The Cryobiotechnology of Oaks: An Integration of Approaches for the Long-Term Ex Situ Conservation of Quercus Species
Abstract
:1. Introduction
2. Oaks, the Case Study
3. Whole Seed (Acorn) Storage
4. Tissue Culture and Preservation by In Vitro Collections
5. Cryopreservation
5.1. Pollen
5.2. Embryogenic Calli and Somatic Embryos
5.3. Shoot Tips
5.4. Plumules
5.5. Dormant Buds
5.6. Seed Embryos
6. Challenges in Oak Cryobiotechnology
6.1. Cryobiotechnology of Embryonic Axes and Zygotic Embryos
6.2. Overcoming Challenges of In Vitro Plant Growth
7. Final Remarks and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rivers, M.; Shaw, K.; Beech, E.; Jones, M. Conserving the World’s Most Threatened Trees: A Global Survey of Ex Situ Collections; BGCI: Richmond, UK, 2015. [Google Scholar]
- Convention on Biological Diversity (CBD). Global Strategy for Plant. Conservation: 2011–2020; Botanic Gardens Conservation International: Richmond, UK, 2012. [Google Scholar]
- Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 5; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2020; ISBN -9789292256883. Available online: www.cbd.int/GBO5 (accessed on 16 October 2020).
- Guerrant, E.O.; Havens, K.; Maunder, M. Ex Situ Plant. Conservation: Supporting Species Survival in the Wild; Island Press: Washington, DC, USA, 2004; Volume 3. [Google Scholar]
- Li, D.-Z.; Pritchard, H.W. The science and economics of ex situ plant conservation. Trends Plant Sci. 2009, 14, 614–621. [Google Scholar] [CrossRef] [PubMed]
- United Nations Food and Agriculture Organization. Genebank Standards for Plant. Genetic Resources for Food and Agriculture; Revised edition; FAO: Rome, Italy, 2014.
- Tweddle, J.C.; Dickie, J.B.; Baskin, C.C.; Baskin, J.M. Ecological aspects of seed desiccation sensitivity. J. Ecol. 2003, 91, 294–304. [Google Scholar] [CrossRef]
- Wyse, S.V.; Dickie, J.B.; Willis, K.J. Seed banking not an option for many threatened plants. Nat. Plants 2018, 4, 848–850. [Google Scholar] [CrossRef] [PubMed]
- Wyse, S.V.; Dickie, J.B. Predicting the global incidence of seed desiccation sensitivity. J. Ecol. 2017, 105, 1082–1093. [Google Scholar] [CrossRef] [Green Version]
- Walters, C.; Berjak, P.; Pammenter, N.; Kennedy, K.; Raven, P. Preservation of recalcitrant seeds. Science 2013, 339, 915–916. [Google Scholar] [CrossRef] [PubMed]
- Pence, V.C.; Ballesteros, D.; Walters, C.; Reed, B.M.; Philpott, M.; Dixon, K.W.; Pritchard, H.W.; Culley, T.M.; Vanhove, A.C. Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species. Biol. Conserv. 2020, 250, 108736. [Google Scholar] [CrossRef]
- Engelmann, F. Plant cryopreservation: Progress and prospects. Vitr. Cell. Dev. Biol. Plant 2004, 40, 427–433. [Google Scholar] [CrossRef]
- Reed, B.M. (Ed.) Plant. Cryopreservation—A Practical Guide; Springer: New York, NY, USA, 2008. [Google Scholar]
- Vieitez, A.M.; Corredoira, E.; Martinez, M.T.; San-Jose, M.C.; Sanchez, C.; Valladares, S.; Vidal, N.; Ballester, A. Application of biotechnological tools to Quercus improvement. Eur. J. For. Res. 2012, 131, 519–539. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, H.W.; Nadarajan, J.; Ballesteros, D.; Thammasiri, K.; Prasongsom, S.; Malik, S.K.; Chaudhury, R.; Kim, H.-H.; Lin, L.; Li, W.-Q.; et al. Cryobiotechnology of tropical seeds—Scale, scope and hope. Acta Hortic. 2017, 1167, 37–48. [Google Scholar] [CrossRef]
- Wang, M.R.; Chen, L.; Teixeira da Silva, J.A.; Volk, G.M.; Wang, Q.C. Cryobiotechnology of apple (Malus spp.): Development, progress and future prospects. Plant Cell Rep. 2018, 37, 689–709. [Google Scholar] [CrossRef]
- Kramer, A.T.; Pence, V.C. The challenges of ex-situ conservation for threatened oaks. Intl. Oaks 2012, 23, 91–108. [Google Scholar]
- Pritchard, H.W.; Moat, J.F.; Ferraz, J.B.S.; Marks, T.R.; Camargo, J.L.C.; Nadarajan, J.; Ferraz, I.D.K. Innovative approaches to the preservation of forest trees. For. Ecol. Manag. 2014, 333, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, D.; Nebot, A.; Pritchard, H.W. Cryobiotechnology for the long-term preservation of oak (Quercus sp.) genetic resources. Acta Hortic. 2019, 1234, 37–46. [Google Scholar] [CrossRef]
- Oldfield, S.; Eastwood, A. The Red List of Oaks; Fauna & Flora International: Cambridge, UK, 2007. [Google Scholar]
- Arroyo-Manzanares, N.; Martín-Gómez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace—Gas chromatography–ion mobility spectrometry. Food Chem. 2018, 246, 65–73. [Google Scholar] [CrossRef] [PubMed]
- The Plant List, Version 1. 2010. Available online: http://www.theplantlist.org/ (accessed on 21 January 2018).
- Xia, K.; Daws, M.I.; Hay, F.R.; Chen, W.Y.; Zhou, Z.K.; Pritchard, H.W. A comparative study of desiccation responses of seeds of Asian evergreen oaks, Quercus subgenus Cyclobalanopsis and Quercus subgenus Quercus. S. Afr. J. Bot. 2012, 78, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, A.S.; Butenko, O.Y. Experiment results on cryopreservation of Quercus robur L. acorns. Proc. St. Petersburg For. Res. Inst. 2015, 4, 35–47. [Google Scholar]
- Bonner, F.T.; Vozzo, J.A. Seed biology and technology of Quercus; General Technical Report GTR SO-66.; USDA, Forest Service: New Orleans, LA, USA, 1987.
- Gosling, P. Handling and storing acorns & chestnuts and sycamore fruits. For. Comm. Pract. Note 2002, 12, 1–8. [Google Scholar]
- Bonner, F.T.; Karrfalt, R.P. (Eds.) The Woody Plant. Seed Manual; Agr Handbk 727; USDA-FS: New Orleans, LA, USA, 2008.
- Pasquini, S.; Braidot, S.; Petrussa, E.; Vianello, A. Effect of di£erent storage conditions in recalcitrant seeds of holm oak (Quercus ilex L.) during germination. Seed Sci. Technol. 2011, 39, 165–177. [Google Scholar] [CrossRef]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T., Jr.; Geneve, R.L. Plant. Propagation—Principles and Practices, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Pence, V.C. The possibilities and challenges of in vitro methods for plant conservation. Kew Bull. 2010, 65, 539–547. [Google Scholar] [CrossRef]
- Pence, V.C. Evaluating the costs for the in vitro propagation and preservation of endangered plants. Vitr. Cell. Dev. Biol. Plant 2011, 47, 176–187. [Google Scholar] [CrossRef]
- González-Benito, M.E.; Martín, C. Micropropagation of Quercus ilex and in vitro conservation of Quercus suber. In Current Technologies of Forest Seed Treatment; Muller, J.V., Koziol, C., Palucka, M., Eds.; The Kostrzyca Forest Gene Bank: Miłków, Poland, 2014; pp. 56–65. [Google Scholar]
- González-Benito, M.E.; Prieto, R.M.; Herradón, E.; Martín, C. Cryopreservation of Quercus suber and Quercus ilex embryonic axes: In vitro culture, desiccation and cooling factors. CryoLetters 2002, 23, 283–290. [Google Scholar] [PubMed]
- González-Benito, M.E.; Martín, C. Cryopreservation of Quercus (oak) species. In Cryopreservation of Plant Germplasm II. Biotechnology in Agriculture and Forestry; Towill, L.E., Bajaj, Y.P.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 50, pp. 312–322. [Google Scholar]
- Chmielarz, P.; Michalak, M.; Pałucka, M.; Wasilenczyk, U. Successful cryopreservation of Quercus robur plumules. Plant Cell Rep. 2011, 30, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Hill, L.M.; Li, D.-Z.; Walters, C. Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Ann. Bot. 2014, 114, 1747–1759. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.N.; Pence, V.C.; Taylor, M.D.; Trader, B.W.; Westwood, M. Tissue culture using mature Material for the Conservation of Oaks. HortTechnology 2017, 27, 644–649. [Google Scholar] [CrossRef]
- Corredoira, E.; Toribio, M.; Vieitez, A.M. Clonal propagation via somatic embryogenesis in Quercus spp. In Tree Biotechnology; Ramawat, K.G., Mérillon, J.M., Ahuja, M.R., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 262–302. [Google Scholar]
- Pence, V.C.; Chaiken, M.F. Shoot tip cryopreservation as a conservation tool for species of Quercus: Effects of species and environment on recovery. Cryoletters 2020. accepted. [Google Scholar]
- de Delgadillo-Díaz León, J.S.; Morales-Domínguez, J.F.; Santos-Díaz, M.S.; Pérez-Molphe-Balch, E. In vitro propagation of Mexican oaks (Quercus spp.). Politobánica 2013, 35, 85–97. [Google Scholar]
- Purohit, V.K.; Tamta, S.; Chandra, S.; Vyas, P.; Palni, L.S.; Nandi, S.K. In vitro multiplication of Quercus leucotrichophora and Q. glauca: Important Himalayan oaks. PCTOC 2002, 69, 121–133. [Google Scholar] [CrossRef]
- Plants of the World Online. Available online: http://www.plantsoftheworldonline.org/ (accessed on 14 October 2020).
- The IUCN Red List of Threatened Species. Version 2017-3. Available online: www.iucnredlist.org (accessed on 14 October 2020).
- Castillo, N.R.F.; Bassil, N.V.; Wada, S.; Reed, B.M. Genetic stability of cryopreserved shoot tips of Rubus germplasm. Vitr. Cell. Dev. Biol. Plant 2010, 46, 246–256. [Google Scholar] [CrossRef]
- Pritchard, H.W. The rise of plant cryobiotechnology and demise of plant cryopreservation? Cryobiology 2018, 85, 160–161. [Google Scholar] [CrossRef]
- Snyder, E.B.; Clausen, K.E. Pollen Handling. In Seeds of Woody Plants in the United States, Agric. Handb 450; Schopmeyer, C.S., Ed.; United States Department of Agriculture, Forest Service (USDA-FS): New Orleans, LA, USA, 1974; pp. 75–97. [Google Scholar]
- Franchi, G.G.; Piotto, B.; Nepi, M.; Baskin, C.C.; Baskin, J.M.; Pacini, E. Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J. Exp. Bot. 2011, 62, 5267–5281. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.P.V. The storage and artificial germination of forest tree pollens. Can. J. For. Res. 1943, 21, 332–342. [Google Scholar] [CrossRef]
- Batos, B.; Miljković, D.; Bobinac, M. Some characters of the pollen of spring and summer flowering common oak (Quercus robur L.). Arch. Biol. Sci. 2012, 64, 85–95. [Google Scholar] [CrossRef]
- Steinhoff, S. Results of species hybridization with Quercus robur L. and Quercus petraea (Matt) Liebl. Ann. Sci. For. 1993, 50, 137s–143s. [Google Scholar] [CrossRef] [Green Version]
- Jörgensen, J. Conservation of Valuable Gene Resources by Cryopreservation in some Forest Tree Species. J. Plant. Physiol. 1990, 136, 373–376. [Google Scholar] [CrossRef]
- Volk, G.M. Collecting pollen for genetic resources conservation. In Collecting Plant Genetic Diversity: Technical Guidelines 2011 Update; Guarino, L., Ramanatha, V.R., Goldberg, E., Eds.; Bioversity International: Rome, Italy, 2011; pp. 1–10. [Google Scholar]
- Ren, R.; Li, Z.; Li, B.; Xu, J.; Jiang, X.; Liu, Y.; Zhang, K. Changes of pollen viability of ornamental plants after long-term preservation in a cryopreservation pollen bank. Cryobiology 2019, 89, 14–20. [Google Scholar] [CrossRef]
- Dinato, N.B.; Santos, I.R.I.; Vigna, B.B.Z.; de Paula, A.F.; Favero, A.P. Pollen cryopreservation for plant breeding and genetic resources conservation. CryoLetters 2020, 41, 115–127. [Google Scholar]
- Koch, J.L.; Carey, D.W. The genetics of resistance of American beech to beech bark disease: Knowledge through 2004. In Proceedings of the Beech Bark Disease Symposium. Gen. Tech. Rep. NE-331; US Department of Agriculture, Forest Service: Newtown Square, PA, USA, 2005; pp. 98–105. [Google Scholar]
- Batos, B.; Miljković, D. Pollen viability in Quercus robur L. Arch. Biol. Sci. 2017, 69, 111–117. [Google Scholar] [CrossRef]
- Martinez, M.T.; Ballester, A.; Vieitez, A.M. Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 2003, 46, 182–189. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Martinez, M.T.; Vidal, N.; San-Jose, M.C.; Valladares, S.; Vieitez, A.M. Preservation of Quercus robur germplasm by cryostorage of embryogenic cultures derived from mature trees and RAPD analysis of genetic stability. CryoLetters 2008, 29, 493–504. [Google Scholar]
- Fernandes, P.; Loose, M.D.; Santos, C.; Roldan-Ruiz, I.; Rodriguez, E.; Pinto, G. Cryopreservation of Quercus suber somatic embryos by encapsulation dehydration and evaluation of genetic stability. Tree Physiol. 2008, 28, 1841–1850. [Google Scholar] [CrossRef] [Green Version]
- Valladares, S.; Toribio, M.; Celestino, C.; Vieitez, A.M. Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. Cryoletters 2004, 25, 177–186. [Google Scholar] [PubMed]
- Barra-Jiménez, A.; Aronen, T.S.; Jesús Alegre, J.; Toribio, M. Cryopreservation of embryogenic tissues from mature holm oak trees. Cryobiology 2015, 70, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Sutton, B. Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann. For. Sci. 2002, 59, 657–661. [Google Scholar] [CrossRef]
- Harvengt, L.; Meier-Dinkel, A.; Dumas, E.; Collin, E. Establishment of a cryopreserved gene bank of European elms. Can. J. For. Res. 2004, 34, 43–55. [Google Scholar] [CrossRef]
- Vidal, N.; Vieitez, A.M.; Fernandez, M.R.; Cuenca, B.; Ballester, A. Establishment of cryopreserved gene banks of European chestnut and cork oak. Eur. J. For. Res. 2010, 129, 635–643. [Google Scholar] [CrossRef]
- Pence, V.C.; Philpott, M.; Culley, T.M.; Plair, B.; Yorke, S.R.; Lindsey, K.; Vanhove, A.-C.; Ballesteros, D. Survival and genetic stability of shoot tips of Hedeoma todsenii after long-term cryostorage. Vitr. Cell. Dev. Biol. Plant 2017, 53, 328–338. [Google Scholar] [CrossRef]
- Srivastava, P.S.; Steinhauer, A. In vitro Culture of Embryo Segments of Quercus lebani: Organogenesis and Callus Growth as a Differential Response to Experimental Conditions. Z. Für Pflanzenphysiol. 1982, 106, 93–96. [Google Scholar] [CrossRef]
- Chmielarz, P. Preservation of Quercus robur L. embryonic axes in liquid nitrogen. In Basic and Applied Aspects of Seed Biology; Ellis, R.H., Black, M., Murdoch, A.J., Hong, T.D., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 765–769. [Google Scholar]
- Palucka, M.; Hrydziuszko, P. Cryogenic storage of plant material in the Kostrzyca Forest Gene Bank. In Current Technologies of Forest Seed Treatment; Muller, J.V., Koziol, C., Palucka, M., Eds.; The Kostrzyca Forest Gene Bank: Miłków, Poland, 2014; pp. 109–115. [Google Scholar]
- Towill, L.E.; Ellis, D.D. Cryopreservation of dormant buds. In Plant Cryopreservation—A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 421–442. [Google Scholar]
- Towill, L.E.; Widrlechner, M. Cryopreservation of Salix species using sections from winter vegetative scions. CryoLetters 2004, 25, 71–80. [Google Scholar]
- Bonnart, R.; Waddell, J.; Haiby, K.; Widrlechner, M.P.; Volk, G.M. Cryopreservation of Populus trichocarpa and Salix dormant buds with recovery by grafting or direct rooting. CryoLetters 2014, 35, 507–515. [Google Scholar]
- Morin, X.; Améglio, T.; Ahas, R.; Kurz-Besson, C.; Lanta, V.; Lebourgeois, F.; Miglietta, F.; Chuine, I. Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiol. 2007, 27, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Flint, H.L. Cold hardiness of twigs of Quercus rubra L. as a function of geographic origin. Ecology 1972, 53, 1163–1170. [Google Scholar] [CrossRef]
- Bassuk, N.L.; Trowbridge, P.; Grohs, C. Visual similarity and biological diversity: Street tree selection and design. In Proceedings of the European Conference of the International Society of Arboriculture, Oslo, Norway, 18–21 June 2002. [Google Scholar]
- Kushnarenko, S.V.; Romadanova, N.V.; Reed, B.M. Cold acclimation improves regrowth of cryopreserved apple shoot tips. Cryoletters 2009, 30, 47–54. [Google Scholar] [PubMed]
- Towill, L.E.; Forsline, P.L.; Walters, C.; Waddell, J.W.; Laufmann, J. Cryopreservation of Malus germplasm using a winter vegetative bud method: Results from 1915 accessions. CryoLetters 2004, 25, 323–334. [Google Scholar] [PubMed]
- Vieitez, A.M.; Ballester, A.; Amo-Marco, J.; Sanchez, M.C. Forced flushing of branch segments as a method for obtaining reactive explants of mature Quercus robur trees for micropropagation. Plant Cell Tissue Organ. Cult. 1994, 37, 287–295. [Google Scholar]
- Ostrolucká, M.G.; Gajdošová, A.; Libiaková, G. Protocol for micropropagation of Quercus spp. In Protocols for Micropropagation of Woody Trees and Fruits; Jain, S.M., Häggman, H., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 85–92. [Google Scholar]
- Brennan, A.; Pence, V.; Taylor, M.; Trader, B.; Westwood, M. The effect of 6-benzylaminopurine, a cytokinin, on bud-forcing of twelve oak species. Acta Hortic. 2016, 1140, 331–334. [Google Scholar] [CrossRef]
- Obdržálek, J.; Jílková, J. Winter grafting of oaks, Quercus L. Hortic. Sci. 2006, 33, 61–69. [Google Scholar]
- Snyers, C. Clonal Propagation of Oaks; International Oak Society: Petersburg, IL, USA, 2013; Available online: http://www.internationaloaksociety.org/content/clonal-propagation-oaks (accessed on 30 January 2018).
- Crecente-Campo, S.; Fernández-Lorenzo, J.L. Injerto en serie ‘acelerado’ de Quercus robur adulto. Cuad. Soc. Esp. Cienc. For. 2008, 24, 45–50. [Google Scholar]
- Corredoira, E.; Martínez, M.T.; San José, M.C.; Ballester, A. Conservation of hardwood species. In Biodiversity and Conservation of Woody Plants; Ahuja, M.R., Jain, S.M., Eds.; Springer: Berlin, Germany, 2017; pp. 421–453. [Google Scholar]
- Ballesteros, D.; Sershen Varghese, B.; Berjak, P.; Pammenter, N.W. Uneven drying of zygotic embryos and embryonic axes of recalcitrant seeds: Challenges and considerations for cryopreservation. Cryobiology 2014, 69, 100–109. [Google Scholar] [CrossRef]
- Malik, S.K.; Choudhary, R.; Kaur, S.; Chaudhury, R.; Pritchard, H.W. Storage behavior and cryopreservation of Citrus cavaleriei, an endangered, cold-resistant species of northeast India with exceptionally large seeds. CryoLetters 2020, 41, 281–290. [Google Scholar]
- Pence, V.C. Cryostorage of embryo axes of several large-seeded temperate tree species. Cryobiology 1990, 27, 212–218. [Google Scholar] [CrossRef]
- González-Benito, M.E.; Pérez-Ruiz, C. Cryopreservation of Quercus faginea embryonic axes. Cryobiology 1992, 29, 685–690. [Google Scholar] [CrossRef]
- Pence, V.C. Desiccation and the survival of Aesculus, Castanea and Quercus embryo axes through cryopreservation. Cryobiology 1992, 29, 391–399. [Google Scholar] [CrossRef]
- Chaudhury, R. Cryopreservation of seeds, embryos, embryonic axes and pollen at National Cryobank of NBPGR. In Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application. Proceedings of an International Workshop, Tsukuba, Japan, 20–23 October 1998; Engelmann, F., Takagi, H., Eds.; International Plant Genetic Resources Institute (IPGRI): Rome, Italy, 2000; pp. 457–459. [Google Scholar]
- Berjak, P.; Walker, M.; Watt, M.P.; Mycock, D.J. Experimental parameters underlying failure or success in plant germplasm cryopreservation: A case study on zygotic axes of Quercus robur L. CryoLetters 1999, 20, 251–262. [Google Scholar]
- Ballesteros, D.; Fanega-Sleziak, N.; Davies, R.M. Cryopreservation of seeds and seed embryos in orthodox-, intermediate-, and recalcitrant-seeded species. In Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology; Wolkers, W., Oldenhof, H., Eds.; Humana: New York, NY, USA, 2021; Volume 2180, pp. 663–682. [Google Scholar]
- Vertucci, C.W. Predicting the optimum storage conditions for seeds using thermodynamic principles. J. Seed Technol. 1993, 17, 41–52. [Google Scholar]
- Wesley-Smith, J.; Berjak, P.; Pammenter, N.W.; Walters, C. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: An ultrastructural study of factors affecting cell and ice structures. Ann. Bot. 2014, 113, 695–709. [Google Scholar] [CrossRef] [Green Version]
- Wesley-Smith, J.; Pammenter, N.W.; Berjak, P.; Walters, C. The effects of two drying rates on the desiccation tolerance of embryonic axes of recalcitrant Jackfruit (Artocarpus heterophyllus Lamk.) Seeds. Ann. Bot. 2001, 88, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Bernal, P.; Fanega-Sleziak, N.; Pritchard, H.W.; Ballesteros, D. Cryobiotechnological approaches for the preservation of oak (Quercus sp.) embryonic axes. Cryobiology 2018, 85, 140. [Google Scholar] [CrossRef]
- Nadarajan, J.; Pritchard, H.W. Biophysical characteristics of successful oilseed embryo cryoprotection and cryopreservation using vacuum infiltration vitrification: An innovation in plant cell preservation. PLoS ONE 2014, 9, e96169. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, Y.G.; Shin, D.J.; Ko, H.C.; Gwag, J.G.; Cho, E.G.; Engelmann, F. Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 2009, 30, 320–334. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, S.C. Personalisation’ of droplet-vitrification protocols for plant cells: A systematic approach to optimising chemical and osmotic effects. CryoLetters 2012, 33, 271–279. [Google Scholar]
- Faria, J.; Hill, L.; Walters, C. Strategies to cryopreserve embryonic Axes of North American oaks: Interactions of moisture, cryoprotectants and LN exposure rates in Quercus imbricaria. Cryobiology 2019, 91, 179. [Google Scholar] [CrossRef]
- Steiner, N.; Hill, L.; Dorr, E.; Walters, C. Development of cryobiotechnologies to preserve zygotic embryo tissues of north American tree species. In Proceedings of the 57th Annual Meeting of the Society for Cryobiology CRYO2020, Chicago, IL, USA, 21–23 July 2020. [Google Scholar]
- Goveia, M.; Kioko, J.I.; Berjak, P. Developmental status is a critical factor in the selection of excised recalcitrant axes as explants for cryopreservation: A study on Trichilia dregeana Sond. Seed Sci. Res. 2004, 14, 241–248. [Google Scholar] [CrossRef]
- Daws, M.I.; Pritchard, H.W. The development and limits of freezing tolerance in Acer pseudoplatanus fruits across Europe is dependent on provenance. CryoLetters 2008, 29, 189–198. [Google Scholar] [PubMed]
- Han, E.J.; Popova, E.; Cho, G.T.; Park, S.U.; Lee, S.C.; Pritchard, H.W.; Kim, H.H. Post-harvest embryo development in ginseng seeds increases desiccation sensitivity and narrows the hydration window for cryopreservation. CryoLetters 2016, 37, 284–294. [Google Scholar] [PubMed]
- Roach, T.; Ivanova, M.; Beckett, R.P.; Minibayeva, F.V.; Green, I.; Pritchard, H.W.; Kranner, I. An oxidative burst of superoxide in embryonic axes of recalcitrant sweet chestnut seeds as induced by excision and desiccation. Physiol. Plant. 2008, 133, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, C.; Beckett, R.P.; Minibayeva, F.V.; Kranner, I. Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond. S. Afr. J. Bot. 2010, 76, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Berjak, P.; Sershen; Varghese, B.; Pammenter, N.W. Cathodic amelioration of the adverse effects of oxidative stress accompanying procedures necessary for cryopreservation of embryonic axes of recalcitrant seeded species. Seed Sci. Res. 2011, 21, 187–203. [Google Scholar] [CrossRef]
- Sershen Pammenter, N.W.; Berjak, P.; Wesley-Smith, J. Cryopreservation of embryonic axes of selected amaryllid species. CryoLetters 2007, 28, 387–399. [Google Scholar]
- Uchendu, E.E.; Leonard, S.W.; Traber, M.G.; Reed, B.M. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep. 2010, 29, 25–35. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Muminova, M.; Gupta, S.; Reed, B.M. Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. Vitr. Cell. Dev. Biol. Plant 2010, 46, 386–393. [Google Scholar] [CrossRef]
- Pritchard, H.W.; Prendergast, F.G. Effects of desiccation and cryopreservation on the in vitro viability of embryos of the recalcitrant seed species Auracaria hunsteinii K. Schum. J. Exp. Bot. 1986, 37, 1388–1397. [Google Scholar] [CrossRef]
- Berjak, P.; Farrant, J.M.; Mycock, D.J.; Pammenter, N.W. Recalcitrant (homoiohydrous) seeds: The enigma of their desiccation-sensitivity. Seed Sci. Technol. 1990, 18, 297–310. [Google Scholar]
- Pritchard, H.W. Water potential and embryonic axis viability in recalcitrant seeds of Quercus rubra. Ann. Bot. 1991, 67, 43–49. [Google Scholar] [CrossRef]
- Pritchard, H.W.; Manger, K.R. A calorimetric perspective on desiccation stress during preservation procedures with recalcitrant seeds of Quercus robur. CryoLetters 1998, 19, 23–30. [Google Scholar]
- Wesley-Smith, J.; Vertucci, C.W.; Berjak, P.; Pammenter, N.W.; Crane, J. Cryopreservation of desiccation-sensitive axes of Camellia sinensis in relation to dehydration, freezing rate and thermal properties of tissue water. J. Plant. Physiol. 1992, 140, 596–604. [Google Scholar] [CrossRef]
- Pritchard, H.W.; Tompsett, P.B.; Manger, K.; Smidt, W.J. The effect of moisture content on the low temperature responses of Araucaria hunsteinii seed and embryos. Ann. Bot. 1995, 76, 79–88. [Google Scholar] [CrossRef]
- González-Benito, M.E.; Herradón, E.; Martin, C. The development of a protocol for the encapsulation-desiccation and in vitro culture of Quercus suber L. and Q. ilex L. Silvae Genet. 1999, 48, 25–28. [Google Scholar]
- Walters, C.; Wheeler, L.; Stanwood, P.C. Longevity of cryogenically stored seeds. Cryobiology 2004, 48, 229–244. [Google Scholar] [CrossRef]
- Pence, V.C. In vitro growth of embryo axes after long-term storage in liquid nitrogen. In Seed Conservation: Turning Science into Practice; Smith, R.D., Dickie, J.B., Linington, S.H., Pritchard, H.W., Probert, R.J., Eds.; Royal Botanic Gardens Kew: Richmond, UK, 2003; pp. 483–492. [Google Scholar]
- Ballesteros, D.; Pence, V.C. Survival and growth of embryo axes of temperate trees after two decades of cryo-storage. Cryobiology 2019, 88, 110–113. [Google Scholar] [CrossRef]
- Wesley-Smith, J.; Walters, C.; Berjak, P.; Pammenter, N.W. The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifoliata (L.). CryoLetters 2004, 25, 129–138. [Google Scholar]
- Niedz, R.P.; Evens, T.J. Design of experiments (DOE)—history, concepts, and relevance to in vitro culture. Vitr. Cell. Dev. Biol. Plant 2016, 52, 547–562. [Google Scholar] [CrossRef]
- Vanhove, A.; Niedz, R.; Pence, V.C. Improving growth of Quercus palustris embryo axes in vitro: A DOE approach. Vitr. Cell. Dev. Biol. Plant 2015, 51 (Suppl. 1), S48. [Google Scholar]
- Sha Valli Khan, P.S.; Evers, D.; Hausman, J.F. Stomatal characteristics and water relations of in vitro grown Quercus robur NL 100 in relation to acclimatization. Silvae Genet. 1999, 48, 83–87. [Google Scholar]
- Pospíšilová, J.; Synková, H.; Haisel, D.; Semorádová, Š. Acclimation of plantlets to ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Hortic. 2007, 748, 29–38. [Google Scholar]
- Vengadesan, G.; Pijut, P.M. In vitro propagation of northern red oak (Quercus rubra L.). Vitr. Cell. Dev. Biol. Plant 2009, 45, 474–482. [Google Scholar] [CrossRef]
- Sershen Berjak, P.; Pammenter, N.W. Effects of cryopreservation of recalcitrant Amaryllis belladonna zygotic embryos on vigor of recovered seedlings: A case of stress ‘hangover’? Physiol. Plant. 2010, 139, 205–219. [Google Scholar]
- Sershen Varghese, B.; Pammenter, N.W.; Berjak, P. Cryo-tolerance of zygotic embryos from recalcitrant seeds in relation to oxidative stress—A case study on two amaryllid species. J. Plant Physiol. 2012, 169, 999–1011. [Google Scholar] [CrossRef]
- Wesley-Smith, J.; Walters, C.; Pammenter, N.W.; Berjak, P. Interactions among water content, rapid (nonequilibrium) cooling to -196°C, and survival of embryonic axes of Aesculus hippocastanum L. seeds. Cryobiology 2001, 42, 196–206. [Google Scholar] [CrossRef]
- Corredoira, E.; San-José, M.C.; Ballester, A.; Vieitez, A.M. Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 2004, 25, 33–42. [Google Scholar]
- Wesley-Smith, J.; Walters, C.; Pammenter, N.W.; Berjak, P. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum. Ann. Bot. 2015, 115, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.M. Implementing cryogenic storage of clonally propagated plants. CryoLetters 2001, 22, 97–104. [Google Scholar] [PubMed]
- Vollmer, R.; Villagaray, R.; Egusquiza, V.; Espirilla, J.; Garcia, M.; Torres, A.; Rojas, E.; Panta, A.; Barkley, N.A.; Ellis, D. The potato cryobank at the International Potato Center (CIP): A model for long-term conservation of clonal plant genetic resources collections of the future. CryoLetters 2016, 37, 318–329. [Google Scholar] [PubMed]
- Wade, E.M.; Nadarajan, J.; Yang, X.-Y.; Ballesteros, D.; Sun, W.-B.; Pritchard, H.W. Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective. Plant Divers. 2016, 38, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species 1 | Range of Distribution 2 | Threatened Species 3 | Tissue Cultured | References |
---|---|---|---|---|
Q. acutissima Carruth. | Native to China (including Tibet), Korea, Japan, Indochina (Vietnam, Thailand, Myanmar, Cambodia) and the Himalayas (Nepal, Bhutan, Northeastern India) | NO | Somatic embryos | [14,38] |
Q. acerifolia (E.J.Palmer) Stoynoff and W.J.Hess ex R.J.Jensen | United States (Arkansas) | YES | Somatic embryos; Shoot cultures | [17] |
Q. alba L. | Eastern half of the United States, extending north into southern Ontario and Quebec in Canada | NO | Shoot cultures | [14,38] |
Q. arbutifolia Hickel and A. Camus | China, Vietnam | YES | Shoot cultures | [39] |
Q. arkansana Sarg. | United States (Alabama, Arkansas, Florida, Georgia, Louisiana, Texas) | YES | Somatic embryos; Shoot cultures | [17,37] |
Q. bicolor Willd. | North-central and eastern parts of the United States, extending into parts of south Quebec and Southeastern Ontario in Canada | NO | Shoot cultures | [14,38] |
Q. boyntonii Beadle | United States (Alabama, Texas - Regionally Extinct) | YES | Somatic embryos; Shoot cultures | [17,37] |
Q. canbyi Trel. | United States (Texas) | YES | Shoot cultures | [37] |
Q. canariensis Willd. | Native to southern Portugal, Spain, Tunisia, Algeria and Morocco | YES | Somatic embryos | [38] |
Q. castanea Née | Native to El Salvador, Guatemala, Honduras and Mexico | NO | Shoot cultures | [40] |
Q. cerris L. | South-eastern Europe and Asia Minor | NO | Somatic embryos; Shoot cultures | [14,38] |
Q. chrysolepis Liebm. | Mexico (Baja California); United States (Arizona, California, Nevada, New Mexico, Oregon) | NO | Shoot cultures | [37] |
Q. dumosa Nutt. | Mexico (Baja California); United States (California) | YES | Shoot cultures | [37] |
Q. eduardii Trel. | Mexico | NO | Shoot cultures | [40] |
Q. engelmannii Greene | Mexico (Baja California); United States (California) | YES | Shoot cultures | [37] |
Q. euboica (syn. of Q. trojana subsp. euboica (Papaioannou)) | Italy and the Balkan peninsula from Croatia, south to northern Greece. The species is found in both European and Asian Turkey | NO | Shoot cultures | [37,39] |
Q. gambelii Liebm. | Mexico (Chihuahua, Coahuila, Sonora); United States (Arizona, Colorado, Nevada, New Mexico, Texas, Utah, Wyoming) | NO | Shoot cultures | [37,39] |
Q. georgiana M.A. Curtis | United States (Alabama, Georgia, North Carolina - Possibly Extinct, South Carolina—Possibly Extinct) | YES | Somatic embryos; Shoot cultures | [17] |
Q. glauca Thunb | Native to Assam, China, East and West Himalaya, Hainan, Japan, Korea, Laos, Myanmar, Nansei-shoto, Nepal, Taiwan, Tibet and Vietnam | NO | Shoot cultures | [41] |
Q. graciliformis C.H. Mull. (syn. of Q. canbyi Trel.) | United States (Texas) | YES | Shoot cultures | [37] |
Q. hinckleyi C.H. Mull. | Mexico (North Chihuahua); United States (Texas) | YES | Shoot cultures | [39] |
Q. ilex L. | Widespread across the Mediterranean and Balkan regions of Europe, in North Africa and in Turkey | NO | Somatic embryos | [14,38] |
Q. leucotrichophora A.Camus ex Bahadur [syn of Q. oblongata D.Don] | Native to Assam, Bangladesh, India, Myanmar, Nepal, Pakistan, Thailand, Vietnam, West Himalaya | NO | Shoot cultures | [41] |
Q. libani G. Olivier | Eastern Mediterranean and western Asia (including Lebanon, western Syria, northeastern Israel, eastern Turkey, and northern Iraq and Iran). | NO | Somatic embryos | [38] |
Q. lusitanica Lam. | Iberian Peninsula (north-west), Morocco | YES | Shoot cultures | [39] |
Quercus palmeri (Engelm.) Engelm. | United States (S. California, Arizona) and Mexico (N. Baja Califonia). | YES | Shoot cultures | [37] |
Q. petraea (Matt.) Liebl. | Widespread species found in Europe, Russia, the Caucasus and west Asia | NO | Shoot cultures | [14,38] |
Q. pubescens Brot. (syn. of Q. pyrenaica Willd.) | From northern Spain (Pyrenees) east to the Crimea and the Caucasus. It is also found in France and parts of central Europe. | NO | Somatic embryos | [38] |
Q. resinosa Liebm. | Mexico | NO | Shoot cultures | [40] |
Q. robur L. | Very widespread species, found in most countries in Europe and Russia, The Caucasus, Iran, Kazakhstan and Turkey | NO | Somatic embryos; Shoot cultures | [14,38] |
Q. rubra L. | Occurs widely throughout eastern North America, across the eastern US and southeastern Canada | NO | Somatic embryos; Shoot cultures | [14,38] |
Q. rugosa Née | United States (Arizona, New Mexico, Texas), Mexico, Guatemala, Honduras | NO | Shoot cultures | [40] |
Q. semecarpifolia Sm. | Native to the Himalayas and nearby mountains in Tibet, Afghanistan, India, Nepal, and Pakistan | YES | Shoot cultures | [37] |
Q. serrata Murray | China, Taiwan, Japan, and Korea | NO | Somatic embryos | [38,41] |
Q. suber L. | Found in Europe and Africa, within Mediterranean regions. Within Europe the species is found from Portugal to Sicily and in Africa it is found in Morocco, Algeria and Tunisia | NO | Somatic embryos; Shoot cultures | [14,38,39] |
Q. texana Buckley | United States (Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Oklahoma, Tennessee, Texas) | NO | Shoot cultures | [37] |
Q. tomentella Engelm. | Mexico (Guadalupe I.); United States (California) | YES | Shoot cultures | [37] |
Q. vacciniifolia Hittell | United States (California, Nevada, Oregon) | NO | Shoot cultures | [37] |
Q. virginiana Mill. | United States (Southeaster’s Coastal Plain, from Virginia to Florida and Texas) | NO | Shoot cultures | [39] |
Species # | Desiccation | Moisture Content 1 (% FWB) [(gH2O/gDW)] | Cooling | Warming | Basic Salts and Organics 2 | Plant Growth Regulators | Survival 3 (%) | Plantlet Formation 4 (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Q. alba L. | air stream (laminar flow hood) | N/A | in aluminium foil packet or cryovials, submerged into LN. | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | 25 | 0 | [86] |
Q. faginea Lam. | air stream (laminar flow hood) | 21% [0.27] | in cryovials and submerged into LN | 40 °C water bath (1 min) | WPM + MS vitamins | 1.5 mg/L BAP | 75 | 60 a | [87] |
Q. falcata Michx. | air stream (laminar flow hood) | 36% [0.56] | in cryovials and submerged into LN | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | 65 | 0 | [88] |
Q. franchetii Skan | Flash drying 2 | diverse MC | diverse cooling rates | axes immersed in 0.5 M sucrose heated to 42 °C | WPM with 0.3% charcoal | none | 0 | 0 | [36] |
Q. gambelii * Liebm. | Flash drying 2 | 38% [0.6] | in cryovials and submerged into LN (3–8 °C s−1) | axes immersed in 0.5 M sucrose heated to 42 °C | WPM with 0.3% charcoal | none | 60 | 0 | [36] |
Q. gambelii ** Liebm. | Flash drying 2 | 9% [0.1] | in aluminium foil packets and plunged into N2 slush (30–80 °C s−1) | axes immersed in 0.5 M sucrose heated to 42 °C | WPM with 0.3% charcoal | none | 90 | 3% | [36] |
Q. gambelii ** Liebm. | Flash drying 2 | 17% [0.2] | in cryovials and submerged into LN (3–8 °C s−1) | axes immersed in 0.5 M sucrose heated to 42 °C | WPM with 0.3% charcoal | none | 90 | 3% | [36] |
Q. ilex L. | air stream (laminar flow hood) | 13% [0.15] | in cryovials and submerged into LN | 40 °C water bath (1 min) | WPM | 0.1 mg/L BA | 85 | 0 b | [33] |
Q. ilex L. | air stream (laminar flow hood) | 18% [0.22] | in plastic mesh bags and immersed in sub-cooled LN. | In WPM liquid medium at room temperature. | WPM | 1 mg/L BA | 94 | 0 b | [33] |
Q. leucotrichophora ex Bahadur (syn of Q. oblongata D.Don) | air stream (laminar flow hood) | 13–14% [0.15–0.16] | in cryovials and submerged into LN | 37 °C water bath (15 min) | MS + 0.17 g/L NaH2P04 + 2 g/L charcoal | 1 mg/L NAA or IAA + 1 mg/L Kinetin, BAP or 2iP | 15–25 | Non available | [89] |
Q. macrocarpa Michx. | air stream (laminar flow hood) | N/A | in aluminium foil packet or cryovials, submerged into LN. | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | 20 | 0 | [86] |
Q. macrocarpa Michx. | air stream (laminar flow hood) | 36% [0.56] | in cryovials and submerged into LN | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | N/A | 0 | [88] |
Q. marilandica (L.) Müncch. | air stream (laminar flow hood) | N/A | in aluminium foil packet or cryovials, submerged into LN. | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | 0 | 0 | [86] |
Q. muhlembergii Engelm. | air stream (laminar flow hood) | N/A | in aluminium foil packet or cryovials, submerged into LN. | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | 40 | 0 | [86] |
Q. nigra L. | air stream (laminar flow hood) | 25% [0.33] | in cryovials and submerged into LN | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | 50 | 0 | [88] |
Q. palustris Regel ex A.DC. (syn Q. coccinea Münchh) | air stream (laminar flow hood) | 20% [0.25] | in cryovials and submerged into LN | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | 12 | 0 | [88] |
Q. robur L. | Flash drying 1 | 21% [0.27] | ‘naked’ axes plunged into isopentane held in a LN reservoir. | axes immersed in solution containing Ca2+ and Mg2+ | N/A | N/A | 100 | 0 d | [90] |
Q. rubra L. | air stream (laminar flow hood) | 20% [0.25] | in cryovials and submerged into LN | ambient temperature (20 min) | MS | 2 mg/L BAP + 2 mg/mL IAPhe | 85 | 0 | [88] |
Q. rubra L. | Flash drying 2 | 23% [0.3] | in aluminium foil packets and plunged into N2 slush (30–80 °C s−1) | axes immersed in 0.5 M sucrose heated to 42 °C | WPM with 0.3% charcoal | none | 90 | 60 | [36] |
Q. rubra L. | Flash drying 2 | 23% [0.3] | in cryovials and submerged into LN (3–8 °C s−1) | axes immersed in 0.5 M sucrose heated to 42 °C | WPM with 0.3% charcoal | none | 90 | 40 | [36] |
Q. schottkyana Rehder and E.H. Wilson | Flash drying 2 | 29% [0.4] | in cryovials and submerged into LN (3–8 °C s−1) | axes immersed in 0.5 M sucrose heated to 42 °C | WPM with 0.3% charcoal | none | 30 | 5 | [36] |
Q. suber L. | air stream (laminar flow hood) | 18% [0.22] | in cryovials and submerged into LN | 40 °C water bath (1 min) | WPM | 0.1 mg/L BA | 30 | 0 c | [33] |
Steps during Cryopreservation of Embryonic Axes | Research/Technical Challenges | Methodological/Conceptual Innovations that Can Be Used | Some References, and Context |
---|---|---|---|
Collection |
|
| |
Excision |
|
| |
Pretreatments/ Cryoprotection |
|
|
|
Desiccation |
|
|
|
Cooling |
|
| |
Storage |
|
| |
Warming |
|
| |
Regeneration/ In vitro culture |
|
| |
Plant growth and acclimation |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesteros, D.; Pritchard, H.W. The Cryobiotechnology of Oaks: An Integration of Approaches for the Long-Term Ex Situ Conservation of Quercus Species. Forests 2020, 11, 1281. https://doi.org/10.3390/f11121281
Ballesteros D, Pritchard HW. The Cryobiotechnology of Oaks: An Integration of Approaches for the Long-Term Ex Situ Conservation of Quercus Species. Forests. 2020; 11(12):1281. https://doi.org/10.3390/f11121281
Chicago/Turabian StyleBallesteros, Daniel, and Hugh W. Pritchard. 2020. "The Cryobiotechnology of Oaks: An Integration of Approaches for the Long-Term Ex Situ Conservation of Quercus Species" Forests 11, no. 12: 1281. https://doi.org/10.3390/f11121281
APA StyleBallesteros, D., & Pritchard, H. W. (2020). The Cryobiotechnology of Oaks: An Integration of Approaches for the Long-Term Ex Situ Conservation of Quercus Species. Forests, 11(12), 1281. https://doi.org/10.3390/f11121281