Evidences of Different Drought Sensitivity in Xylem Cell Developmental Processes in South Siberia Scots Pines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Site Selection
2.2. Tree-Ring and Cell Anatomical Measurement
2.3. Tree-Ring Chronologies, Correlation Matrices, and Climate–Growth Relationships
3. Results
3.1. Characteristics of Site Chronologies
3.2. Correlations Within and Between Parameters
3.3. Climate–Growth Relations
4. Discussion
4.1. Variabilities and Their Drivers
4.2. Variation of Climatic Responses along the Gradient
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Esper, J.; Frank, D.C.; Luterbacher, J. On selected issues and challenges in dendroclimatology. In A Changing World: Challenges for Landscape Research; Kienast, F., Wildi, O., Ghosh, S., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 113–132. [Google Scholar] [CrossRef]
- Gärtner, H.; Cherubini, P.; Fonti, P.; von Arx, G.; Schneider, L.; Nievergelt, D.; Verstege, A.; Bast, A.; Schweingruber, F.H.; Büntgen, U. A technical perspective in modern tree-ring research–How to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 2015, 97, e52337. [Google Scholar] [CrossRef] [Green Version]
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK, 1976. [Google Scholar]
- Vaganov, E.A.; Hughes, M.K.; Shashkin, A.V. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments; Springer: Berlin, Germany, 2006. [Google Scholar] [CrossRef]
- Kononov, Y.M.; Friedrich, M.; Boettger, T. Regional summer temperature reconstruction in the Khibiny low mountains (Kola peninsula, NW Russia) by means of tree-ring width during the last four centuries. Arct. Antarct. Alp. Res. 2009, 41, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Keyimu, M.; Li, Z.; Zhang, G.; Fan, Z.; Wang, X.; Fu, B. Tree ring–based minimum temperature reconstruction in the central Hengduan Mountains, China. Theor. Appl. Climatol. 2020, 141, 359–370. [Google Scholar] [CrossRef]
- D’Arrigo, R.D.; Jacoby, G.C.; Free, R.M. Tree-ring width and maximum latewood density at the North American tree line: Parameters of climatic change. Can. J. For. Res. 1992, 22, 1290–1296. [Google Scholar] [CrossRef]
- Gindl, W.; Grabner, M.; Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 2000, 14, 409–414. [Google Scholar] [CrossRef]
- Lebourgeois, F. Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Ann. For. Sci. 2000, 57, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Meko, D.M.; Baisan, C.H. Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region. Int. J. Climatol. 2001, 21, 697–708. [Google Scholar] [CrossRef]
- Fonti, P.; von Arx, G.; García-González, I.; Eilmann, B.; Sass-Klaassen, U.; Gärtner, H.; Eckstein, D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 2010, 185, 42–53. [Google Scholar] [CrossRef]
- von Arx, G.; Crivellaro, A.; Prendin, A.L.; Čufar, K.; Carrer, M. Quantitative wood anatomy—practical guidelines. Front. Plant Sci. 2016, 7, 781. [Google Scholar] [CrossRef] [Green Version]
- Fonti, P.; Bryukhanova, M.; Myglan, V.; Naumova, O.; Kirdyanov, A.; Vaganov, E. Temperature-induced responses of xylem structure of Larix sibirica Ldb. (Pinaceae) from Russian Altay. Am. J. Bot. 2013, 100, 1332–1343. [Google Scholar] [CrossRef]
- Castagneri, D.; Fonti, P.; von Arx, G.; Carrer, M. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Ann. Bot. 2017, 19, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Carrer, M.; Castagneri, D.; Prendin, A.L.; Petit, G.; von Arx, G. Retrospective analysis of wood anatomical traits reveals a recent extension in tree cambial activity in two high-elevation conifers. Front. Plant Sci. 2017, 8, 737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deslauriers, A.; Morin, H. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 2005, 19, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Ziaco, E.; Liang, E. New perspectives on sub-seasonal xylem anatomical responses to climatic variability. Trees 2019, 33, 973–975. [Google Scholar] [CrossRef] [Green Version]
- Rathgeber, C.B.; Cuny, H.E.; Fonti, P. Biological basis of tree-ring formation: A crash course. Front. Plant Sci. 2016, 7, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Micco, V.; Carrer, M.; Rathgeber, C.B.; Camarero, J.J.; Voltas, J.; Cherubini, P.; Battipaglia, G. From xylogenesis to tree rings: Wood traits to investigate tree response to environmental changes. IAWA J. 2019, 40, 155–182. [Google Scholar] [CrossRef] [Green Version]
- Cuny, H.E.; Rathgeber, C.B.K.; Frank, D.; Fonti, P.; Mäkinen, H.; Prislan, P.; Rossi, S.; Martinez del Castillo, E.; Campelo, F.; Vavrčík, H.; et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 2015, 1, 15160. [Google Scholar] [CrossRef]
- Hacke, U.G.; Lachenbruch, B.; Pittermann, J.; Mayr, S.; Domec, J.C.; Schulte, P.J. The hydraulic architecture of conifers. In Functional and Ecological Xylem Anatomy; Hacke, U., Ed.; Springer: Cham, Switzerland, 2015; pp. 39–75. [Google Scholar] [CrossRef]
- Arzac, A.; Babushkina, E.A.; Fonti, P.; Slobodchikova, V.; Sviderskaya, I.V.; Vaganov, E.A. Evidences of wider latewood in Pinus sylvestris from a forest-steppe of Southern Siberia. Dendrochronologia 2018, 49, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Deslauriers, A.; Anfodillo, T. Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the Alpine timberline. IAWA J. 2006, 27, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Shorohova, E.; Kneeshaw, D.; Kuuluvainen, T.; Gauthier, S. Variability and dynamics of old-growth forests in the circumboreal zone: Implications for conservation, restoration and management. Silva Fenn. 2011, 45, 785–806. [Google Scholar] [CrossRef] [Green Version]
- Houston Durrant, T.; de Rigo, D.; Caudullo, G. Pinus sylvestris in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; pp. 132–133. [Google Scholar]
- Grissino-Mayer, H.D. An updated list of species used in tree-ring research. Tree-Ring Bull. 1993, 53, 17–43. [Google Scholar]
- Alisov, B.P. Climate of the USSR; Moscow State University: Moscow, Russia, 1956. (In Russian) [Google Scholar]
- Polikarpov, N.P.; Nazimova, D.I. The dark coniferous forests of the northern part of the west Siberian mountains. For. Res. For. Sib. 1936, 57, 103–147. (In Russian) [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. (Eds.) Methods of Dendrochronology: Application in Environmental Sciences; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar] [CrossRef]
- Carrer, M.; von Arx, G.; Castagneri, D.; Petit, G. Distilling allometric and environmental information from time series of conduit size: The standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 2015, 35, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silkin, P.P. Methods of Multiparameter Analysis of Conifers Tree-Rings Structure; Siberian Federal University: Krasnoyarsk, Russia, 2010. (In Russian) [Google Scholar]
- Seo, J.W.; Smiljanić, M.; Wilmking, M. Optimizing cell-anatomical chronologies of Scots pine by stepwise increasing the number of radial tracheid rows included—Case study based on three Scandinavian sites. Dendrochronologia 2014, 32, 205–209. [Google Scholar] [CrossRef]
- Belokopytova, L.V.; Babushkina, E.A.; Zhirnova, D.F.; Panyushkina, I.P.; Vaganov, E.A. Pine and larch tracheids capture seasonal variations of climatic signal at moisture-limited sites. Trees 2019, 33, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Vaganov, E.A. The tracheidogram method in tree-ring analysis and its application. In Methods of dendrochronology. Application in Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 63–75. [Google Scholar] [CrossRef]
- Bryukhanova, M.; Fonti, P. Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees 2013, 27, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Anfodillo, T.; Carraro, V.; Carrer, M.; Fior, C.; Rossi, S. Convergent tapering of xylem conduits in different woody species. New Phytol. 2006, 169, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, F.C.; Lachenbruch, B.; Dawson, T.E. Size- and Age-Related Changes in Tree Structure and Function; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Cartenì, F.; Deslauriers, A.; Rossi, S.; Morin, H.; De Micco, V.; Mazzoleni, S.; Giannino, F. The physiological mechanisms behind the earlywood-to-latewood transition: A process-based modeling approach. Front. Plant Sci. 2018, 9, 1053. [Google Scholar] [CrossRef]
- Ziaco, E.; Biondi, F.; Heinrich, I. Wood cellular dendroclimatology: Testing new proxies in Great Basin bristlecone pine. Front. Plant Sci. 2016, 7, 1602. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sancho, E.; Dorado-Liñán, I.; Hacke, U.G.; Seidel, H.; Menzel, A. Contrasting hydraulic architectures of Scots pine and sessile oak at their southernmost distribution limits. Front. Plant Sci. 2017, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Kalinina, E.V.; Knorre, A.A.; Fonti, M.V.; Vaganov, E.A. Seasonal formation of tree rings in Siberian larch and Scots pine in the southern taiga of Central Siberia. Russ. J. Ecol. 2019, 50, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Prendin, A.L.; Petit, G.; Fonti, P.; Rixen, C.; Dawes, M.A.; von Arx, G. Axial xylem architecture of Larix decidua exposed to CO2 enrichment and soil warming at the treeline. Funct. Ecol. 2018, 32, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Hacke, U.G.; Sperry, J.S. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 2001, 4, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Björklund, J.; Seftigen, K.; Schweingruber, F.; Fonti, P.; von Arx, G.; Bryukhanova, M.V.; Cuny, H.E.; Carrer, M.; Castagneri, D.; Frank, D.C. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytol. 2017, 216, 728–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, J.; Carvalho, A.; Campelo, F. Tree growth under climate change: Evidence from xylogenesis timings and kinetics. Front. Plant Sci. 2020, 11, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proseus, T.E.; Boyer, J.S. Turgor pressure moves polysaccharides into growing cell walls of Chara corallina. Ann. Bot. 2005, 95, 967–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziaco, E.; Truettner, C.; Biondi, F.; Bullock, S. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell Environ. 2018, 41, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Cabon, A.; Peters, R.L.; Fonti, P.; Martínez-Vilalta, J.; De Cáceres, M. Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. New Phytol. 2020, 226, 1325–1340. [Google Scholar] [CrossRef]
- Peters, R.; Steppe, K.; Cuny, H.; de Pauw, D.; Frank, D.F.C.; Schaub, M.; Rathgeber, C.B.K.; Cabon, A.; Fonti, P. Turgor–A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 2020. [Google Scholar] [CrossRef]
- Camarero, J.; Olano, J.M.; Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 2010, 185, 471–480. [Google Scholar] [CrossRef]
- Campelo, F.; Gutiérrez, E.; Ribas, M.; Sánchez-Salguero, R.; Nabais, C.; Camarero, J. The facultative bimodal growth pattern in Quercus ilex–A simple model to predict sub-seasonal and inter-annual growth. Dendrochronologia 2018, 49, 77–88. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Bartholin, T.; Schär, E.; Briffa, K.R. Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 1988, 17, 559–566. [Google Scholar] [CrossRef]
- Briffa, K.R.; Jones, P.D.; Schweingruber, F.H. Tree-ring density reconstructions of summer temperature patterns across western North America since 1600. J. Clim. 1992, 5, 735–754. [Google Scholar] [CrossRef] [Green Version]
Site/Station | Coordinates | Slope | Forest Composition 1 | Average Climate (May–Sep) | |||||
---|---|---|---|---|---|---|---|---|---|
Lat. (°N) | Long. (°E) | Elev. (m a.s.l.) | Aspect | Angle (°) | Temp (°C) | Prec. (mm) | Radiation (kW/m2) | ||
ShB_1300N | 52.809 | 91.507 | 1350 | NE | 25–30 | PISI PISY PCOB | 8.2 | 1390 | 600 |
ShB_900N | 52.840 | 91.451 | 950 | N | 25–30 | PISY LASI ABSI PPTM | 10.8 | 990 | 600 |
ShB_900S | 52.839 | 91.450 | 950 | S | 30–35 | PISY LASI PPTM | 10.8 | 990 | 770 |
ShB_500S | 52.827 | 91.448 | 550 | S | 20–25 | PISY LASI PPTM | 13.4 | 590 | 730 |
MIN_300 | 53.723 | 91.867 | 300 | flat | 0 | PISY BEPE | 14.9 | 260 | 670 |
Cheryomushki | 52.87 | 91.42 | 330 | E | < 10 | – | 14.7 | 390 | 660 |
Minusinsk | 53.68 | 91.67 | 250 | flat | 0 | – | 15.2 | 260 | 670 |
Parameters 1 | Site | ||||
---|---|---|---|---|---|
ShB_1300N | ShB_900N | ShB_900S | ShB_500S | MIN_300 | |
TRWsite | 0.48 2 | 0.27 | 0.30 | 0.28 | 0.27 |
TRW5 | 0.50 | 0.25 | 0.39 | 0.27 | 0.28 |
New | 0.47 | 0.24 | 0.33 | 0.25 | 0.23 |
Nlw | 0.49 | 0.24 | 0.41 | 0.23 | 0.31 |
Dew | 0.16 | 0.12 | 0.27 | 0.16 | 0.37 |
Dlw | 0.19 | 0.13 | 0.38 | 0.10 | 0.36 |
CWTew | 0.10 | 0.18 | 0.10 | 0.10 | 0.09 |
CWTlw | 0.25 | 0.27 | 0.17 | 0.16 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belokopytova, L.V.; Fonti, P.; Babushkina, E.A.; Zhirnova, D.F.; Vaganov, E.A. Evidences of Different Drought Sensitivity in Xylem Cell Developmental Processes in South Siberia Scots Pines. Forests 2020, 11, 1294. https://doi.org/10.3390/f11121294
Belokopytova LV, Fonti P, Babushkina EA, Zhirnova DF, Vaganov EA. Evidences of Different Drought Sensitivity in Xylem Cell Developmental Processes in South Siberia Scots Pines. Forests. 2020; 11(12):1294. https://doi.org/10.3390/f11121294
Chicago/Turabian StyleBelokopytova, Liliana V., Patrick Fonti, Elena A. Babushkina, Dina F. Zhirnova, and Eugene A. Vaganov. 2020. "Evidences of Different Drought Sensitivity in Xylem Cell Developmental Processes in South Siberia Scots Pines" Forests 11, no. 12: 1294. https://doi.org/10.3390/f11121294
APA StyleBelokopytova, L. V., Fonti, P., Babushkina, E. A., Zhirnova, D. F., & Vaganov, E. A. (2020). Evidences of Different Drought Sensitivity in Xylem Cell Developmental Processes in South Siberia Scots Pines. Forests, 11(12), 1294. https://doi.org/10.3390/f11121294