Landsat 8 Based Leaf Area Index Estimation in Loblolly Pine Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Field Data
2.2. Landsat Data and LAI Regression Models
2.2.1. Landsat Sensors
2.2.2. Vegetation Indices and Reflectance
2.2.3. LAI Regression Models
2.2.4. Georegistration Accuracy
2.2.5. Comparison to Current Operational Standard
3. Results
3.1. Georegistration Impacts
3.2. TOA versus Surface Reflectance
3.3. Vegetation Indices Comparison
3.4. LAI Model
3.5. Comparison to Current Operational Standard
4. Discussion
4.1. Georegistration Impacts
4.2. TOA versus Surface Reflectance
4.3. Vegetation Indices Comparison
4.4. LAI Model
4.5. Comparison to Current Operational Standard
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rubilar, R.A.; Lee Allen, H.; Fox, T.R.; Cook, R.L.; Albaugh, T.J.; Campoe, O.C. Advances in silviculture of intensively managed plantations. Curr. For. Rep. 2018, 4, 23–34. [Google Scholar] [CrossRef]
- Allen, H.L.; Fox, T.R.; Campbell, R.G. What is ahead for intensive pine plantation silviculture in the South? South. J. Appl. For. 2005, 29, 62–69. [Google Scholar]
- Osem, Y.; O’Hara, K. An ecohydrological approach to managing dryland forests: Integration of leaf area metrics into assessment and management. Forestry 2016, 89, 338–349. [Google Scholar] [CrossRef]
- Sampson, D.A.; Amatya, D.M.; Lawson, C.D.B.; Skaggs, R.W. Leaf area index (LAI) of loblolly pine and emergent vegetation following a harvest. Trans. ASABE 2011, 54, 2057–2066. [Google Scholar] [CrossRef]
- Fox, T.R.; Allen, L.H.; Albaugh, T.J.; Rubilar, R.; Carlson, C.A. Tree nutrition and forest fertilization of pine plantations in the southern United States. South. J. Appl. For. 2007, 31, 5–11. [Google Scholar]
- Albaugh, T.J.; Allen, H.L.; Dougherty, P.M.; Kress, L.W.; King, J.S. Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. For. Sci. 1998, 44, 317–328. [Google Scholar]
- Campoe, O.C.; Stape, J.L.; Albaugh, T.J.; Allen, H.L.; Fox, T.R.; Rubilar, R.; Binkley, D. Fertilization and irrigation effects on tree level aboveground net primary production, light-interception and light use efficiency in loblolly pine plantation. For. Ecol. Manag. 2013, 288, 43–48. [Google Scholar] [CrossRef]
- Samuelson, L.J.; Pell, C.J.; Stokes, T.A.; Bartkowiak, S.M.; Akers, M.K.; Kane, M.; Markewitz, D.; McGuire, M.A.; Teskey, R.O. Two-year throughfall and fertilization effects on leaf physiology and growth of loblolly pine in the Georgia Piedmont. For. Ecol. Manag. 2014, 330, 29–37. [Google Scholar] [CrossRef]
- Blinn, C.E.; Albaugh, T.J.; Fox, T.R.; Wynne, R.H.; Stape, J.L.; Rubilar, R.A.; Allen, H.L. A method for estimating deciduous competition in pine stands using Landsat. South. J. Appl. For. 2012, 36, 71–78. [Google Scholar] [CrossRef]
- Gonzalez-Benecke, C.A.; Jokela, E.J.; Martin, T.A. Modeling the effects of stand development, site quality, and silviculture on leaf area index, litterfall, and forest floor accumulation in loblolly and slash pine plantations. For. Sci. 2012, 58, 457–471. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Kustas, W.P.; Houborg, R. Retrieving leaf area index from Landsat using MODIS LAI products and field measurements. IEEE Geosci. Remote Sens. 2014, 11, 773–777. [Google Scholar]
- Vogel, S.A.; McKelvey, K.; Gholz, H.L.; Curran, P.J.; Ewel, K.C.; Cropper, W.P.; Teskey, R.O. Dynamics of canopy structure and light interception in Pinus elliottii stands, north Florida. Ecol. Monogr. 2006, 61, 33–51. [Google Scholar]
- Sampson, D.A.; Albaugh, T.J.; Johnsen, K.H.; Allen, H.L.; Zarnoch, S.J. Monthly leaf area index estimates from point-in-time measurements and needle phenology for Pinus taeda. Can. J. For. Res. 2003, 33, 2477–2490. [Google Scholar] [CrossRef]
- Eriksson, H.M.; Eklundh, L.; Kuusk, A.; Nilson, T. Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates. Remote Sens. Environ. 2006, 103, 408–418. [Google Scholar] [CrossRef]
- Flores, F.J.; Allen, H.L.; Cheshire, H.M.; Davis, J.M.; Fuentes, M.; Kelting, D. Using multispectral satellite imagery to estimate leaf area and response to silvicultural treatments in loblolly pine stands. Can. J. For. Res. 2006, 36, 1587–1596. [Google Scholar] [CrossRef]
- Peduzzi, A.; Allen, H.L.; Wynne, R.H. Leaf area of overstory and understory in pine plantations in the Flatwoods. South. J. Appl. For. 2010, 34, 154–160. [Google Scholar]
- Iiames, J.S.; Congalton, R.G.; Pilant, A.N.; Lewis, T.E. Leaf area index (LAI) change detection analysis on loblolly pine (Pinus taeda) following complete understory removal. Photogramm. Eng. Remote Sens. 2008, 74, 1389–1400. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Seasonal LAI in slash pine estimated with Landsat TM. Remote Sens. Environ. 1992, 39, 3–13. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Tian, Q.; Luo, Z.; Chen, J.M.; Chen, M.; Hui, F. Retrieving leaf area index for coniferous forest in Xingguo County, China with Landsat ETM+ images. J. Environ. Manag. 2007, 85, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.E.; Lavigne, M.B.; Deuling, M.J.; Wulder, M.A.; Hunt, E.R. Estimation of forest leaf area index using remote sensing and GIS data for modelling net primary production. Int. J. Remote Sens. 1997, 18, 3459–3471. [Google Scholar] [CrossRef]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 1999, 70, 52–68. [Google Scholar] [CrossRef]
- Song, C.H. Optical remote sensing of forest leaf area index and biomass. Prog. Phys. Geogr. 2013, 37, 98–113. [Google Scholar] [CrossRef]
- Sumnall, M.; Peduzzi, A.; Fox, T.R.; Wynne, R.H.; Thomas, V.A.; Cook, B. Assessing the transferability of statistical predictive models for leaf area index between two airborne discrete return LiDAR sensor designs within multiple intensely managed loblolly pine forest locations in the south-eastern USA. Remote Sens. Environ. 2016, 176, 308–319. [Google Scholar] [CrossRef]
- Pu, R.L. Mapping leaf area index over a mixed natural forest area in the flooding season using ground-based measurements and Landsat TM imagery. Int. J. Remote Sens. 2012, 33, 6600–6622. [Google Scholar] [CrossRef]
- Tillack, A.; Clasen, A.; Kleinschmit, B.; Förster, M. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 2014, 141, 52–63. [Google Scholar] [CrossRef]
- Potithep, S.; Nagai, S.; Nasahara, K.N.; Muraoka, H.; Suzuki, R. Two separate periods of the LAI-VIs relationships using in situ measurements in a deciduous broadleaf forest. Agric. For. Meteorol. 2013, 169, 148–155. [Google Scholar] [CrossRef]
- Welles, J.M.; Norman, J.M. Instrument for indirect measurement of canopy architecture. Agron. J. 1991, 83, 818–825. [Google Scholar] [CrossRef]
- Peduzzi, A.; Wynne, R.H.; Fox, T.R.; Nelson, R.F.; Thomas, V.A. Estimating leaf area index in intensively managed pine plantations using air- borne laser scanner data. Forest Ecol. And Mgmt. 2012, 270, 54–65. [Google Scholar] [CrossRef]
- LI-COR, Inc. LAI-2200C Plant Canopy Analyzer Instructions Manual; Publication Number 984-14112; LI-COR, Inc.: Lincoln, NE, USA, 2013. [Google Scholar]
- USGS. Product Guide: Landsat Surface Reflectance-Derived Spectral Indices Version 2.6. Available online: landsat.usgs.gov/documents/si_product_guide.pdf (accessed on 12 April 2015).
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The Next Landsat Satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, NASA/GSFC Type III Final Report; Texas A&M University: College Station, TX, USA, 1974; 371p. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Klemas, V.; Smart, R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Rishmawi, K.; Goward, S.N.; Schleeweis, K.; Huang, C.; Dwyer, J.L.; Masek, J.G.; Dungan, J.L.; Michaelis, A.; Lindsey, M.A. Selection and quality assessment of Landsat data for the North American forest dynamics forest history maps of the US. Int. J. Digit. Earth 2016, 9, 963–980. [Google Scholar]
- McRoberts, R.E. The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area. Remote Sens. Environ. 2010, 114, 1710–1717. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 operational land imager on-orbit geometric calibration and performance. Remote Sens. 2014, 6, 11127–11152. [Google Scholar] [CrossRef]
- USGS. Geometry | Landsat Missions. Available online: https://landsat.usgs.gov/geometry (accessed on 25 February 2019).
- Soudani, K.; Francois, C.; Le Maire, G.; Le Dantec, V.; Dufrene, E. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ. 2006, 102, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ren, H.; Liu, S.; Liu, Q.; Yan, B.; Gan, F. Generalized FPAR estimation methods from various satellite sensors and validation. Agric. For. Meteorol. 2018, 260–261, 55–72. [Google Scholar] [CrossRef]
- Chen, J.M.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.G.; White, H.P.; Hall, R.J.; Peddle, D.R.; King, D.J.; Trofymow, J.A.; et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ. 2002, 80, 165–184. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Turner, D.P. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens. Environ. 2003, 84, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, K.S.; Gower, S.T.; MacKenzie, M.D.; Nordheim, E.V.; Lillesand, T.M. Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic Mapper. Remote Sens. Environ. 1997, 61, 229–245. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Madugundu, R.; Nizalapur, V.; Jha, C.S. Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 211–219. [Google Scholar] [CrossRef]
- Gray, J.; Song, C. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors. Remote Sens. Environ. 2012, 119, 173–183. [Google Scholar] [CrossRef]
- Chen, W.; Yin, H.; Moriya, K.; Sakai, T.; Cao, C. Retrieval and comparison of forest leaf area index based on remote sensing data from AVNIR-2, Landsat-5 TM, MODIS, and PALSAR sensors. ISPRS Int. J. GeoInf. 2017, 6, 179. [Google Scholar] [CrossRef]
- Middinti, S.; Thumaty, K.C.; Gopalakrishnan, R.; Jha, C.S.; Thatiparthi, B.R. Estimating the leaf area index in Indian tropical forests using Landsat-8 OLI data. Int. J. Remote Sens. 2017, 38, 6769–6789. [Google Scholar] [CrossRef]
- Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Lee, K.-S.; Cohen, W.B.; Kennedy, R.E.; Maiersperger, T.K.; Gower, S.T. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens. Environ. 2004, 91, 508–520. [Google Scholar] [CrossRef]
- Eklundh, L.; Harrie, L.; Kuusk, A. Investigating relationships between Landsat ETM plus sensor data and leaf area index in a boreal conifer forest. Remote Sens. Environ. 2001, 78, 239–251. [Google Scholar] [CrossRef]
- Eklundh, L. Estimating leaf area index in coniferous and deciduous forests in Sweden using Landsat optical sensor data. Proc. SPIE 2003, 4879, 379–390. [Google Scholar]
- Kodar, A.; Kutsar, R.; Lang, M.; Lukk, T.; Nilson, T. Leaf area indices of forest canopies from optical measurements. Balt. For. 2008, 14, 185–194. [Google Scholar]
- Masemola, C.; Cho, M.A.; Ramoelo, A. Comparison of Landsat 8 OLI and Landsat 7 ETM+ for estimating grassland LAI using model inversion and spectral indices: Case study of Mpumalanga, South Africa. Int. J. Remote Sens. 2016, 37, 4401–4419. [Google Scholar] [CrossRef]
- Schott, J.R.; Gerace, A.; Woodcock, C.E.; Wang, S.; Zhu, Z.; Wynne, R.H.; Blinn, C.E. The impact of improved signal-to-noise ratios on algorithm performance: Case studies for Landsat class instruments. Remote Sens. Environ. 2016, 185, 37–45. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, J.M.; Huang, B.; Song, H.; Li, Y. Reconstructing seasonal variation of Landsat vegetation index related leaf area index by fusing with MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 950–960. [Google Scholar] [CrossRef]
Location of LAI & Status | Ground Measurement Dates | Ground LAI Range (Min–Max) | Plots Measured (Max Used) | OLI Image Date | ETM+ Image Date |
---|---|---|---|---|---|
VA Min | 1 April 2013 & 3 April 2013 | 1.14–3.07 | 22 (20) | 28 March 2013 | 19 March 2013 |
VA Max | 13 September 2013 & 14 September 2013 | 2.04–5.39 (5.33) | 10 (8) | 5 October 2013 | 11 September 2013 |
AL Min | 21 February 2014, 24 February 2014 & 27 February 2014 | 0.68–4.42 (3.93) | 22 (21) | 13 February 2014 | 21 February 2014 |
VA Min | 26 March 2014 | 1.13–4.39 (3.43) | 19 (18) | 14 March 2014 | 23 April 2014 |
AL Max | 14 September 2014 & 25 September 2014 | 0.63–7.34 (5.14) | 9 (7) | 25 September 2014 | 1 September 2014 |
VA Max | 20 September 2014 | 2.04–5.94 (5.60) | 20 (19) | 22 September 2014 | 29 August 2014 |
Band Name | Landsat 7 ETM+ Band Number | Landsat 7 ETM+ Wavelength (Micrometers) | Landsat 8 OLI Band Number | Landsat 8 OLI Wavelength (Micrometers) |
---|---|---|---|---|
Blue | 1 | 0.441–0.514 | 2 | 0.452–0.512 |
Red | 3 | 0.631–0.692 | 4 | 0.636–0.673 |
Near Infrared (NIR) | 4 | 0.772–0.898 | 5 | 0.851–0.879 |
Shortwave Infrared (SWIR) 1 | 5 | 1.547–1.749 | 6 | 1.566–1.651 |
Path/Row Time Period | Closest OLI Date | OLI R-sq (RMSE) TOA | OLI R-sq (RMSE) Surface | Min/Max R-sq (RMSE) TOA | Combined R-sq (RMSE) TOA | Min/Max R-sq (RMSE) Surface | Combined R-sq (RMSE) Surface | Max Number of Plots Used Separate/Min or Max/Combined |
---|---|---|---|---|---|---|---|---|
16/34 2013 Min | 28 March 2013 | 84.2 (0.259) | N/A | 67.8 (0.468) | 73.2 (0.641) | 73.3 (0.472) | 78.7 (0.613) | 19/58 */92 * |
21/37 2014 Min | 13 February 2014 | 69.0 (0.601) | 76.1 (0.528) | 21/58 */92 * | ||||
16/34 2014 Min | 14 March 2014 | 85.2 (0.281) | 84.7 (0.285) | 18/58 */92 * | ||||
16/34 2013 Max | 5 October 2013 | 92.9 (0.357) | 92.1 (0.376) | 58.6 (0.840) | 68.7 (0.730) | 8/34/92 * | ||
16/34 2014 Max | 22 September 2014 | 69.3 (0.555) | 66.0 (0.584) | 19/34/92 * | ||||
21/37 2014 Max | 25 September 2014 | 86.4 (0.806) | 90.8 (0.663) | 7/34/92 * |
Original | Bias | Standard Error | Lower CI | Upper CI | |
---|---|---|---|---|---|
Intercept | −0.002119728 | 0.0004935929 | 0.13349108 | −0.2755 | 0.2498 |
Slope | 0.332915393 | −0.0001120626 | 0.01585535 | 0.3021 | 0.3646 |
Time Period | Landsat Sensor | NDMI R2 (RMSE) | NDVI R2 (RMSE) | SR R2 (RMSE) | EVI R2 (RMSE) | MSAVI R2 (RMSE) | SAVI R2 (RMSE) | Number of Plots |
---|---|---|---|---|---|---|---|---|
Minimum * | OLI | 66.6 | 70.8 | 73.3 | 62.6 | 59.8 | 62.8 | 39 |
(0.528) | (0.494) | (0.472) | (0.558) | (0.579) | (0.557) | |||
Maximum | OLI | 80.7 | 69.5 | 68.7 | 48.3 | 47.0 | 49.0 | 34 |
(0.573) | (0.721) | (0.730) | (0.939) | (0.951) | (0.933) | |||
All | OLI | 65.9 | 69.2 | 78.7 | 58.2 | 56.6 | 58.5 | 73 |
(0.774) | (0.736) | (0.613) | (0.858) | (0.874) | (0.854) | |||
Minimum | ETM+ | 72.4 | 65.3 | 63.6 | 55.6 | 56.3 | 59.4 | 56 |
(0.432) | (0.485) | (0.496) | (0.548) | (0.544) | (0.524) | |||
Maximum | ETM+ | 81.1 | 60.0 | 49.3 | 65.7 | 65.5 | 66.7 | 26 |
(0.582) | (0.847) | (0.954) | (0.784) | (0.786) | (0.772) | |||
All | ETM+ | 74.2 | 65.6 | 67.1 | 64.2 | 65.0 | 65.0 | 82 |
(0.605) | (0.698) | (0.684) | (0.713) | (0.705) | (0.704) | |||
Minimum | Both | 74.5 | 69.8 | 69.4 | 63.8 | 58.4 | 60.7 | 57 |
(0.415) | (0.452) | (0.455) | (0.494) | (0.530) | (0.515) | |||
Maximum | Both | 82.8 | 77.8 | 77.2 | 32.0 | 38.8 | 41.3 | 32 |
(0.554) | (0.630) | (0.639) | (1.103) | (1.046) | (1.025) | |||
All | Both | 73.3 | 68.9 | 79.2 | 57.2 | 57.9 | 59.0 | 89 |
(0.635) | (0.686) | (0.561) | (0.805) | (0.799) | (0.788) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blinn, C.E.; House, M.N.; Wynne, R.H.; Thomas, V.A.; Fox, T.R.; Sumnall, M. Landsat 8 Based Leaf Area Index Estimation in Loblolly Pine Plantations. Forests 2019, 10, 222. https://doi.org/10.3390/f10030222
Blinn CE, House MN, Wynne RH, Thomas VA, Fox TR, Sumnall M. Landsat 8 Based Leaf Area Index Estimation in Loblolly Pine Plantations. Forests. 2019; 10(3):222. https://doi.org/10.3390/f10030222
Chicago/Turabian StyleBlinn, Christine E., Matthew N. House, Randolph H. Wynne, Valerie A. Thomas, Thomas R. Fox, and Matthew Sumnall. 2019. "Landsat 8 Based Leaf Area Index Estimation in Loblolly Pine Plantations" Forests 10, no. 3: 222. https://doi.org/10.3390/f10030222
APA StyleBlinn, C. E., House, M. N., Wynne, R. H., Thomas, V. A., Fox, T. R., & Sumnall, M. (2019). Landsat 8 Based Leaf Area Index Estimation in Loblolly Pine Plantations. Forests, 10(3), 222. https://doi.org/10.3390/f10030222