. 2014, 81, 37–44. [Google Scholar] [CrossRef]
- Malmström, A. Temperature tolerance in soil microarthropods: Simulation of forest-fire heating in the laboratory. Pedobiologia 2008, 51, 419–426. [Google Scholar] [CrossRef]
- Korobushkin, D.I.; Gorbunova, A.Y.; Zaitsev, A.S.; Gongalsky, K.B. Trait-specific response of soil macrofauna to forest burning along a macrogeographic gradient. Appl. Soil Ecol. 2017, 112, 97–100. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L.; Zavala, M.; Bonet, F.; Zamora, R. Are pine plantations valid tools for restoring Mediterranean forest? An assessment along gradients of climatic conditions, stand density and distance to seed sources. Ecol. Appl. 2009, 19, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A. Communities and Ecosystems—Linking the Aboveground and Belowground Components; Levin, S.A., Horn, H.S., Eds.; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Franklin, J.F.; MacMahon, J.A. Messages from a Mountain. Science 2000, 288, 1183–1184. [Google Scholar] [CrossRef] [Green Version]
- Bowd, E.J.; Lindenmayer, D.B.; Banks, S.C.; Blair, D.P. Logging and fire regimes alter plant communities. Ecol. Appl. 2018, 28, 826–841. [Google Scholar] [CrossRef] [Green Version]
- Rahbek, C. The elevational gradient of species richness: A uniform pattern? Ecography 1995, 18, 200–205. [Google Scholar] [CrossRef]
- Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 2010, 19, 287–302. [Google Scholar] [CrossRef]
- Körner, C. The use of “altitude” in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Grodsky, S.M.; Moorman, C.E.; Fritts, S.R.; Campbell, J.W.; Sorenson, C.E.; Bertone, M.A.; Castleberry, S.B.; Wigley, T.B. Invertebrate community response to coarse woody debris removal for bioenergy production from intensively managed forests. Ecol. Appl. 2017, 1–14. [Google Scholar] [CrossRef]
- Ober, H.K.; DeGroote, L.W. Effects of litter removal on arthropod communities in pine plantations. Biodivers. Conserv. 2011, 20, 1273–1286. [Google Scholar] [CrossRef]
- Wermelinger, B.; Moretti, M.; Duelli, P.; Lachat, T.; Pezzatti, G.B.; Obrist, M.K. Impact of salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 2017, 391, 9–18. [Google Scholar] [CrossRef]
- Fontaine, J.B.; Donato, D.C.; Campbell, J.L.; Martin, J.G.; Law, B.E. Effects of post-fire logging on forest surface air temperatures in the Siskiyou Mountains, Oregon, USA. Forestry 2010, 83, 477–482. [Google Scholar] [CrossRef]
- Thorn, S.; Bußler, H.; Fritze, M.A.; Goeder, P.; Müller, J.; Weiß, I.; Seibold, S. Canopy closure determines arthropod assemblages in microhabitats created by windstorms and salvage logging. For. Ecol. Manag. 2016, 381, 188–195. [Google Scholar] [CrossRef]
- Lee, S.I.; Spence, J.R.; Langor, D.W. Succession of saproxylic beetles associated with decomposition of boreal white spruce logs. Agric. For. Entomol. 2014, 16, 391–405. [Google Scholar] [CrossRef]
- Ulyshen, M.D. Wood decomposition as influenced by invertebrates. Biol. Rev. 2016, 91, 70–85. [Google Scholar] [CrossRef]
- Molinas-González, C.R.; Castro, J.; Leverkus, A.B. Deadwood decay in a burnt Mediterranean pine reforestation. Forests 2017, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Doblas-Miranda, E.; Sánchez-Piñero, F.; González-Megías, A. Different microhabitats affect soil macroinvertebrate assemblages in a Mediterranean arid ecosystem. Appl. Soil Ecol. 2009, 41, 329–335. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Anula, J.L. Responses of arthropods to large-scale manipulations of dead wood in loblolly pine stands of the Southeastern United States. Environ. Entomol. 2009, 38, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Amaranthus, M.P.; Parrish, D.S.; Perry, D.A. Decaying logs as moisture reservoir after drought and wildfire. In Watershed ’89: A conference on the Stewardship of Soil, Air, and Water Resources; Alexander, E.B., Ed.; R1O-MB-77; USDA Forest Service: Juneau, AK, USA, 1989; pp. 191–194. [Google Scholar]
- Danks, H.V. Winter habitats and ecological adaptations for winter survival. In Insects at Low Temperature; Richard, E., Lee, J., Denlinger, D.L., Eds.; Chapman and Hall: New York, NY, USA; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Leverkus, A.B.; Rojo, M.; Castro, J. Habitat complexity and individual acorn protectors enhance the post-fire restoration of oak forests via seed sowing. Ecol. Eng. 2015, 83, 276–280. [Google Scholar] [CrossRef]
- Auclerc, A.; Le Moine, J.M.; Hatton, P.J.; Bird, J.A.; Nadelhoffer, K.J. Decadal post-fire succession of soil invertebrate communities is dependent on the soil surface properties in a northern temperate forest. Sci. Total Environ. 2019, 647, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Torres-Muros, L.; Hódar, J.A.; Zamora, R. Effect of habitat type and soil moisture on pupal stage of a Mediterranean forest pest (Thaumetopoea pityocampa). Agric. For. Entomol. 2017, 19, 130–138. [Google Scholar] [CrossRef]
- Foldi, I. Ground pearls: A generic revision of the Margarodidae sensu stricto (Hemiptera: Sternorrhyncha: Coccoidea). Annales de la Societe Entomologique de France 2005, 41, 81–125. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Hassall, M. Woodlice (Isopoda: Oniscidea): Their potential for assessing sustainability and use as bioindicators. Agric. Ecosyst. Environ. 1999, 74, 157–165. [Google Scholar] [CrossRef]
- Boucher, P.; Hébert, C.; Francoeur, A.; Sirois, L. Postfire succession of ants (Hymenoptera: Formicidae) nesting in dead wood of northern boreal forest. Environ. Entomol. 2015, 44, 1316–1327. [Google Scholar] [CrossRef]
- Higgins, R.J.; Lindgren, B.S. The fine scale physical attributes of coarse woody debris and effects of surrounding stand structure on its utilization by ants (Hymenoptera: Formicidae) in British Columbia, Canada. In Insect Biodiversity and Dead Wood, Proceedings of a Symposium for the 22 nd International Congress of Entomology; Gen. Tech. Rep. SRS-93; Grove, S.J., Hanula, J.L., Eds.; Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2006; pp. 67–74. [Google Scholar]
- Cerdá, X.; Retana, J. Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 1997, 78, 467–474. [Google Scholar] [CrossRef]
- Buczkowski, G.; Bennett, G. Protein marking reveals predation on termites by the woodland ant, Aphaenogaster rudis. Insectes Sociaux 2007, 54, 219–224. [Google Scholar] [CrossRef]
Plots | ||
---|---|---|
Low Plot | High Plot | |
Coordinates 1 | 36°57′12″ N 03°29′36″ W | 36°58′06″ N 03°28′49″ W |
Area (ha) | 17.7 | 31.7 |
Elevation (m above sea level) 1 | 1477 | 2053 |
Slope (%) | 25−30 | 35 |
Mean daily minimum temp. (°C) 2 | 6.8 ± 0.2 | 3.4 ± 0.2 |
Mean daily maximum temp. (°C) 2 | 17.1 ± 0.2 | 13.4 ± 0.2 |
Mean ann. precip. (mm) 2 | 536 ± 41 | 630 ± 42 |
Dominant species | Pinus pinaster/P. nigra | P. sylvestris |
Tree density (individuals ha−1) 3 | 1448 ± 66 | 1010 ± 49 |
Basal tree diameter (cm) 4 | 17.7 ± 0.15 | 15.7 ± 0.13 |
Tree height (m) 5 | 6.3 ± 0.1 | 6.2 ± 0.1 |
dbh (cm) 5 | 13.3 ± 0.2 | 10.8 ± 0.2 |
Wood biomass (kg ha−1) 6 | 55,273 | 26,166 |
Representative plants 7 | Ulex parviflorus, Festuca scariosa, Dactylis glomerata, Euphorbia flavicoma | Vaccaria hispanica, Sesamoides purpurascens subsp. prostrata, Senecio nebrodensis, Heliantemun appeninum |
Macroarthropod Abundance | Macroarthropod Richness | |||||
---|---|---|---|---|---|---|
Hypothesis 1 | X2 | P | X2 | P | ||
1 | Treatment × Plot | 7.34 | <0.01 | Treatment × Plot | 5.5 | <0.05 |
2 | Treatment × Plot | 6.30 | <0.05 | Treatment × Plot | 9.69 | <0.01 |
3 | Microhabitat × Plot 2 | 0.064 | 0.8 | Microhabitat × Plot 2 | 2.06 | 0.15 |
Microhabitat 2 | 0.01 | 0.891 | Microhabitat 2 | 0.11 | 0.738 | |
Plot | 7.16 | <0.001 | Plot | 4.69 | <0.05 |
Low Plot | High Plot | |||||
---|---|---|---|---|---|---|
Response | Salvage Logging | Partial Cut | Salvage Logging | Partial Cut | ||
Bare Soil | Under Logs | Bare Soil | Under Logs | |||
Abundance 1 | 1.65 ± 0.41 | 2.26 ± 0.74 | 2.25 ± 0.61 | 0.00 ± 0.00 | 0.28 ± 0.09 | 0.21 ± 0.06 |
Richness 1 | 0.61 ± 0.1 | 0.51 ± 0.09 | 0.7 ± 0.11 | 0.00 ± 0.00 | 0.23 ± 0.06 | 0.2 ± 0.05 |
Low Plot | High Plot | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Dead-Wood Microhabitat | Treatment | Dead-Wood Microhabitat | |||||||||||||
Taxa | Salvage Logging | Partial Cut | Z | P 1,2 | Partial Cut | Z 3 | P 1,2,3 | Salvage Logging | Partia Cut | Z 3 | P 1,2,3 | Partial Cut | Z 3 | P 1,2,3 | ||
Bare Soil | Under Logs | Bare Soil | Under Logs | |||||||||||||
Hymenoptera | 0.133 ± 0.05 | 0.566 ± 0.209 | −1.11 | 0.266 | 0.283 ± 0.142 | 0.85 ± 0.332 | −1.689 | 0.091 | 0.383 ± 0.167 | 0.225 ± 0.126 | −0.244 | 0.806 | 0.433 ± 0.21 | 0.016 ± 0.01 | 1.387 | 0.165 |
Lepidoptera | 0.216 ± 0.064 | 0.008 ± 0.006 | 2.25 | 0.023 | 0 | 0.016 ± 0.011 | NA | NA | 0 | 0 | NA | NA | 0 | 0 | NA | NA |
Hemiptera | 1.100 ± 0.217 | 1.775 ± 0.378 | −0.65 | 0.513 | 2.000 ± 0.524 | 1.550 ± 0.396 | 0.192 | 0.847 | 0 | 0.050 ± 0.018 | NA | NA | 0.066 ± 0.02 | 0.033 ± 0.01 | 0.47 | 0.638 |
Aranea | 0.016 ± 0.009 | 0.008 ± 0.006 | 0.5 | 0.616 | 0.016 ± 0.011 | 0 | NA | NA | 0 | 0.008 ± 0.006 | NA | NA | 0 | 0.016 ± 0.011 | NA | NA |
Geophilomorpha | 0.050 ± 0.016 | 0.041 ± 0.017 | 0.53 | 0.59 | 0.033 ± 0.016 | 0.050 ± 0.026 | −0.01 | 0.98 | 0 | 0.008 ± 0.006 | NA | NA | 0.016 ± 0.0111 | 0 | NA | NA |
Isopoda | 0.016 ± 0.009 | 0.125 ± 0.095 | −0.006 | 0.994 | 0 | 0.250 ± 0.165 | NA | NA | 0 | 0.008 ± 0.006 | NA | NA | 0 | 0.016 ± 0.01 | NA | NA |
Diptera | 0.100 ± 0.029 | 0.150 ± 0.043 | −0.701 | 0.483 | 0.166 ± 0.063 | 0.133 ± 0.04 | 0.005 | 0.996 | 0 | 0.016 ± 0.009 | NA | NA | 0.033 ± 0.016 | 0 | NA | NA |
Coleoptera | 0.116 ± 0.027 | 0.083 ± 0.022 | 0.579 | 0.562 | 0.033 ± 0.016 | 0.133 ± 0.035 | −1.73 | 0.082 | 0 | 0.141 ± 0.032 | NA | NA | 0.150 ± 0.043 | 0.133 ± 0.035 | 0.004 | 0.996 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinas-González, C.R.; Castro, J.; González-Megías, A.; Leverkus, A.B. Effects of Post-Fire Deadwood Management on Soil Macroarthropod Communities. Forests 2019, 10, 1046. https://doi.org/10.3390/f10111046
Molinas-González CR, Castro J, González-Megías A, Leverkus AB. Effects of Post-Fire Deadwood Management on Soil Macroarthropod Communities. Forests. 2019; 10(11):1046. https://doi.org/10.3390/f10111046
Chicago/Turabian StyleMolinas-González, Carlos R., Jorge Castro, Adela González-Megías, and Alexandro B. Leverkus. 2019. "Effects of Post-Fire Deadwood Management on Soil Macroarthropod Communities" Forests 10, no. 11: 1046. https://doi.org/10.3390/f10111046
APA StyleMolinas-González, C. R., Castro, J., González-Megías, A., & Leverkus, A. B. (2019). Effects of Post-Fire Deadwood Management on Soil Macroarthropod Communities. Forests, 10(11), 1046. https://doi.org/10.3390/f10111046