Shifting States, Altered Fates: Divergent Fuel Moisture Responses after High Frequency Wildfire in an Obligate Seeder Eucalypt Forest
Abstract
:1. Introduction
- Are there differences in fuel moisture and fuel availability between alternative stable states, and how is this affected by time since fire?
- What are the implications for flammability?
2. Materials and Methods
2.1. Study Area and Fire History
2.2. Field Instrumentation and Data Collection
2.3. Data Processing and Analysis
3. Results
4. Discussion
4.1. Differences in Fuel Moisture and Fuel Availability
4.2. Implications for Flammabiltiy
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Fuel Layer | Source | Degrees of Freedom | F-Value | Significance (p) |
---|---|---|---|---|
Surface fine fuel moisture content | Log10(Fuel Stick) | 1 | 114.47 | <0.001 |
SITE | 4 | 1.96 | 0.15 | |
SITE* Log10(Fuel Stick) | 4 | 1.05 | 0.41 | |
Profile fine fuel moisture content | Log10(Fuel Stick) | 1 | 56.5 | <0.001 |
SITE | 4 | 1.13 | 0.38 | |
SITE*Log10(Fuel Stick) | 4 | 2.84 | 0.06 | |
Dead elevated fine fuel moisture content | Log10(Fuel Stick) | 1 | 33.84 | <0.001 |
SITE | 4 | 0.93 | 0.47 | |
SITE* Log10(Fuel Stick) | 4 | 1.52 | 0.24 |
References
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manage. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Fairman, T.A.; Bennett, L.T.; Tupper, S.; Nitschke, C.R. Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire-tolerant sub-alpine forest. J. Veg. Sci. 2017, 28, 1151–1165. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Murphy, B.P.; Neyland, D.L.J.; Williamson, G.J.; Prior, L.D. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Global Change Biol. 2014, 20, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Enright, N.J.; Fontaine, J.B.; Bowman, D.M.J.S.; Bradstock, R.A.; Williams, R.J. Interval squeeze: Altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 2015, 13, 265–272. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Murphy, B.P.; Boer, M.M.; Bradstock, R.A.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Krawchuk, M.A.; Price, O.F.; Williams, R.J. Forest fire management, climate change, and the risk of catastrophic carbon losses. Front. Ecol. Environ. 2013, 11, 66–68. [Google Scholar] [CrossRef]
- Odion, D.C.; Moritz, M.A.; Dellasala, D.A. Alternative community states maintained by fire in the Klamath Mountains, USA. J. Ecol. 2010, 98, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.D.; Johnstone, J.F. Once burned, twice shy: Repeat fires reduce seed availability and alter substrate constraints on Picea mariana regeneration. For. Ecol. Manage. 2012, 266, 34–41. [Google Scholar] [CrossRef]
- Buma, B.; Brown, C.D.; Donato, D.C.; Fontaine, J.B.; Johnstone, J.F. The impacts of changing disturbance regimes on serotinous plant populations and communities. Bioscience 2013, 63, 866–876. [Google Scholar]
- Fairman, T.A.; Nitschke, C.R.; Bennett, L.T. Too much, too soon? A review of the effects of increasing wildfire frequency on tree mortality and regeneration in temperate eucalypt forests. Int. J. Wildland Fire 2016, 25, 831–848. [Google Scholar] [CrossRef]
- Colloff, M.J.; Doherty, M.D.; Lavorel, S.; Dunlop, M.; Wise, R.M.; Prober, S.M. Adaptation services and pathways for the management of temperate montane forests under transformational climate change. Clim. Change 2016, 138, 267–282. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Prior, L.D.; Murphy, B.P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Global Ecol. Biogeogr. 2016, 25, 1166–1172. [Google Scholar] [CrossRef] [Green Version]
- Tepley, A.J.; Thomann, E.; Veblen, T.T.; Perry, G.L.W.; Holz, A.; Paritsis, J.; Kitzberger, T.; Anderson-Teixeira, K.J. Influences of fire-vegetation feedbacks and post-fire recovery rates on forest landscape vulnerability to altered fire regimes. J. Ecol. 2018, 106, 1925–1940. [Google Scholar] [CrossRef] [Green Version]
- Coppoletta, M.; Merriam, K.E.; Collins, B.M. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol. Appl. 2016, 26, 686–699. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an ecological and evolutionary driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; French, B.J.; Prior, L.D. Have plants evolved to self-immolate? Front. Plant. Sci. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Tolhurst, K.; Cheney, N. Synopsis of the knowledge used in prescribed burning; Department of Natural Resources and Environment: East Melbourne, Australia, 1999. [Google Scholar]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Meyn, A.; White, P.S.; Buhk, C.; Jentsch, A. Environmental drivers of large, infrequent wildfires: The emerging conceptual model. Prog. Phys. Geogr. 2007, 31, 287–312. [Google Scholar] [CrossRef]
- Rothermel, R.C. A mathematical model for fire spread predictions in wildland fuels; Forest Service, U.S. Department of Agriculture: Ogden, UT, USA, 1972.
- Cawson, J.G.; Duff, T.J. Forest fuel bed ignitability under marginal fire weather conditions in Eucalyptus forests. Int. J. Wildland Fire 2019, 28, 198–204. [Google Scholar] [CrossRef]
- Matthews, S. A process-based model of fine fuel moisture. Int. J. Wildland Fire 2006, 15, 155. [Google Scholar] [CrossRef]
- Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 2014, 23, 78–92. [Google Scholar] [CrossRef]
- Schunk, C.; Wastl, C.; Leuchner, M.; Menzel, A. Fine fuel moisture for site- and species-specific fire danger assessment in comparison to fire danger indices. Agric. For. Meteorol. 2017, 234–235, 31–47. [Google Scholar] [CrossRef]
- Kreye, J.K.; Varner, J.M.; Hamby, G.W.; Kane, J.M. Mesophytic litter dampens flammability in fire-excluded pyrophytic oak-hickory woodlands. Ecosphere 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M., Jr.; Nepstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 1999, 284, 1832–1835. [Google Scholar] [CrossRef]
- Paritsis, J.; Veblen, T.T.; Holz, A. Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. J. Veg. Sci. 2015, 26, 89–101. [Google Scholar] [CrossRef]
- Blackhall, M.; Raffaele, E.; Veblen, T.T. Is foliar flammability of woody species related to time since fire and herbivory in northwest Patagonia, Argentina? J. Veg. Sci. 2012, 23, 931–941. [Google Scholar] [CrossRef]
- Tiribelli, F.; Kitzberger, T.; Morales, J.M. Changes in vegetation structure and fuel characteristics along post-fire succession promote alternative stable states and positive fire-vegetation feedbacks. J. Veg. Sci. 2018, 29, 147–156. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef]
- Burns, E.L.; Lindenmayer, D.B.; Stein, J.; Blanchard, W.; McBurney, L.; Blair, D.; Banks, S.C. Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south-eastern Australia. Austral Ecol. 2015, 40, 386–399. [Google Scholar] [CrossRef]
- Cawson, J.G.; Duff, T.J.; Swan, M.H.; Penman, T.D. Wildfire in wet sclerophyll forests: The interplay between disturbances and fuel dynamics. Ecosphere 2018, 9, e02211. [Google Scholar] [CrossRef]
- Miller, B.P.; Murphy, B.P. Fire and Australian Vegetation. In Australian Vegetation, 3rd ed.; Keith, D.A., Ed.; Cambridge University Press: Melbourne, Austrilia, 2017; pp. 113–134. [Google Scholar]
- Hope, P.; Timbal, B.; Hendon, H.; Ekström, M.; Potter, N. A synthesis of findings from the Victorian Climate Initiative (VicCI); Bureau of Meteorology: Melbourne, Australia, 2017.
- Clarke, H.G.; Smith, P.L.; Pitman, A.J. Regional signatures of future fire weather over eastern Australia from global climate models. Int. J. Wildland Fire 2011, 20, 550–562. [Google Scholar] [CrossRef]
- Ashton, D.H. Fire in tall open forests (wet sclerophyll forests). In Fire and the Australian biota; Gill, M.A., Groves, R.H., Noble, I.R., Eds.; Australian Academy of Science: Canberra, Australia, 1981; pp. 339–366. [Google Scholar]
- Flint, A.; Fagg, P. Mountain Ash in Victoria’s State Forests; Department of Sustainability and Environment: Melbourne, Victoria, Australia, 2007. [Google Scholar]
- May, B. Silver Wattle (Acacia dealbata): Its role in the ecology of mountain ash forest and the effect of alternative silvicultural systems on its regeneration. PhD Thesis, University of Melbourne, Victoria, Australia, 1999. [Google Scholar]
- Lindenmayer, D.B.; Sato, C. Hidden collapse is driven by fire and logging in a socioecological forest ecosystem. Proc. Natl. Acad. Sci. USA 2018, 115, 5181–5186. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Hobbs, R.J.; Likens, G.E.; Krebs, C.J.; Banks, S.C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl. Acad. Sci. USA 2011, 108, 15887–15891. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.; Mccarthy, M.A.; Lindenmayer, D.B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 2014, 7, 355–370. [Google Scholar] [CrossRef]
- Attiwill, P.M.; Ryan, M.F.; Burrows, N.; Cheney, N.P.; Mccaw, L.; Neyland, M.; Read, S. Timber harvesting does not increase fire risk and severity in wet eucalypt forests of southern Australia. Conserv. Lett. 2014, 7, 341–354. [Google Scholar] [CrossRef]
- Finlayson, B.L.; McMahon, T.A.; Peel, M.C. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar]
- Bureau of Meteorology Climate Data Online. Available online: Http://www.bom.gov.au/climate/data (accessed on 16 January 2019).
- Ashton, D.H. Phosphorus in forest ecosystems at Beenak, Victoria. J. Ecol. 1976, 64, 171–186. [Google Scholar] [CrossRef]
- FCV. Forests Commission of Victoria Australia: Twentieth annual report 1938–39; State of Victoria: Melbourne, Australia, 1939. [Google Scholar]
- Specht, R.L. Foliage projective cover and standing biomass. In Vegetation classification in Australia; Gillson, A.N., Anderson, D.J., Eds.; CSIRO: Canberra, Australia, 1981; pp. 10–21. [Google Scholar]
- Department of Environment Land Water and Planning Fire history records of fires primarily on public land. Available online: Data.vic.gov.au (accessed on 16 January 2019).
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Warton, D.I.; Duursma, R.A.; Falster, D.S.; Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods. Ecol. Evol. 2012, 3, 257–259. [Google Scholar] [CrossRef]
- Cawson, J.G.; Duff, T.J.; Tolhurst, K.G.; Baillie, C.C.; Penman, T.D. Fuel moisture in mountain ash forests with contrasting fire histories. For. Ecol. Manage. 2017, 400, 568–577. [Google Scholar] [CrossRef]
- Harris, R.M.B.; Remenyi, T.; Fox-Hughes, P.; Love, P.; Bindoff, N.L. Exploring the future of fuel loads in Tasmania, Australia: Shifts in vegetation in response to changing fire weather, productivity, and fire frequency. Forests 2018, 9, 210. [Google Scholar] [CrossRef]
- Matthews, S.; Sullivan, A.L.; Watson, P.; Williams, R.J. Climate change, fuel and fire behaviour in a eucalypt forest. Global Change Biol. 2012, 18, 3212–3223. [Google Scholar] [CrossRef] [PubMed]
- Sneeuwjagt, R.; Peet, G. Forest fire behaviour tables for Western Australia; Department of Conservation and Land Management: Perth, Western Australia, Australia, 1985. [Google Scholar]
- McArthur, A. Fire behaviour in eucalypt forests; Commonwealth of Australia Forestry and Timber Bureau: Canberra, ACT, Australia, 1967. [Google Scholar]
- Johnstone, J.F. Response of boreal plant communities to variations in previous fire-free interval. Int. J. Wildland Fire 2006, 15, 497–508. [Google Scholar] [CrossRef]
- Donato, D.C.; Fontaine, J.B.; Robinson, W.D.; Kauffman, J.B.; Law, B.E. Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest. J. Ecol. 2009, 97, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Wester, D.B. Viewpoint: Replication, randomization, and statistics in range research. J. Range. Manage. 1992, 45, 285–290. [Google Scholar] [CrossRef]
- Ray, D.; Nepstad, D.; Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 2005, 15, 1664–1678. [Google Scholar] [CrossRef]
- Balch, J.K.; Nepstad, D.; Brando, P.; Curran, L.; Portela, O.; Carvalho, O.; Lefebvre, P. Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biol. 2008, 14, 2276–2287. [Google Scholar] [CrossRef]
- Balch, J.K.; Brando, P.M.; Nepstad, D.C.; Coe, M.T.; Silvério, D.; Massad, T.J.; Davidson, E.A.; Lefebvre, P.; Oliveira-Santos, C.; Rocha, W.; et al. The susceptibility of southeastern Amazon forests to fire: Insights from a large-scale burn experiment. Bioscience 2015, 65, 893–905. [Google Scholar] [CrossRef]
- Uhl, C.; Kauffman, J.B. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 1990, 71, 437–449. [Google Scholar] [CrossRef]
- Viney, N.R. A review of fine fuel moisture modelling. Int. J. Wildland Fire 1991, 4, 215–234. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Combined effect of sun and wind on surface temperature of litter; Canada Department of Fisheries and Forestry: Chalk River, Ontario, 1969. [Google Scholar]
- Nyman, P.; Metzen, D.; Noske, P.J.; Lane, P.N.J.; Sheridan, G.J. Quantifying the effects of topographic aspect on water content and temperature in fine surface fuel. Int. J. Wildland Fire 2015, 24, 1129–1142. [Google Scholar] [CrossRef]
- Nyman, P.; Baillie, C.C.; Duff, T.J.; Sheridan, G.J. Eco-hydrological controls on microclimate and surface fuel evaporation in complex terrain. Agric. For. Meteorol. 2018, 252, 49–61. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Resco De Dios, V.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S.; Sims, N.C.; Bannister, A.J.; Hollis, J.J.; Hurley, R.J. Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manage. 2012, 284, 269–285. [Google Scholar] [CrossRef]
- Ashton, D.H.; Martin, D.G. Regeneration in a pole-stage forest of Eucalyptus regnans subjected to different fire intensities in 1982. Aust. J. Bot. 1996, 44, 393–410. [Google Scholar] [CrossRef]
- Barker, J.W.; Price, O.F. Positive severity feedback between consecutive fires in dry eucalypt forests of southern Australia. Ecosphere 2018, 9, e02110. [Google Scholar] [CrossRef]
- Jackson, W. Fire, air, water and earth—an elemental ecology of Tasmania. Proc. Eco. Soc. AUS. 1968, 3, 9–16. [Google Scholar]
- Zylstra, P.J. Flammability dynamics in the Australian Alps. Austral Ecol. 2018, 43, 578–591. [Google Scholar] [CrossRef]
- Mccarthy, M.A.; Gill, A.M.; Bradstock, R.A. Theoretical fire-interval distributions. Int. J. Wildland Fire 2001, 10, 73–77. [Google Scholar] [CrossRef]
- McColl-Gausden, S.C.; Penman, T.D. Pathways of change: Predicting the effects of fire on flammability. J. Environ. Manage. 2019, 232, 243–253. [Google Scholar] [CrossRef]
- Zylstra, P.; Bradstock, R.A.; Bedward, M.; Penman, T.D.; Doherty, M.D.; Weber, R.O.; Gill, A.M.; Cary, G.J. Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: Species, not surface fuel loads, determine flame dimensions in eucalypt forests. PLoS ONE 2016, 11, e0160715. [Google Scholar] [CrossRef] [PubMed]
Site 1 | Fire History 2 | Coordinates | Slope (°) | Aspect (°) | Elevation (m) | Litter Depth 4 (mm) | ||
---|---|---|---|---|---|---|---|---|
1926/1932 3 | 1939 | 2009 | ||||||
Open | NA | NA | NA | −37.9005, 145.7323 | 5 | 136 | 734 | NA |
2009-Acacia forest | X | X | X M | −37.9166, 145.7454 | 11 | 173 | 562 | 16 (±2) |
2009-Non-eucalypt forest | X | X | X M | −37.9133, 145.7459 | 19 | 137 | 606 | 20 (±4) |
1939-Non-eucalypt forest | X | X | −37.9068, 145.7419 | 17 | 159 | 636 | 27 (±8) | |
2009-Eucalypt forest | X | X H | −37.9148, 145.7452 | 5 | 169 | 589 | 35 (±3) | |
1939-Eucalypt forest | X | −37.9028, 145.7364 | 16 | 189 | 673 | 38 (±16) |
Fuel Layer | Intercept | Slope | r2 | RMSE |
---|---|---|---|---|
Surface | −0.75 | 1.91 | 0.84 | 0.13 |
Profile | −0.14 | 1.57 | 0.74 | 0.15 |
Dead elevated | −0.12 | 1.21 | 0.66 | 0.14 |
Fuel Availability (Number of Days < 16%) | Fuel Availability (Number of Days < 7%) | |||||
---|---|---|---|---|---|---|
Site | Surface | Profile | Dead Elevated | Surface | Profile | Dead Elevated |
Open 1 | 57 (29, 73) | 8 (0, 29) | 81 (47, 96) | 4 (0, 14) | 0, (0,1) | 1 (0,16) |
2009-Acacia forest | 17 (7,28) | 0 (0,6) | 33 (11,51) | 0 (0,1) | 0 (0,0) | 0 (0,6) |
2009-Eucalypt forest | 13 (5,25) | 0 (0,5) | 31 (8, 50) | 0 (0,2) | 0 (0,0) | 0 (0,2) |
2009-Non-eucalypt forest | 4 (1, 11) | 0 (0,0) | 16 (3,31) | 0 (0,0) | 0 (0,0) | 0 (0,0) |
1939-Eucalypt forest | 3 (0,9) | 0 (0,0) | 13 (1, 34) | 0 (0,0) | 0 (0,0) | 0 (0,0) |
1939-Non-eucalypt forest | 0 (0,0) | 0 (0,0) | 0 (0, 1) | 0 (0,0) | 0 (0,0) | 0 (0,0) |
Site | Study Duration (n = 116 Days) | |||
---|---|---|---|---|
Max Temp °C | Min RH % | Incoming Solar Radiation MJ m−2 | % of Open Incoming Solar Radiation | |
Open | 23 (5) | 45 (15) | 1685 | NA |
2009-Acacia forest | 21 (5) | 57 (18) | 183 | 10.9 |
2009-Eucalypt forest | 22 (5) | 57 (18) | 200 | 11.9 |
2009-Non-eucalypt forest | 21 (5) | 62 (18) | 86 | 5.1 |
1939-Eucalypt forest | 20 (5) | 56 (18) | 177 | 10.5 |
1939-Non-eucalypt forest | 21 (5) | 60 (17) | 178 | 10.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burton, J.; Cawson, J.; Noske, P.; Sheridan, G. Shifting States, Altered Fates: Divergent Fuel Moisture Responses after High Frequency Wildfire in an Obligate Seeder Eucalypt Forest. Forests 2019, 10, 436. https://doi.org/10.3390/f10050436
Burton J, Cawson J, Noske P, Sheridan G. Shifting States, Altered Fates: Divergent Fuel Moisture Responses after High Frequency Wildfire in an Obligate Seeder Eucalypt Forest. Forests. 2019; 10(5):436. https://doi.org/10.3390/f10050436
Chicago/Turabian StyleBurton, Jamie, Jane Cawson, Philip Noske, and Gary Sheridan. 2019. "Shifting States, Altered Fates: Divergent Fuel Moisture Responses after High Frequency Wildfire in an Obligate Seeder Eucalypt Forest" Forests 10, no. 5: 436. https://doi.org/10.3390/f10050436
APA StyleBurton, J., Cawson, J., Noske, P., & Sheridan, G. (2019). Shifting States, Altered Fates: Divergent Fuel Moisture Responses after High Frequency Wildfire in an Obligate Seeder Eucalypt Forest. Forests, 10(5), 436. https://doi.org/10.3390/f10050436