Development of a Smoke Dispersion Forecast System for Korean Forest Fires
Abstract
:1. Introduction
2. Korean Forest Fire Smoke Dispersion Prediction (KFSDP) System
2.1. Forest Fire Spread Prediction Model
2.2. Fuel Loadings
2.3. Fuel Consumption
2.4. Emission Production Module (EPM)
2.5. Smoke Dispersion Module
3. Results and Discussion
3.1. Evaluation of Smoke Plume Dispersion
3.2. Characteristics of CO, PM10, and PM2.5 Plume Dispersions
3.3. Effects of Wind Speed and Direction on Smoke Plume Dispersion
3.4. Effects of Multiple Fires on Smoke Plume Dispersion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Michel, C.; Liousse, C.; Gregoire, J.M.; Tansey, K.; Carmichael, G.R.; Woo, J.H. Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. J. Geophys. Res. 2005, 110, 1–15. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.; O’Neill, S.; Wynne, K.K. Estimating emissions from fires in North America for air quality modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Lapina, K.; Honrath, R.E.; Owen, R.C.; Val Martı´n, M.; Pfister, G. Evidence of significant large-scale impacts of boreal fires on ozone levels in the midlatitude Northern Hemisphere free troposphere. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Simpson, I.J.; Rowland, F.S.; Meinardi, S.; Blake, D.R. Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Berg, T.; Burkhart, J.F.; Fjæraa, A.M.; Forster, C.; Herber, A.; Hov, O.; Lunder, C.; McMillan, W.W.; Oltmans, S.; et al. Arctic smoke- record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys. 2007, 7, 511–534. [Google Scholar] [CrossRef]
- Liu, Y.; Kahn, R.A.; Chaloulakou, A.; Koutrakis, P. Analysis of the impact of the forest fires in August 2007 on air quality of Athens using multi-sensor aerosol remote sensing data, meteorology and surface observations. Atmos. Environ. 2009, 43, 3310–3318. [Google Scholar] [CrossRef]
- Langmann, B.; Duncan, B.; Textor, C.; Trentmann, J.; van der Werf, G.R. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 2009, 43, 107–116. [Google Scholar] [CrossRef]
- IPCC. Part A: Global and Sectoral Aspects. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–1132. ISBN 9781107415379. [Google Scholar]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Air Quality Criteria for Particulate Matter (Final Report, 2004); EPA 600/P-99/002aF-bF; U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- Kreyling, W.G.; Manuela, S.; Winfried, M. Dosimetry and toxicology of ultrafine particles. J. Aerosol. Med. 2004, 17, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Malm, W.C. Introduction to Visibility; Colorado State University, Cooperative Institute for Research in the Atmosphere (CIRA): Fort Collins, CO, USA, 1999; pp. 1–70. ISSN 0737-5352-40. [Google Scholar]
- Heriyanto, E.; Syaufina, L.; Sobri, M. Forecasting simulation of smoke dispersion from forest and land fires in Indonesia. Procedia Environ. Sci. 2015, 24, 111–119. [Google Scholar] [CrossRef]
- Kim, K.H.; Zsuffa, L. Reforestation of South Korea: The history and analysis of a unique case in forest tree improvement and forestry. Forest. Chron. 1994, 70, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.S.; Lee, K.H.; Lee, Y.G.; Youn, H.J.; Park, C.R.; Choi, H.T.; Kim, T.G. Lessons Learned from the Republic of Korea’s National Reforestation Programme; Research Report; Korea Forest Service: Daejeon, Korea, 2015; ISBN 92-9225-579-7.
- Kwon, C.G.; Lee, S.Y.; Lee, H.P. Analysis of forest fire conditions on forest structure changing annually. In Proceedings of the Korea Inst. of Fire Sci. Eng. Conference, Jeonju, Korea, 21–22 April 2011; pp. 421–425. [Google Scholar]
- Korea Forest Research Institute (KFRI). The Development of Evacuation Area-Estimating Method in Response to Forest Fire Smoke Diffusion; KFRI: Seoul, Korea, 2014; pp. 11–18.
- Clinton, N.; Gong, P.; Scott, K. Quantification of pollutants emitted from very large wildland fires in Southern California, USA. Atmos. Environ. 2006, 40, 3686–3695. [Google Scholar] [CrossRef] [Green Version]
- Larkin, N.K.; O’Neill, S.; Solomon, R.; Raffuse, S.; Strand, T.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.L.; Ferguson, S.A. The BlueSky smoke modeling framework. Int. J. Wildland Fire 2009, 18, 906–920. [Google Scholar] [CrossRef]
- Goodrick, S.L.; Achtemeier, G.L.; Larkin, N.K.; Liu, Y.; Strand, T.M. Modelling smoke transport from wildland fires: A review. Int. J. Wildland. Fire 2012, 22, 83–94. [Google Scholar] [CrossRef]
- Anderson, K. Smoke Forecasts from Wildland Fires for Canada; Contractor Report: DRDC-RDDC-2016-C179; Natural Resources Canada: Edmonton, AB, Canada, 2016.
- Rolph, G.D.; Draxler, R.R.; Stein, A.F.; Taylor, A.; Ruminski, M.G.; Kondragunta, S.; Zeng, J.; Huang, H.; Manikin, G.; McQueen, J.T.; et al. Description and verification of the NOAA smoke forecasting system: The 2007 Fire Season. Weather Forecast. 2009, 24, 361–378. [Google Scholar] [CrossRef]
- Wain, A.G.; Mills, G.A. The Australian Smoke Management Forecast System; BMRC Research Report No. 117; Bureau of Meteorology Research Centre: Melbourne, Australia, 2006.
- O’Neill, S.M.; Larkin, N.K.; Hoadley, J.; Mills, G.; Vaughan, J.K.; Draxle, R.; Rolph, G.; Ruminski, M.; Ferguson, S.A. Regional real-time smoke prediction systems. In Developments in Environmental Science, Wildland Fires and Air Pollution; Bytnerowicz, A., Arbaugh, M.J., Riebau, A.R., Andersen, C., Eds.; Elsevier: Oxford, UK, 2009; Volume 8, pp. 499–534. ISBN 978-0-08-055609-3. [Google Scholar]
- McKenzie, D.; Raymond, C.L.; Kellogg, L.K.B.; Norheim, R.A.; Andreu, A.G.; Bayard, A.C.; Kopper, K.E.; Elman, E. Mapping fuels at multiple scales: Landscape application of the Fuel Characteristic Classification System. Can. J. For. Res. 2007, 37, 2421–2437. [Google Scholar] [CrossRef]
- Sandberg, D.V.; Peterson, J.L. A source strength model for prescribed fires in coniferous logging slash. In Proceedings of 21st Annual Meeting of the Air Pollution Control Association; Northwest Section: Pittsburgh, PA, USA, 1984; p. 14. [Google Scholar]
- Anderson, G.K.; Sandberg, D.V.; Norheim, R.A. Fire Emission Production Simulator (FEPS) User’s Guide; US Forest Service Pacific Northwest Research, Fire and Environmental Research Applications Team: Seattle, WA, USA, 2004.
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; NCAR Technical Note: NCAR/TN-468+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2005. [Google Scholar]
- Scire, J.G.; Strimaitis, D.G.; Yamartino, R.J. A User’s Guide for the CALPUFF Dispersion Model (Version 5); Earth Tech Inc.: Concord, MA, USA, 2000. [Google Scholar]
- Park, J.; Youn, H.J.; Lee, B.D.; Woo, C.S.; Kim, Y.; Lee, B. Review of wildland fire smoke dispersion models and suggestion for Korean forest-fire smoke impact forecast system. J. Korean Soc. Hazard. Mitig. 2016, 16, 197–208. [Google Scholar] [CrossRef]
- Anderson, D.; Catchpole, E.; de Mestre, N.; Parkes, T. Modelling the spread of grass fires. J. Aust. Math. Soc. 1982, 23, 451–466. [Google Scholar] [CrossRef]
- Richards, G.D. A general mathematical framework for modeling two-dimensional wildland fire spread. Int. J. Wildl. Fire 1995, 5, 63–72. [Google Scholar] [CrossRef]
- Rothermel, R. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Research Paper INT-115; USDA Forest Service: Ogden, UT, USA, 1972.
- Lee, B.; Kwon, C.; Won, M.; Kim, S.; Kim, Y.; Lee, Y.; Choi, C. Development of Advanced Fuel Estimation for Korean Coniferous Tree Species; Research Report: 11-1400377-000882-01; Korea Forest Research Institute: Seoul, Korea, 2016.
- Lee, B.D.; Kim, S.Y.; Youn, H.J.; Kang, S.M.; Seo, Y.G.; Kim, W.; Heo, S.M. Evaluation of exposure to hazard substances in forest fire suppression. Korean Rev. Crisis Emerg. Manag. 2015, 11, 111–123. [Google Scholar] [CrossRef]
- Nelson, R.M. An Evaluation of the Carbon Balance Technique for Estimating Emission Factors and Fuel Consumption in Forest Fires; Research Paper SE-231; U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1982.
- Ward, D.E.; Susott, R.A.; Kauffman, J.B.; Babbitt, R.E.; Cumming, D.L.; Dias, B.; Holben, B.N.; Kaufman, Y.L.; Rasmussen, R.A.; Setzer, A.W. Smoke and fire characteristics for cerrado and deforestation burns in Brazil: Base-B experiment. J. Geophys. Res. 1992, 97, 14601–14619. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Document Number 05-21627; Environmental Protection Agency: Washington, DC, USA, 2005; pp. 68217–68261.
- Zannetti, P. Air Pollution Modeling: Theories, Computational Methods, and Available Software, 1st ed.; Zannetti, P., Ed.; Springer: New York, NY, USA, 1990; pp. 1–106. ISBN 978-1-4757-4465-1. [Google Scholar]
- Pasquill, F. Atmospheric Dispersion Parameters in Gaussian Plume Modeling, Part II. Possible Requirements for Change in the Turner Workbook Values; EPA-600/4-76-030b; Environmental Protection Agency: Washington, DC, USA, 1974.
- Cho, I.H.; Woo, H.D.; Lim, J.O. Development and application of Korean weather research and forecasting (KWRF). In Proceedings of the Spring Meeting Korean Meteorological Society, Gangneung, Korea, 28–29 April 2005; pp. 368–369. [Google Scholar]
- Korea Environment Corporation. Available online: https://www.airkorea.or.kr/eng/cai/cai1 (accessed on 10 April 2018).
- Ronchi, E.; Gwynne, S.M.; Rein, G.; Wadhwani, R.; Intini, P.; Bergstedt, A. E-Sanctuary: Open Multi-Physics Framework for Modelling Wildfire Urban Evacuation; Fire Protection Research Foundation Report; Fire Protection Research Foundation: Quincy, MA, USA, 2017. [Google Scholar]
- Intini, P.; Ronchi, E.; Gwynne, S.; Pel, A. Traffic modeling for wildland–urban interface fire evacuation. J. Transp. Eng. Part. A Syst. 2019, 145, 04019002. [Google Scholar] [CrossRef]
- Lavdas, L.G. Program. VSMOKE—Users Manual; General Technical Report SRS-6; USDA Forest Service, Southeastern Forest Experiment Station: Macon, GA, USA, 1996.
- Sestak, M.L.; Riebau, A.R. SASEM: Simple Approach Smoke Estimation Model; Technical Note 382; U.S. Bureau of Land Management, Wyoming State Office: Cheyenne, WY, USA, 1988.
- U.S. Army Corps of Engineering (USACE). Available online: http://viewer.smoke.airfire.org/vsmoke.php (accessed on 28 April 2018).
Conifer Fuels | Broadleaf Fuels | |||
---|---|---|---|---|
Surface Layer | Crown Layer | Surface Layer | Crown Layer | |
Surface fire | 54% | - | 62% | - |
Crown fire | 76% | 89% | - | - |
Fuel Type | Fire Type | Vegetation Type | Measured Emission Factors | Estimated Emission Factors | ||||
---|---|---|---|---|---|---|---|---|
CO | PM2.5 * | PM10 ** | CO | PM2.5 | PM10 | |||
ppm | μg/m3 | g/kg | ||||||
Conifer fuels | Surface fire | Pine leaves | 27.30 | 4458.10 | 5232.80 | 32.50 | 4.60 | 5.39 |
Crown fire | Pine dead/live leaves and needles | 34.20 | 16,444.30 | 20,785.60 | 49.00 | 20.50 | 25.94 | |
Broadleaf fuels | Surface fire | Oriental oak dead leaves | 22.60 | 7326.00 | 7962.00 | 28.80 | 8.10 | 8.90 |
CO 1 h-Average (ppm) | PM10 * 24 h-Average (μg/m3) | PM2.5 ** 24 h-Average (μg/m3) | Category | CAI | Level of Health Concern | Health Effects |
---|---|---|---|---|---|---|
0–2 | 0–30 | 0–15 | A | 0–50 | Good | A level that will not impact patients suffering from diseases related to air pollution. |
2.01–9 | 31–80 | 16–35 | B | 51–100 | Moderate | A level that may have a slight impact on patients in cases of chronic exposure. |
9.01–15 | 81–150 | 36–75 | C | 101–250 | Unhealthy | A level that may have harmful impacts on patients and members of sensitive groups (children, aged, or sick people), and also cause the general public irritation. |
15.01–30 | 151–300 | Greater than 76 | D | Greater than 251 | Very unhealthy | A level which may have serious impacts on patients and members of sensitive groups in cases of acute exposure. |
30.01–50 | 301–600 | E | A level which may necessitate emergency measures for patients and members of sensitive groups and have harmful impacts on the public. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Cho, S.; Lee, S.-K.; Woo, C.; Park, J. Development of a Smoke Dispersion Forecast System for Korean Forest Fires. Forests 2019, 10, 219. https://doi.org/10.3390/f10030219
Lee B, Cho S, Lee S-K, Woo C, Park J. Development of a Smoke Dispersion Forecast System for Korean Forest Fires. Forests. 2019; 10(3):219. https://doi.org/10.3390/f10030219
Chicago/Turabian StyleLee, Boknam, Seungwan Cho, Seung-Kii Lee, Choongshik Woo, and Joowon Park. 2019. "Development of a Smoke Dispersion Forecast System for Korean Forest Fires" Forests 10, no. 3: 219. https://doi.org/10.3390/f10030219
APA StyleLee, B., Cho, S., Lee, S. -K., Woo, C., & Park, J. (2019). Development of a Smoke Dispersion Forecast System for Korean Forest Fires. Forests, 10(3), 219. https://doi.org/10.3390/f10030219