Effect of Glow-Discharge Plasma Treatment on Contact Angle and Micromorphology of Bamboo Green Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Plasma Treatment
2.2.2. Contact Angle Test
2.2.3. 3D Topography and Height Parameters
2.2.4. Scanning Electron Microscopy
3. Results and Discussion
3.1. Contact Angle
3.2. 3D Topography and Height Parameters
3.3. Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, J.L.; Evans, R. Prediction of MOE of eucalypt wood from microfibril angle and density. Holz Als Roh-Und Werkst. 2003, 61, 449–452. [Google Scholar] [CrossRef]
- Daian, M.; Bucur, V.; Ozarska, B.; Daian, G. Static strength characteristics (MOR and MOE) of Australian Pinus ponderosa wood from plantation: A comparison of green, dry and re-wet specimens: A technical note. J. Indian Acad. Wood Sci. 2012, 9, 140–142. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Yang, S.; Li, X.; Shang, L.; Shan, H. Comparison of Physical-Mechanical Properties of Five Sympodial Bamboo Species. J. Northeast For. Univ. 2013, 41, 91–97. [Google Scholar]
- Zhang, H.; Liu, J.; Wang, Z.; Lu, X. Mechanical and thermal properties of small diameter original bamboo reinforced extruded particle board. Mater. Lett. 2013, 100, 204–206. [Google Scholar] [CrossRef]
- Chen, Z.-L.; Fu, F.; Ye, K.-L. Present condition of wood resources utilization in China and technical measures of wood recycle. China Wood-Based Panels 2007, 5, 17–19. [Google Scholar]
- Belfas, J.; Groves, K.W.; Evans, P.D. Bonding surface-modified Karri and Jarrah with resorcinol formaldehyde. Holz Als Roh-Und Werkst. 1993, 51, 253–259. [Google Scholar] [CrossRef]
- Haase, J.G.; Leung, L.H.; Evans, P.D. Plasma pre-treatments to improve the weather resistance of polyurethane coatings on black spruce wood. Coatings 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, T. Study on The Technology of Freeze-Thaw Cycles Treated on Bamboo Based Container Floor. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2016. [Google Scholar]
- Aydin, I.; Demirkir, C. Activation of Spruce Wood Surfaces by Plasma Treatment after Long Terms of Natural Surface Inactivation. Plasma Chem. Plasma Process. 2010, 30, 697–706. [Google Scholar] [CrossRef]
- Avramidis, G.; Militz, H.; Avar, I.; Viöl, W.; Wolkenhauer, A. Improved absorption characteristics of thermally modified beech veneer produced by plasma treatment. Eur. J. Wood Prod. 2012, 70, 545–549. [Google Scholar] [CrossRef]
- Odrášková, M.; Zahoranová, A.; Tiňo, R.; Černák, M. Plasma Activation of Wood Surface by Diffuse Coplanar Surface Barrier Discharge. Plasma Chem. Plasma Process. 2008, 28, 203–211. [Google Scholar] [CrossRef]
- Lux, C.; Szalay, Z.; Beikircher, W.; Kováčik, D.; Pulker, H.K. Investigation of the plasma effects on wood after activation by diffuse coplanar surface barrier discharge. Eur. J. Wood Prod. 2013, 71, 539–549. [Google Scholar] [CrossRef]
- Rehn, P.; Viöl, W. Dielectric barrier discharge treatments at atmospheric pressure for wood surface modification. Holz Als Roh-Und Werkst. 2003, 61, 145–150. [Google Scholar] [CrossRef]
- Galmiz, O.; Talviste, R.; Panáček, R.; Kováčik, D. Cold atmospheric pressure plasma facilitated nano-structuring of thermally modified wood. Wood Sci. Technol. 2019, 53, 1339–1352. [Google Scholar] [CrossRef]
- Temiz, A.; Akbas, S.; Aydin, I.; Demirkir, C. The effect of plasma treatment on mechanical properties, surface roughness and durability of plywood treated with copper-based wood preservatives. Wood Sci. Technol. 2016, 50, 179–191. [Google Scholar] [CrossRef]
- Gorjanc, M.; Savić, A.; Topalić-Trivunović, L.; Mozetič, M.; Vesel, A.; Grujić, D. Dyeing of plasma treated cotton and bamboo rayon with Fallopia japonica extract. Cellulose 2016, 23, 2221–2228. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, G.; Xu, J.; Ma, C.; Yang, W.; Li, R. Aging of Bamboo Flour / PETG Composite by Cold Plasma. J. Northeast For. Univ. 2014, 42, 119–122. [Google Scholar]
- Zhang, G.Z.; Liang, W.C.; Xu, J.F.; Ma, C.C.; Yang, W.B. Research on pure PETG and PETG /bamboo flour composite surface with plasma pretreatment. J. Fujian Coll. For. 2014, 34, 176–183. [Google Scholar]
- Bao, L.X.; Rao, J.P.; Lan, C.R.; Lin, Q.J.; Yang, W.B. Optimization of the plasma treatment of bamboo and its application in reconstituted bamboo lumber. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2014, 43, 199–203. [Google Scholar]
- Li, B.; Li, J.X.; Zhou, X.J.; Du, G.B. Effect of Low Pressure RF Discharge Cold Plasma Treatment on Improving Surface Coating Properties of Bamboo Culms. J. Southwest For. Univ. (Nat. Sci.) 2019, 39, 135–141. [Google Scholar]
- Heady, R.D.; Banks, J.G.; Evans, P.D. Wood anatomy of Wollemi pine (Wollemia nobilis, Araucariaceae). IAWA J. 2002, 23, 339–357. [Google Scholar] [CrossRef]
- Wu, Q.R.; Guan, X.; Lin, J.G.; Li, Q.Y.; Qi, W.Y. Effect of Cold Plasma Treatment on the Surface Wettability of Bamboo. J. Southwest For. Univ. (Nat. Sci.) 2017, 37, 188–193. [Google Scholar]
- Jelil, R.A. A review of low-temperature plasma treatment of textile materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Altgen, D.; Altgen, M.; Kyyrö, S.; Rautkari, L.; Mai, C. Time-dependent wettability changes on plasma-treated surfaces of unmodified and thermally modified European beech wood. Eur. J. Wood Prod. 2020, 78, 417–420. [Google Scholar] [CrossRef] [Green Version]
- Li, S. Study on Aging Behavior of Polymer Surfaces Modified by Radio Frequency Capacitively Coupled Oxygen Plasma. Master’s Thesis, Dalian University of Technology, Dalian, China, 2012. [Google Scholar]
- Yun, Y.I.; Kim, K.S.; Uhm, S.J.; Khatua, B.B.; Cho, K.; Kim, J.K.; Park, C.E. Aging behavior of oxygen plasma-treated polypropylene with different crystallinities. J. Adhes. Sci. Technol. 2004, 18, 1279–1291. [Google Scholar] [CrossRef]
- Della Volpe, C.; Fambri, L.; Fenner, R.; Migliaresi, C.; Pegoretti, A. Air-plasma treated polyethylene fibres: Effect of time and temperature ageing on fiber surface properties and on fiber-matrix adhesion. J. Mater. Sci. 1994, 29, 3919–3925. [Google Scholar] [CrossRef]
- Yasuda, H.; Charlson, E.J.; Charlson, E.M.; Yasuda, T.; Miyama, M.; Okuno, T. Dynamics of surface property change in response to changes in environmental conditions. Langmuir 1991, 7, 2394–2400. [Google Scholar] [CrossRef]
- Sapieha, S.; Wrobel, A.M.; Wertheimer, M.R. Plasma-assisted etching of paper. Plasma Chem. Plasma Process. 1988, 8, 331–346. [Google Scholar] [CrossRef]
- Amirov, I.I.; Izyumov, M.O.; Morozov, O.V. Etching of Silicon and Silicon Dioxide in Dense Low-Pressure Inductively Coupled Radiofrequency Discharge Fluorocarbon Plasmas. High Energy Chem. 2003, 37, 328–332. [Google Scholar] [CrossRef]
- Krolczyk, G.M.; Krolczyk, J.B.; Maruda, R.W.; Legutko, S.; Tomaszewski, M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement 2016, 88, 176–185. [Google Scholar] [CrossRef]
- Da Costa Castanhera, I.; Diniz, A.E.; Button, S.T. Effects of tool path strategies and thermochemical treatments on the surface roughness of hardened punches for hot stamping. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 214. [Google Scholar] [CrossRef]
- Xie, Y.J.; Zhang, X.Y.; Wu, Z.R.; Chen, Y.Y. The Preparation of Modified Basalt Fiber and its Utilization on Microorganism Carrier Media. Synth. Fiber China 2019, 48, 19–22. [Google Scholar]
- Fujiwara, Y.; Fujii, Y.; Sawada, Y.; Okumura, S. Assessment of wood surface roughness: Comparison of tactile roughness and three-dimensional parameters derived using a robust Gaussian regression filter. J. Wood Sci. 2004, 50, 35–40. [Google Scholar] [CrossRef]
- Söğütlü, C.; Nzokou, P.; Koc, I.; Tutgun, R.; Döngel, N. The effects of surface roughness on varnish adhesion strength of wood materials. J. Coat. Technol. Res. 2016, 13, 863–870. [Google Scholar] [CrossRef]
- Qiu, Y.; Lin, L.; Zheng, Z. Study on the cuticle of bamboo stem by means of SEM-EDAX. Trans. China Pulp Pap. 2002, 17, 1–5. [Google Scholar]
- Li, S.H.; Liu, Q.; Zhou, B.L.; de Groot, K. Calcium phosphate formation induced on silica in bamboo. J. Mater. Sci. Mater. Med. 1997, 8, 427–433. [Google Scholar] [CrossRef]
- Jamali, A.; Evans, P.D. Plasma treatment reduced the discoloration of an acrylic coating on hot-oil modified wood exposed to natural weathering. Coatings 2020, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Dai, Q.; He, R.; Zhang, X. Hydrophilicity and Surface Structure of PET Films Modified by Radio Frequency Ar Plasma. China Plast. 2012, 26, 84–88. [Google Scholar]
- Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M. Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric. Int. J. 2013, 34, 2173–2182. [Google Scholar] [CrossRef]
- Damayanti, N.P. Preparation of superhydrophobic PET fabric from Al2O3–SiO2 hybrid: Geometrical approach to create high contact angle surface from low contact angle materials. J. Sol-Gel Sci. Technol. 2010, 56, 47–52. [Google Scholar] [CrossRef]
- Bilaniuk, M.; Howe, J.M. Wetting, Bonding and Interfacial Energy of Nanocrystalline Metal Particles on Crystalline DCH Polymer and Amorphous Carbon Substrates. Interface Sci. 1998, 6, 319–345. [Google Scholar] [CrossRef]
Parameters | Stem 1 | Stem 2 | Stem 3 | |||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
Sa/µm | 6.48 | 7.90 | 2.10 | 3.03 | 16.1 | 20.1 |
Sq/µm | 10.0 | 14.0 | 2.55 | 3.69 | 19.7 | 27.2 |
Ssk | −6.07 | −6.08 | −0.883 | −2.32 | −1.22 | −1.68 |
Sku | 90.7 | 59.8 | 33.4 | 85.4 | 9.69 | 7.62 |
Sp/µm | 125 | 134 | 7.85 | 9.23 | 108 | 155 |
Sv/µm | 155 | 146 | 138 | 147 | 170 | 125 |
Sz/µm | 279 | 280 | 146 | 156 | 279 | 280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cheng, K.J. Effect of Glow-Discharge Plasma Treatment on Contact Angle and Micromorphology of Bamboo Green Surface. Forests 2020, 11, 1293. https://doi.org/10.3390/f11121293
Wang X, Cheng KJ. Effect of Glow-Discharge Plasma Treatment on Contact Angle and Micromorphology of Bamboo Green Surface. Forests. 2020; 11(12):1293. https://doi.org/10.3390/f11121293
Chicago/Turabian StyleWang, Xuehua, and Kenneth J. Cheng. 2020. "Effect of Glow-Discharge Plasma Treatment on Contact Angle and Micromorphology of Bamboo Green Surface" Forests 11, no. 12: 1293. https://doi.org/10.3390/f11121293
APA StyleWang, X., & Cheng, K. J. (2020). Effect of Glow-Discharge Plasma Treatment on Contact Angle and Micromorphology of Bamboo Green Surface. Forests, 11(12), 1293. https://doi.org/10.3390/f11121293