Habitat Models of Focal Species Can Link Ecology and Decision-Making in Sustainable Forest Management
Abstract
:1. Introduction
- Biodiversity-representation gap—attempts to describe biodiversity comprehensively are common when analyzing current management situations, while most scenario analyses do not address representation beyond woody vegetation (e.g., [45]).
- Scale-relevance gap—typical units of forest management and conservation decisions are either single trees, forest stands, or mosaics of stands (landscapes), while most biodiversity data are collected or modeled in other units (plots; pixels; etc.) that cannot be easily combined for decision support. Local biodiversity patterns, in turn, result from wider and longer-term ecological processes, which are difficult to explicitly incorporate in the models (e.g., [49]).
- Feedback gap—realistic biodiversity models tend to become very complicated (e.g., [17,43]), which undermines their updating, reduces advantages over adaptive management, and limits communication and uptake by the wider public. Infrequent or one-sided communication, in turn, reduces the ability to mobilize knowledge for action [50,51].
2. A Spatial Modeling Perspective on Focal Species
2.1. Theoretical Background
- Selecting well-defined sensitive species to represent a full set of threats to biodiversity simplifies practical biodiversity concerns (the representation and goal-setting gaps above). A useful input is the red-listing of species based on the International Union for Conservation of Nature (IUCN) framework, which also considers ‘projected declines’ based on potential threats and changes in habitat area and quality [61,62].
- Managing (avoiding, mitigating, or reversing) each threat to sustain focal species in actual landscapes links the concern with management responses (Figure 1) and implicitly addresses some uncertainty (e.g., maintaining population ‘at the safe side’). A key simplification is that focal species serve simultaneously as biodiversity indicators and management targets (cf. [63]), while such a link is unspecified in other biodiversity schemes for SFM (e.g., [35,64]).
2.2. Published Spatial Models of Focal Species Performance
2.3. Key Issues for Practical Spatial Models of Focal Species
- The rationale that focal species serve both as indicators and management goals promotes linking their models strategically with other decision-making tools. The underlying concept of ’threat’ instantly makes sense for ecological risk assessment [129], but some harmonization may be required to also link it with specific ‘pressures’ in DPSIR (drivers–pressures–state–impact–response) and related causal frameworks of biodiversity or environmental management [130,131,132]. For ecosystem analysis, representative sets of focal species can operationalize the issue of ecological integrity [129,133] and help prioritize ecological risks based on irreversible damage. In management, focal species could inspire the development of new forestry approaches if seen as organizational goals subject to the SMART (specific, measurable, attainable, realistic, and time-sensitive) criteria [134] and educational capacity-building.
- The spatial models are most useful when they collectively map most of the risk dimensions of the environment rather than the performance of individual species. More work is needed on how to define such dimensions, how to analyze their ecological trade-offs and optimize solutions that also consider socio-economic aspects. An established practice, which has the advantage of including future threats and recovery of extirpated taxa, is to start from conceptualizing vulnerable niches in the environment (‘ecological profiles’) and selecting species representing such niches [100,133,135,136]. An ecological question is the level of generalization for that, with extremes represented by models based on ‘theoretical species’ (e.g., [72,137,138]) versus complex real-species models to maximize fit with the data [139,140,141]. Based on our experience with broader understandability issues in environmental decision-making (see also [142,143]), we suggest that a middle ground of simplified, limiting-factor based models of real focal species might serve practical goals best. For such generalization, deductive models have advantages over inductive models (e.g., [104,105]), but only in landscapes and ecosystems known well enough.
- Some basic tensions of SFM suggest that at least the following technical qualities are important in focal-species models. (a) Dynamic modeling over decadal time-scales. Static models are of limited use since the main practical challenge is how to balance short- vs. long-term perspectives. (b) Preferring a full range of focal-species responses [144] over quantitative accuracy within a limited range. If managers prioritize actions (scenarios), an ordinal response scale may suffice (e.g., [75,145] and allow less-studied taxa to be modeled. A useful qualitative framework is to distinguish fundamental-niche, realized-niche, source-sink, and dispersal-limited locations [139]. (c) The aspects of time frame and decision-relevance also apply to input data. It is important to utilize data sources that are maintained for wider purposes, over long periods (including historical data), and are legitimate to stakeholders. Stand-structural and tree-composition variables of national forest surveys are specifically promising [146,147,148], also given the general trend to address SFM criteria and indicators at the operational unit (stand) scale [30]. (d) Uncertainty remains a part of any model, but it can be at least described [75]. Such descriptions can be linked with the precautionary principle and safe minimum standards relevant to SFM and conservation management. Uncertainty can also vary in space; usefully, it may be the smallest in the highest-priority locations [117].
- Good maps help to tell a story that matters to people. This recognizes the basic principles of how policy-makers and other stakeholders think and work [149,150]. A dimension worth considering for depicting management scenarios is human activities and personal experiences [151,152], including researcher–stakeholder collaboration in producing the spatial models [153].
3. The Case Study: Protecting Degraded Forests in Estonia
3.1. The Problem and the Setup
3.2. The Modeling Approach and Inference
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clayton, T.; Radcliffe, N. Sustainability: A Systems Approach; Routledge: Abingdon, UK, 2018. [Google Scholar]
- Filotas, E.; Parrott, L.; Burton, P.J.; Chazdon, R.L.; Coates, K.D.; Coll, L.; Haeussler, S.; Martin, K.; Nocentini, S.; Puettmann, K.J.; et al. Viewing forests through the lens of complex systems science. Ecosphere 2014, 5, 1–23. [Google Scholar] [CrossRef]
- Messier, C.; Puettmann, K.; Chazdon, R.; Andersson, K.P.; Angers, V.A.; Brotons, L.; Filotas, E.; Tittler, R.; Parrott, L.; Levin, S.A. From management to stewardship: Viewing forests as complex adaptive systems in an uncertain world. Conserv. Lett. 2015, 8, 368–377. [Google Scholar] [CrossRef] [Green Version]
- Burton, P.J. The scope and challenge of sustainable forestry. In Achieving Sustainable Management of Boreal and Temperate Forests; Stanturf, J.A., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 1–22. [Google Scholar]
- Folke, C.; Holling, C.S.; Perrings, C. Biological diversity, ecosystems, and the human scale. Ecol. Appl. 1996, 6, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Oliver, T.H.; Heard, M.S.; Isaac, N.J.; Roy, D.B.; Procter, D.; Eigenbrod, F.; Freckleton, R.; Hector, A.; Orme, C.D.L.; Petchey, O.L.; et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 2015, 30, 673–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeler, D.G.; Fried-Petersen, H.; Allen, C.R.; Garmestani, A.; Twidwell, D.; Chuang, W.; Donovan, V.M.; Eason, T.; Roberts, C.P.; Sundstrom, S.M.; et al. Adaptive capacity in ecosystems. Adv. Ecol. Res. 2019, 60, 1–24. [Google Scholar] [PubMed]
- Baho, D.L.; Allen, C.R.; Garmestani, A.S.; Fried-Petersen, H.B.; Renes, S.E.; Gunderson, L.H.; Angeler, D.G. A quantitative framework for assessing ecological resilience. Ecol. Soc. 2017, 22, 17. [Google Scholar] [CrossRef] [Green Version]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Linser, S.; Wolfslehner, B.; Bridge, S.R.; Gritten, D.; Johnson, S.; Payn, T.; Prins, K.; Raši, R.; Robertson, G. 25 years of criteria and indicators for sustainable forest management: How intergovernmental C&I processes have made a difference. Forests 2018, 9, 578. [Google Scholar]
- Miller, D.C.; Nakamura, K.S. Protected areas and the sustainable governance of forest resources. Curr. Opin. Environ. Sustain. 2018, 32, 96–103. [Google Scholar] [CrossRef]
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Global Assessment Report on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Turner, M.G.; Arthaud, G.J.; Engstrom, R.T.; Hejl, S.J.; Liu, J.; Loeb, S.; McKelvey, K. Usefulness of spatially explicit population models in land management. Ecol. Appl. 1995, 5, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Baskent, E.Z.; Keles, S. Spatial forest planning: A review. Ecol. Model. 2005, 188, 145–173. [Google Scholar] [CrossRef]
- Baskent, E.Z. Forest landscape modelling as a tool to develop conservation targets. In Setting Conservation Targets for Managed Forest Landscapes; Villard, M.A., Jonsson, B.G., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 304–327. [Google Scholar]
- Dijak, W.D.; Rittenhouse, C.D. Development and application of habitat suitability models to large landscapes. In Models for Planning Wildlife Conservation in Large Landscapes; Millspaugh, J.J., Thompson, F.R., III, Eds.; Elsevier, Academic Press: Burlington, MA, USA, 2009; pp. 367–389. [Google Scholar]
- Kimmins, H.; Blanco, J.A.; Seely, B.; Welham, C.; Scoullar, K. Forecasting Forest Futures: A Hybrid Modelling Approach to the Assessment of Sustainability of Forest Ecosystems and Their Values; Earthscan: London, UK; New York, NY, USA, 2010. [Google Scholar]
- Snäll, T.; Lehtomäki, J.; Arponen, A.; Elith, J.; Moilanen, A. Green infrastructure design based on spatial conservation prioritization and modeling of biodiversity features and ecosystem services. Environ. Manag. 2016, 57, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.M.; Heglund, P.J.; Morrison, M.L.; Haufler, J.B.; Raphael, M.G.; Wall, W.A.; Samson, F.B. (Eds.) Predicting Species Occurrence: Issues of Accuracy and Scale; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Corona, P.; Köhl, M.; Marchetti, M. (Eds.) Advances in Forest Inventory for Sustainable Forest Management and Biodiversity Monitoring; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Pukkala, T. Measuring non-wood forest outputs in numerical forest planning. In Multi-Objective Forest Planning; Pukkala, T., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 173–207. [Google Scholar]
- Bush, A.; Sollmann, R.; Wilting, A.; Bohmann, K.; Cole, B.; Balzter, H.; Martius, C.; Zlinszky, A.; Calvignac-Spencer, S.; Cobbold, C.A.; et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 2017, 1, 0176. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Levick, S.R.; Heidrich, L.; Magdon, P.; Leutner, B.F.; Wöllauer, S.; Serebryanyk, A.; Nauss, T.; Krzystek, P.; Gossner, M.M.; et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 2019, 10, 4757. [Google Scholar] [CrossRef]
- Randin, C.F.; Ashcroft, M.B.; Bolliger, J.; Cavender-Bares, J.; Coops, N.C.; Dullinger, S.; Dirnböck, T.; Eckert, S.; Ellis, E.; Fernández, N.; et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 2020, 239, 111626. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Franklin, J.F.; Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 2006, 131, 433–445. [Google Scholar] [CrossRef]
- Schulte, L.A.; Mitchell, R.J.; Hunter, M.L., Jr.; Franklin, J.F.; McIntyre, R.K.; Palik, B.J. Evaluating the conceptual tools for forest biodiversity conservation and their implementation in the US. For. Ecol. Manag. 2006, 232, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chertov, O.; Komarov, A.; Mikhailov, A.; Andrienko, G.; Andrienko, N.; Gatalsky, P. Geovisualization of forest simulation modelling results: A case study of carbon sequestration and biodiversity. Comput. Electron. Agric. 2005, 49, 175–191. [Google Scholar] [CrossRef]
- Mäkelä, A.; del Río, M.; Hynynen, J.; Hawkins, M.J.; Reyer, C.; Soares, P.; van Oijen, M.; Tomé, M. Using stand-scale forest models for estimating indicators of sustainable forest management. For. Ecol. Manag. 2012, 285, 164–178. [Google Scholar] [CrossRef] [Green Version]
- Forest Europe. State of Europe’s Forests 2015; Ministerial Conference on the Protection of Forests in Europe: Madrid, Spain, 2015. [Google Scholar]
- Winkel, G.; Blondet, M.; Borrass, L.; Frei, T.; Geitzenauer, M.; Gruppe, A.; Jump, A.; De Koning, J.; Sotirov, M.; Weiss, G.; et al. The implementation of Natura 2000 in forests: A trans- and interdisciplinary assessment of challenges and choices. Environ. Sci. Policy 2015, 52, 23–32. [Google Scholar] [CrossRef]
- Kovač, M.; Kutnar, L.; Hladnik, D. Assessing biodiversity and conservation status of the Natura 2000 forest habitat types: Tools for designated forestlands stewardship. For. Ecol. Manag. 2016, 359, 256–267. [Google Scholar] [CrossRef]
- Thakur, A.K.; Kumar, R.; Verma, R.K. Analysing India’s current national forest inventory for biodiversity information. Biodivers. Conserv. 2018, 27, 3049–3069. [Google Scholar] [CrossRef]
- Criteria and Indicators of Sustainable Forest Management in Canada: National Status 2005; Canadian Council of Forest Ministers; Canadian Forest Service: Ottawa, ON, Canada, 2006.
- Robertson, G.; Gualke, P.; McWilliams, R.; LaPlante, S.; Guldin, R. (Eds.) National Report on Sustainable Forests—2010; Report FS-979; USDA Forest Service: Washington, DC, USA, 2011.
- Timonen, J.; Siitonen, J.; Gustafsson, L.; Kotiaho, J.S.; Stokland, J.N.; Sverdrup-Thygeson, A.; Mönkkönen, M. Woodland key habitats in northern Europe: Concepts, inventory and protection. Scand. J. For. Res. 2010, 25, 309–324. [Google Scholar] [CrossRef] [Green Version]
- Noss, R.F. Assessing and monitoring forest biodiversity: A suggested framework and indicators. For. Ecol. Manag. 1999, 115, 135–146. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Margules, C.R.; Botkin, D.B. Indicators of biodiversity for ecologically sustainable forest management. Conserv. Biol. 2000, 14, 941–950. [Google Scholar] [CrossRef]
- Blattert, C.; Lemm, R.; Thees, O.; Lexer, M.J.; Hanewinkel, M. Management of ecosystem services in mountain forests: Review of indicators and value functions for model based multi-criteria decision analysis. Ecol. Indic. 2017, 79, 391–409. [Google Scholar] [CrossRef]
- Habel, J.C.; Gossner, M.M.; Meyer, S.T.; Eggermont, H.; Lens, L.; Dengler, J.; Weisser, W.W. Mind the gaps when using science to address conservation concerns. Biodivers. Conserv. 2013, 22, 2413–2427. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Landuyt, D.; Perring, M.P.; Seidl, R.; Taubert, F.; Verbeeck, H.; Verheyen, K. Modelling understorey dynamics in temperate forests under global change – Challenges and perspectives. Perspect. Plant Ecol. Evol. Syst. 2018, 31, 44–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Biest, K.; Meire, P.; Schellekens, T.; D’hondt, B.; Bonte, D.; Vanagt, T.; Ysebaert, T. Aligning biodiversity conservation and ecosystem services in spatial planning: Focus on ecosystem processes. Sci. Total Environ. 2020, 712, 136350. [Google Scholar] [CrossRef] [PubMed]
- Blattert, C.; Lemm, R.; Thees, O.; Hansen, J.; Lexer, M.J.; Hanewinkel, M. Segregated versus integrated biodiversity conservation: Value-based ecosystem service assessment under varying forest management strategies in a Swiss case study. Ecol. Indic. 2018, 95, 751–764. [Google Scholar] [CrossRef]
- Moilanen, A. Landscape zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biol. Conserv. 2007, 134, 571–579. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Guariguata, M.R. Decision Support Tools for Forest Landscape Restoration: Current Status and Future Outlook; Center for International Forest Research: Bogor, Indonesia, 2018. [Google Scholar]
- Map of Biodiversity Importance. Available online: https://www.natureserve.org/conservation-tools/projects/map-biodiversity-importance (accessed on 20 June 2020).
- Brown, D.J.; Ribic, C.A.; Donner, D.M.; Nelson, M.D.; Bocetti, C.I.; Deloria-Sheffield, C.M. Using a full annual cycle model to evaluate long-term population viability of the conservation-reliant Kirtland’s warbler after successful recovery. J. Appl. Ecol. 2017, 54, 439–449. [Google Scholar] [CrossRef]
- Cash, D.W.; Clark, W.C.; Alcock, F.; Dickson, N.M.; Eckley, N.; Guston, D.H.; Jäger, J.; Mitchell, R.B. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 2003, 100, 8086–8091. [Google Scholar] [CrossRef] [Green Version]
- Bertuol-Garcia, D.; Morsello, C.; El-Hani, C.N.; Pardini, R. A conceptual framework for understanding the perspectives on the causes of the science–practice gap in ecology and conservation. Biol. Rev. 2018, 93, 1032–1055. [Google Scholar] [CrossRef]
- Failing, L.; Gregory, R. Ten common mistakes in designing biodiversity indicators for forest policy. J. Environ. Manag. 2003, 68, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Quarshie, A.; Salmi, A.; Wu, Z. From equivocality to reflexivity in biodiversity protection. Organ. Environ. in press. [CrossRef]
- Lambeck, R.J. Focal species: A multi-species umbrella for nature conservation. Conserv. Biol. 1997, 11, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Lambeck, R.J. Focal species and restoration ecology: Response to Lindenmayer et al. Conserv. Biol. 2002, 16, 549–551. [Google Scholar] [CrossRef]
- Caro, T. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Angelstam, P.; Persson, R.; Schlaepfer, R. The sustainable forest management vision and biodiversity: Barriers and bridges for implementation in actual landscapes. Ecol. Bull. 2004, 51, 29–49. [Google Scholar]
- Lindenmayer, D.B.; Cunningham, S.A. Six principles for managing forests as ecologically sustainable ecosystems. Landsc. Ecol. 2013, 28, 1099–1110. [Google Scholar] [CrossRef]
- Michanek, G.; Bostedt, G.; Ekvall, H.; Forsberg, M.; Hof, A.R.; De Jong, J.; Rudolphi, J.; Zabel, A. Landscape planning—Paving the way for effective conservation of forest biodiversity and a diverse forestry? Forests 2018, 9, 523. [Google Scholar] [CrossRef] [Green Version]
- Hahn, W.A.; Knoke, T. Sustainable development and sustainable forestry: Analogies, differences, and the role of flexibility. Eur. J. For. Res. 2010, 129, 787–801. [Google Scholar] [CrossRef]
- IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14; IUCN: Gland, Switzerland, 2019; Available online: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed on 19 May 2020).
- Brooks, T.M.; Pimm, S.L.; Akçakaya, H.R.; Buchanan, G.M.; Butchart, S.H.; Foden, W.; Hilton-Taylor, C.; Hoffmann, M.; Jenkins, C.N.; Joppa, L.; et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 2019, 34, 977–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, M., Jr.; Westgate, M.; Barton, P.; Calhoun, A.; Pierson, J.; Tulloch, A.; Beger, M.; Branquinho, C.; Caro, T.; Gross, J.; et al. Two roles for ecological surrogacy: Indicator surrogates and management surrogates. Ecol. Indic. 2016, 63, 121–125. [Google Scholar] [CrossRef]
- Bell, F.W.; Dacosta, J.; Larocque, G.R. Considering forest biodiversity indicators within a pressure, state, benefit, and response framework. In Ecological Forest Management Handbook; Larocque, G.R., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 337–359. [Google Scholar]
- Sutherland, W.J.; Bailey, M.J.; Bainbridge, I.P.; Brereton, T.; Dick, J.T.; Drewitt, J.; Dulvy, N.K.; Dusic, N.R.; Freckleton, R.P.; Gaston, K.J.; et al. Future novel threats and opportunities facing UK biodiversity identified by horizon scanning. J. Appl. Ecol. 2008, 45, 821–833. [Google Scholar] [CrossRef]
- Hines, A.; Bengston, D.N.; Dockry, M.J.; Cowart, A. Setting up a horizon scanning system: A US federal agency example. World Futures Rev. 2018, 10, 136–151. [Google Scholar] [CrossRef]
- Beazley, K.; Cardinal, N. A systematic approach for selecting focal species for conservation in the forests of Nova Scotia and Maine. Environ. Conserv. 2004, 31, 91–101. [Google Scholar] [CrossRef]
- Lõhmus, A.; Leivits, M.; Pēterhofs, E.; Zizas, R.; Hofmanis, H.; Ojaste, I.; Kurlavičius, P. The Capercaillie (Tetrao urogallus): An iconic focal species for knowledge-based integrative management and conservation of Baltic forests. Biodivers. Conserv. 2017, 26, 1–21. [Google Scholar] [CrossRef]
- Ward, M.; Rhodes, J.R.; Watson, J.E.; Lefevre, J.; Atkinson, S.; Possingham, H.P. Use of surrogate species to cost-effectively prioritize conservation actions. Conserv. Biol. 2020, 34, 600–610. [Google Scholar] [CrossRef]
- Peterson, A.T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 2011, 38, 817–827. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models with Applications in R; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Hanski, I. Extinction debt and species credit in boreal forests: Modelling the consequences of different approaches to biodiversity conservation. Ann. Zool. Fenn. 2000, 37, 271–280. [Google Scholar]
- Vellend, M.; Verheyen, K.; Jacquemyn, H.; Kolb, A.; Van Calster, H.; Peterken, G.; Hermy, M. Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 2006, 87, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, S.J.; White, M.D.; Newell, G.R. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 2010, 15, 8. [Google Scholar] [CrossRef]
- Raphael, M.G.; Wisdom, M.J.; Rowland, M.M.; Holthausen, R.S.; Wales, B.C.; Marcot, B.G.; Rich, T.D. Status and trends of habitats of terrestrial vertebrates in relation to land management in the interior Columbia river basin. For. Ecol. Manag. 2001, 153, 63–87. [Google Scholar] [CrossRef]
- Reza, M.I.H.; Abdullah, S.A.; Nor, S.B.M.; Ismail, M.H. Integrating GIS and expert judgment in a multi-criteria analysis to map and develop a habitat suitability index: A case study of large mammals on the Malayan Peninsula. Ecol. Indic. 2013, 34, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Manning, A.D.; Smith, P.L.; Possingham, H.P.; Fischer, J.; Oliver, I.; McCarthy, M.A. The focal-species approach and landscape restoration: A critique. Conserv. Biol. 2002, 16, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Sætersdal, M.; Gjerde, I. Prioritising conservation areas using species surrogate measures: Consistent with ecological theory? J. Appl. Ecol. 2011, 48, 1236–1240. [Google Scholar] [CrossRef]
- Beresford, A.E.; Donald, P.F.; Buchanan, G.M. Repeatable and standardised monitoring of threats to Key Biodiversity Areas in Africa using Google Earth Engine. Ecol. Indic. 2020, 109, 105763. [Google Scholar] [CrossRef]
- Ortega Adarme, M.; Feitosa, R.Q.; Happ, N.P.; De Almeida, C.A.; Rodrigues Gomes, A. Evaluation of deep learning techniques for deforestation detection in the Brazilian Amazon and cerrado biomes from remote sensing imagery. Remote Sens. 2020, 12, 910. [Google Scholar] [CrossRef] [Green Version]
- Loveridge, A.J.; Sousa, L.L.; Seymour-Smith, J.; Hunt, J.; Coals, P.; O’Donnell, H.; Lindsey, P.A.; Mandisodza-Chikerema, R.; Macdonald, D.W. Evaluating the spatial intensity and demographic impacts of wire-snare bush-meat poaching on large carnivores. Biol. Conserv. 2020, 244, 108504. [Google Scholar] [CrossRef]
- Tulloch, V.J.D.; Tulloch, A.I.T.; Visconti, P.; Halpern, B.S.; Watson, J.E.M.; Evans, M.C.; Auerbach, N.A.; Barnes, M.; Beger, M.; Chadès, I.; et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 2015, 13, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Schamberger, M.; Krohn, W.B. Status of the habitat evaluation procedures. In Transactions of the 47th North Americal Wildlife and Natural Resources Conference; Sabol, K., Ed.; Wildlife Management Institute: Washington, DC, USA, 1982; pp. 154–164. [Google Scholar]
- Burley, J.B. Habitat suitability models: A tool for designing landscape for wildlife. Landsc. Res. 1989, 14, 23–26. [Google Scholar] [CrossRef]
- Noon, B.R.; McKelvey, K.S. Management of the spotted owl: A case history in conservation biology. Annu. Rev. Ecol. Syst. 1996, 27, 135–162. [Google Scholar] [CrossRef]
- Graul, W.D.; Torres, J.; Denney, R. A species-ecosystem approach for nongame programs. Wildl. Soc. Bull. 1976, 4, 79–80. [Google Scholar]
- Graul, W.D.; Miller, G.C. Strengthening ecosystem management approaches. Wildl. Soc. Bull. 1984, 12, 282–289. [Google Scholar]
- Mealy, S.P.; Horn, J.R. Integrating wildlife habitat objectives into the forest plan. In Transactions of the 46th North Americal Wildlife and Natural Resources Conference; Wildlife Management Institute: Washington, DC, USA, 1981; pp. 488–500. [Google Scholar]
- Edenius, L.; Mikusiński, G. Utility of habitat suitability models as biodiversity assessment tools in forest management. Scand. J. For. Res. 2006, S7, 62–72. [Google Scholar] [CrossRef]
- Halme, P.; Holec, J.; Heilmann-Clausen, J. The history and future of fungi as biodiversity surrogates in forests. Fungal Ecol. 2017, 27, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Lõhmus, A.; Vunk, E.; Runnel, K. Conservation management for forest fungi in Estonia: The case of polypores. Folia Cryptog. Estonica 2018, 55, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Runnel, K.; Lõhmus, A. Deadwood-rich managed forests provide insights into the old-forest association of wood-inhabiting fungi. Fungal Ecol. 2017, 27, 155–167. [Google Scholar] [CrossRef]
- Lõhmus, P.; Lõhmus, A. The potential of production forests for sustaining lichen diversity: A perspective on sustainable forest management. Forests 2019, 10, 1063. [Google Scholar] [CrossRef] [Green Version]
- Uliczka, H.; Angelstam, P.; Roberge, J.-M. Indicator species and biodiversity monitoring systems for non-industrial private forest owners - is there a communication problem? Ecol. Bull. 2004, 51, 379–384. [Google Scholar]
- Henrikson, L.; Arvidsson, B.; Österling, M. Aquatic Conservation with Focus on Margaritifera Margaritifera; Karlstads University: Karlstad, Sweden, 2012. [Google Scholar]
- Angelstam, P.; Törnblom, J.; Degerman, E.; Henrikson, L.; Jougda, L.; Lazdinis, M.; Malmgren, J.C.; Myhrman, L. From forest patches to functional habitat. In Farming, Forestry and the Natural Heritage: Towards a More Integrated Future; Davison, R., Garblraith, C.A., Eds.; Scottish Natural Heritage: Edinburgh, UK, 2006; pp. 193–209. [Google Scholar]
- Suislepp, K.; Rannap, R.; Lõhmus, A. Impacts of artificial drainage on amphibian breeding sites in hemiboreal forests. For. Ecol. Manag. 2011, 262, 1078–1083. [Google Scholar] [CrossRef]
- Mattsson, B.J.; Cooper, R.J. Louisiana waterthrushes (Seiurus motacilla) and habitat assessments as cost-effective indicators of instream biotic integrity. Freshw. Biol. 2006, 51, 1941–1958. [Google Scholar] [CrossRef]
- Dobler, A.H.; Geist, J.; Stoeckl, K.; Inoue, K. A spatially explicit approach to prioritize protection areas for endangered freshwater mussels. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Spies, T.A.; McComb, B.C.; Kennedy, R.S.H.; McGrath, M.T.; Olsen, K.; Pabst, R.J. Potential effects of forest policies on terrestrial biodiversity in a multi-ownership province. Ecol. Appl. 2007, 17, 48–65. [Google Scholar] [CrossRef]
- McComb, B.C.; Spies, T.A.; Olsen, K.A. Sustaining biodiversity in the Oregon Coast Range: Potential effects of forest policies in a multi-ownership province. Ecol. Soc. 2007, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, J.; Ray, D.; Brown, T.; Stone, D.; Watts, K.; Anderson, R. Using focal species modelling to evaluate the impact of land use change on forest and other habitat networks in western oceanic landscapes. Forestry 2009, 82, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Wilhere, G.F.; Linders, M.J.; Cosentino, B.L. Defining alternative futures and projecting their effects on the spatial distribution of wildlife habitats. Landsc. Urban Plan. 2007, 79, 385–400. [Google Scholar] [CrossRef]
- Tarr, N.M.; Rubino, M.J.; Costanza, J.K.; McKerrow, A.J.; Collazo, J.A.; Abt, R.C. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change. GCB Bioenergy 2017, 9, 909–923. [Google Scholar] [CrossRef]
- Marzluff, J.M.; Millspaugh, J.J.; Ceder, K.R.; Oliver, C.D.; Withey, J.; McCarter, J.B.; Mason, C.L.; Comnick, J. Modeling changes in wildlife habitat and timber revenues in response to forest management. For. Sci. 2002, 48, 191–202. [Google Scholar]
- Tikkanen, O.P.; Heinonen, T.; Kouki, J.; Matero, J. Habitat suitability models of saproxylic red-listed boreal forest species in long-term matrix management: Cost-effective measures for multi-species conservation. Biol. Conserv. 2007, 140, 359–372. [Google Scholar] [CrossRef]
- Kliskey, A.D.; Lofroth, E.C.; Thompson, W.A.; Brown, S.; Schreier, H. Simulating and evaluating alternative resource-use strategies using GIS-based habitat suitability indices. Landsc. Urban Plan. 1999, 45, 163–175. [Google Scholar] [CrossRef]
- Tremblay, J.A.; Boulanger, Y.; Cyr, D.; Taylor, A.R.; Price, D.T.; St-Laurent, M. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest. PLoS ONE 2018, 13, e0191645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haché, S.; Cameron, R.; Villard, M.-A.; Bayne, E.M.; MacLean, D.A. Demographic response of a neotropical migrant songbird to forest management and climate change scenarios. For. Ecol. Manag. 2016, 359, 309–320. [Google Scholar] [CrossRef]
- Roberge, J.M.; Öhman, K.; Lämås, T.; Felton, A.; Ranius, T.; Lundmark, T.; Nordin, A. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species. J. Environ. Manag. 2018, 210, 1–9. [Google Scholar] [CrossRef]
- Bonnot, T.W.; Thompson, F.R., III; Millspaugh, J.J.; Jones-Farrand, D.T. Landscape-based population viability models demonstrate importance of strategic conservation planning for birds. Biol. Conserv. 2013, 165, 104–114. [Google Scholar] [CrossRef]
- Akçakaya, H.R.; Radeloff, V.C.; Mladenoff, D.J.; He, H.S. Integrating landscape and metapopulation modeling approaches: Viability of the sharp-tailed grouse in a dynamic landscape. Conserv. Biol. 2004, 18, 526–537. [Google Scholar] [CrossRef]
- Johansson, V.; Ranius, T.; Snäll, T. Epiphyte metapopulation persistence after drastic habitat decline and low tree regeneration: Time-lags and effects of conservation actions. J. Appl. Ecol. 2013, 50, 414–422. [Google Scholar] [CrossRef]
- Burnett, K.M.; Reeves, G.H.; Miller, D.J.; Clarke, S.; Vance-Borland, K.; Christiansen, K. Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation. Ecol. Appl. 2007, 17, 66–80. [Google Scholar] [CrossRef]
- Carroll, C.; Johnson, D.S. The importance of being spatial (and reserved): Assessing northern spotted owl habitat relationships with hierarchical bayesian models. Conserv. Biol. 2008, 22, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C. Role of climatic niche models in focal-species-based conservation planning: Assessing potential effects of climate change on northern spotted owl in the pacific northwest, USA. Biol. Conserv. 2010, 143, 1432–1437. [Google Scholar] [CrossRef]
- Carroll, C.; Dunk, J.R.; Moilanen, A. Optimizing resiliency of reserve networks to climate change: Multispecies conservation planning in the pacific northwest, USA. Glob. Chang. Biol. 2010, 16, 891–904. [Google Scholar] [CrossRef] [Green Version]
- Trisurat, Y.; Kanchanasaka, B.; Kreft, H. Assessing potential effects of land use and climate change on mammal distributions in northern Thailand. Wildl. Res. 2014, 41, 522–536. [Google Scholar] [CrossRef]
- Colyn, R.B.; Ehlers Smith, D.A.; Ehlers Smith, Y.C.; Smit-Robinson, H.; Downs, C.T. Predicted distributions of avian specialists: A framework for conservation of endangered forests under future climates. Divers. Distrib. 2020, 26, 652–667. [Google Scholar] [CrossRef]
- Carroll, C. Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and lynx in the northern Appalachians. Conserv. Biol. 2007, 21, 1092–1104. [Google Scholar] [CrossRef]
- Spies, T.A.; Johnson, K.N.; Burnett, K.M.; Ohmann, J.L.; McComb, B.C.; Reeves, G.H.; Bettinger, P.; Kline, J.D.; Garber-Yonts, B. Cumulative ecological and socioeconomic effects of forest policies in coastal Oregon. Ecol. Appl. 2007, 17, 5–17. [Google Scholar] [CrossRef]
- Mladenoff, D.J.; Host, G.E.; Boeder, J.; Crow, T.R. LANDIS: A spatial model of forest landscape disturbance, succession, and management. In GIS and Environmental Modeling: Progress and Research Ideas; Goodchild, M.F., Steyaert, L.T., Parks, B.O., Johnston, C., Maidment, D., Crane, M., Glendinning, S., Eds.; John Wiley & Sons: New York, NY, USA, 1996; pp. 175–179. [Google Scholar]
- Thompson, J.R.; Simons-Legaard, E.; Legaard, K.; Domingo, J.B. A LANDIS-II extension for incorporating land use and other disturbances. Environ. Model. Softw. 2016, 75, 202–205. [Google Scholar] [CrossRef]
- Sotirov, M.; Blum, M.; Storch, S.; Selter, A.; Schraml, U. Do forest policy actors learn through forward-thinking? Conflict and cooperation relating to the past, present and futures of sustainable forest management in Germany. For. Policy Econ. 2017, 85, 256–268. [Google Scholar] [CrossRef]
- Johnson, K.N.; Duncan, S.; Spies, T.A. Regional policy models for forest biodiversity analysis: Lessons from coastal Oregon. Ecol. Appl. 2017, 17, 81–90. [Google Scholar] [CrossRef]
- Kröger, M.; Raitio, K. Finnish forest policy in the era of bioeconomy: A pathway to sustainability? For. Policy Econ. 2017, 77, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Eyvindson, K.; Repo, A.; Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. For. Policy Econ. 2018, 92, 119–127. [Google Scholar] [CrossRef]
- Lõhmus, A.; Fridolin, H.; Leivits, A.; Tõnisson, K.; Rannap, R. Prioritizing research gaps for national conservation management and policy: The managers’ perspective in Estonia. Biodivers. Conserv. 2019, 28, 2565–2579. [Google Scholar] [CrossRef]
- Noss, R.F. High-risk ecosystems as foci for considering biodiversity and ecological integrity in ecological risk assessments. Environ. Sci. Policy 2000, 3, 321–332. [Google Scholar] [CrossRef]
- European Environment Agency. Halting the loss of biodiversity by 2010: Proposal for a first set of indicators to monitor progress in Europe. EEA Tech. Rep. 2007, 11, 1–182. [Google Scholar]
- Levrel, H.; Kerbiriou, C.; Couvet, D.; Weber, J. OECD pressure–state–response indicators for managing biodiversity: A realistic perspective for a French biosphere reserve. Biodivers. Conserv. 2009, 18, 1719–1732. [Google Scholar] [CrossRef] [Green Version]
- Sparks, T.H.; Butchart, S.H.; Balmford, A.; Bennun, L.; Stanwell-Smith, D.; Walpole, M.; Bates, N.R.; Bomhard, B.; Buchanan, G.M.; Chenery, A.M.; et al. Linked indicator sets for addressing biodiversity loss. Oryx 2011, 45, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Rempel, R.S.; Naylor, B.J.; Elkie, P.C.; Baker, J.; Churcher, J.; Gluck, M.J. An indicator system to assess ecological integrity of managed forests. Ecol. Indic. 2016, 60, 860–869. [Google Scholar] [CrossRef] [Green Version]
- Shahin, A.; Mahbod, M.A. Prioritization of key performance indicators: An integration of analytical hierarchy process and goal setting. Int. J. Oper. 2007, 56, 226–240. [Google Scholar] [CrossRef]
- Mönkkönen, M.; Reunanen, P.; Kotiaho, J.S.; Juutinen, A.; Tikkanen, O.P.; Kouki, J. Cost-effective strategies to conserve boreal forest biodiversity and long-term landscape-level maintenance of habitats. Eur. J. For. Res. 2011, 130, 717–727. [Google Scholar] [CrossRef]
- Albert, C.H.; Rayfield, B.; Dumitru, M.; Gonzalez, A. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv. Biol. 2017, 31, 1383–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, K.; Eycott, A.E.; Handley, P.; Ray, D.; Humphrey, J.W.; Quine, C.P. Targeting and evaluating biodiversity conservation action within fragmented landscapes: An approach based on generic focal species and least-cost networks. Landsc. Ecol. 2010, 25, 1305–1318. [Google Scholar] [CrossRef]
- Johansson, V.; Felton, A.; Ranius, T. Long-term landscape scale effects of bioenergy extraction on dead wood-dependent species. For. Ecol. Manag. 2016, 371, 103–113. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Cressie, N.; Calder, C.A.; Clark, J.S.; Hoef, J.M.V.; Wikle, C.K. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 2009, 19, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Schumaker, N.H.; Brookes, A. HexSim: A modeling environment for ecology and conservation. Landsc. Ecol. 2018, 33, 197–211. [Google Scholar] [CrossRef]
- Rookwood, P. Landscape planning for biodiversity. Landsc. Urban Plan. 1995, 31, 379–385. [Google Scholar] [CrossRef]
- Theobald, D.M.; Hobbs, N.T.; Bearly, T.; Zack, J.A.; Shenk, T.; Riebsame, W.E. Incorporating biological information in local land-use decision making: Designing a system for conservation planning. Landsc. Ecol. 2000, 15, 35–45. [Google Scholar] [CrossRef]
- Brooks, R.P. Improving habitat suitability index models. Wildl. Soc. Bull. 1997, 25, 163–167. [Google Scholar]
- Zhu, M.J.; Hoctor, T.S.; Volk, M.; Frank, K.I.; Zwick, P.D.; Carr, M.H.; Linhoss, A.C. Spatial conservation prioritization to conserve biodiversity in response to sea level rise and land use change in the Matanzas River Basin, Northeast Florida. Landsc. Urban Plann. 2015, 144, 103–118. [Google Scholar] [CrossRef]
- Corona, P.; Chirici, G.; McRoberts, R.E.; Winter, S.; Barbati, A. Contribution of large-scale forest inventories to biodiversity assessment and monitoring. For. Ecol. Manag. 2011, 262, 2061–2069. [Google Scholar] [CrossRef] [Green Version]
- Rondeux, J.; Sanchez, C. Review of indicators and field methods for monitoring biodiversity within national forest inventories. Core variable: Deadwood. Environ. Monit. Assess. 2010, 164, 617–630. [Google Scholar] [CrossRef]
- Corona, P.; Franceschi, S.; Pisani, C.; Portoghesi, L.; Mattioli, W.; Fattorini, L. Inference on diversity from forest inventories: A review. Biodivers. Conserv. 2017, 26, 3037–3049. [Google Scholar] [CrossRef]
- Leslie, H.M.; Goldman, E.; Mcleod, K.L.; Sievanen, L.; Balasubramanian, H.; Cudney-Bueno, R.; Feuerstein, A.; Knowlton, N.; Lee, K.; Pollnac, R.; et al. How good science and stories can go hand-in-hand. Conserv. Biol. 2013, 27, 1126–1129. [Google Scholar] [CrossRef]
- McInerny, G.J.; Chen, M.; Freeman, R.; Gavaghan, D.; Meyer, M.; Rowland, F.; Spiegelhalter, D.J.; Stefaner, M.; Tessarolo, G.; Hortal, J. Information visualisation for science and policy: Engaging users and avoiding bias. Trends Ecol. Evol. 2014, 29, 148–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garibaldi, A.; Turner, N. Cultural keystone species: Implications for ecological conservation and restoration. Ecol. Soc. 2004, 9, 1. [Google Scholar] [CrossRef]
- Paschen, J.A.; Ison, R. Narrative research in climate change adaptation—Exploring a complementary paradigm for research and governance. Res. Policy 2014, 43, 1083–1092. [Google Scholar] [CrossRef]
- Nel, J.L.; Roux, D.J.; Driver, A.; Hill, L.; Maherry, A.C.; Snaddon, K.; Petersen, C.R.; Smith-Adao, L.B.; Van Deventer, H.; Reyers, B. Knowledge co-production and boundary work to promote implementation of conservation plans. Conserv. Biol. 2016, 30, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Jackson, S.F.; Cantu-Salazar, L.; Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 93–113. [Google Scholar] [CrossRef] [Green Version]
- Hanski, I. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 2011, 40, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Haavik, A.; Dale, S. Are reserves enough? Value of protected areas for boreal forest birds in southeastern Norway. Ann. Zool. Fenn. 2012, 49, 69–80. [Google Scholar] [CrossRef]
- Jones, H.P.; Schmitz, O.J. Rapid recovery of damaged ecosystems. PLoS ONE 2009, 4, e5653. [Google Scholar] [CrossRef]
- Vandekerkhove, K.; De Keersmaeker, L.; Walleyn, R.; Köhler, F.; Crevecoeur, L.; Govaere, L.; Thomaes, A.; Verheyen, K. Reappearance of old growth elements in lowland woodlands in northern Belgium: Do the associated species follow? Silva Fenn. 2012, 45, 909–935. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, S.M.; Bazely, D.R. Recovery patterns of understory herbs and their use as indicators of deciduous forest regeneration. Conserv. Biol. 2001, 15, 98–110. [Google Scholar] [CrossRef]
- Bouget, C.; Parmain, G.; Gilg, O.; Noblecourt, T.; Nusillard, B.; Paillet, Y.; Pernot, C.; Larrieu, L.; Gosselin, F. Does a set-aside conservation strategy help the restoration of old-growth forest attributes and recolonization by saproxylic beetles? Anim. Conserv. 2014, 17, 342–353. [Google Scholar] [CrossRef]
- Runnel, K.; Sell, I.; Lõhmus, A. Recovery of the Critically Endangered bracket fungus Amylocystis lapponica in the Estonian network of strictly protected forests. Oryx 2019, in press. [Google Scholar] [CrossRef] [Green Version]
- Bernes, C.; Jonsson, B.G.; Junninen, K.; Lõhmus, A.; MacDonald, E.; Müller, J.; Sandström, J. What is the impact of active management on biodiversity in boreal and temperate forests set aside for conservation or restoration? A systematic map. Environ. Evid. 2015, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Meli, P.; Holl, K.D.; Benayas, J.M.R.; Jones, H.P.; Jones, P.C.; Montoya, D.; Mateos, D.M. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE 2017, 12, e0171368. [Google Scholar] [CrossRef]
- Lõhmus, A.; Kohv, K.; Palo, A.; Viilma, K. Loss of old-growth, and the minimum need for strictly protected forests in Estonia. Ecol. Bull. 2004, 51, 401–411. [Google Scholar]
- Mazziotta, A.; Pouzols, F.M.; Mönkkönen, M.; Kotiaho, J.S.; Strandman, H.; Moilanen, A. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest. J. Environ. Manag. 2016, 180, 366–374. [Google Scholar] [CrossRef]
- Kotiaho, J.S.; Mönkkönen, M. From a crisis discipline towards prognostic conservation practise: An argument for setting aside degraded habitats. Ann. Zool. Fenn. 2017, 54, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Laasimer, L. Vegetation of the Estonian S.S.R.; Valgus: Tallinn, Estonian, 1965. [Google Scholar]
- Noreika, N.; Helm, A.; Öpik, M.; Jairus, T.; Vasar, M.; Reier, Ü.; Kook, E.; Riibak, K.; Kasari, L.; Tullus, H.; et al. Forest biomass, soil and biodiversity relationships originate from biogeographic affinity and direct ecological effects. Oikos 2019, 128, 1653–1665. [Google Scholar] [CrossRef]
- Shorohova, E.; Kuuluvainen, T.; Kangur, A.; Jõgiste, K. Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: A review with special reference to Russian studies. Ann. For. Sci. 2009, 66, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lõhmus, A.; Kraut, A. Stand structure of hemiboreal old-growth forests: Characteristic features, variation among site types, and a comparison with FSC-certified mature stands in Estonia. For. Ecol. Manag. 2010, 260, 155–165. [Google Scholar] [CrossRef]
- Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: The complexity challenge. Ambio 2009, 38, 309–315. [Google Scholar] [CrossRef]
- Lõhmus, A.; Kraut, A.; Rosenvald, R. Dead wood in clearcuts of semi-natural forests in Estonia: Site-type variation, degradation, and the influences of tree retention and slash harvest. Eur. J. For. Res. 2013, 132, 335–349. [Google Scholar] [CrossRef]
- Sepp, T.; Liira, J. Factors influencing the species composition and richness of herb layer in old boreo-nemoral forests. For. Stud. 2009, 50, 23–41. [Google Scholar] [CrossRef]
- Lõhmus, A.; Lõhmus, P. Coarse woody debris in mid-aged stands: Abandoned agricultural versus long-term forest land. Can. J. For. Res. 2005, 35, 1502–1506. [Google Scholar] [CrossRef]
- Lõhmus, A.; Lõhmus, P. Old-forest species: The importance of specific substrata vs. stand continuity in the case of calicioid fungi. Silva Fenn. 2011, 45, 1015–1039. [Google Scholar] [CrossRef] [Green Version]
- Lõhmus, K.; Paal, T.; Liira, J. Long-term colonization ecology of forest-dwelling species in a fragmented rural landscape–dispersal versus establishment. Ecol. Evol. 2014, 4, 3113–3126. [Google Scholar] [CrossRef] [PubMed]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2020. Available online: http://qgis.osgeo.org (accessed on 18 May 2020).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation, R package version 0.8.4; 2020. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 18 May 2020).
- Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Pigott, C.D. Tilia cordata Miller. J. Ecol. 1991, 79, 1147–1207. [Google Scholar] [CrossRef]
- De Jaegere, T.; Hein, S.; Claessens, H. A review of the characteristics of small-leaved lime (Tilia cordata Mill.) and their implications for silviculture in a changing climate. Forests 2016, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Reier, Ü.; Tuvi, E.L.; Pärtel, M.; Kalamees, R.; Zobel, M. Threatened herbaceous species dependent on moderate forest disturbances: A neglected target for ecosystem-based silviculture. Scand. J. For. Res. 2005, 20, 145–152. [Google Scholar] [CrossRef]
- Nitare, J. (Ed.) Signalarter—Indikatorer på Skyddsvärd Skog: Flora över Kryptogamer; Skogsstyrelsens Förlag: Jönköping, Sweden, 2000. [Google Scholar]
- Lõhmus, A. Aspen-inhabiting Aphyllophoroid fungi in a managed forest landscape in Estonia. Scand. J. For. Res. 2011, 26, 212–220. [Google Scholar] [CrossRef]
- Orula, E.L. Distribution and Status of Dicranum viride (Sull. & Lesq.) Lindb. in Estonia. Ph.D. Thesis, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia, 2004. (In Estonian). [Google Scholar]
- Jüriado, I.; Liira, J. Distribution and habitat ecology of the threatened forest lichen Lobaria pulmonaria in Estonia. Folia Cryptog. Estonica 2009, 46, 55–65. [Google Scholar]
- Leppik, E.; Jüriado, I.; Liira, J. Changes in stand structure due to the cessation of traditional land use in wooded meadows impoverish epiphytic lichen communities. Lichenologist 2011, 43, 257–274. [Google Scholar] [CrossRef]
- Lõhmus, A.; Runnel, K. Ash dieback can rapidly eradicate isolated epiphyte populations in production forests: A case study. Biol. Conserv. 2014, 169, 185–188. [Google Scholar] [CrossRef]
- Marmor, L.; Randlane, T.; Jüriado, I.; Saag, A. Host tree preferences of red-listed epiphytic lichens in Estonia. Balt. For. 2017, 23, 364–373. [Google Scholar]
- Angelstam, P.; Roberge, J.-M.; Lõhmus, A.; Bergmanis, M.; Brazaitis, G.; Dönz-Breuss, M.; Edenius, L.; Kosinski, Z.; Kurlavicius, P.; Lārmanis, V.; et al. Habitat modelling as a tool for landscape-scale conservation—A review of parameters for focal forest birds. Ecol. Bull. 2004, 51, 427–453. [Google Scholar]
- Brazaitis, G.; Angelstam, P. Influence of edges between old deciduous forest and clearcuts on the abundance of passerine hole-nesting birds in Lithuania. Ecol. Bull. 2004, 51, 209–217. [Google Scholar]
- Brazaitis, G. Forest interior species red-breasted flycatcher Ficedula parva habitat selection and conservation in intensive management areas. In Proceedings of the fifth International Scientific Conference, Rural Development, Kaunas, Lithuania, 24–25 November 2011; pp. 26–29. [Google Scholar]
- Mitrus, C.; Kleszko, N.; Soćko, B. Habitat characteristics, age, and arrival date of male red-breasted flycatchers Ficedula parva. Ethol. Ecol. Evol. 2006, 18, 33–41. [Google Scholar] [CrossRef]
- Juřičková, L.; Horsák, M.; Horáčková, J.; Abraham, V.; Ložek, V. Patterns of land-snail succession in Central Europe over the last 15,000 years: Main changes along environmental, spatial and temporal gradients. Quat. Sci. Rev. 2014, 93, 155–166. [Google Scholar] [CrossRef]
- Remm, L.; Lõhmus, A. Semi-naturally managed forests support diverse land snail assemblages in Estonia. For. Ecol. Manag. 2016, 363, 159–168. [Google Scholar] [CrossRef]
- Omerod, S.J.; Weatherley, N.S.; Merrett, W.J. The influence of conifer plantation on the distribution of the Golden Ringed Dragonfly Cordulegaster boltoni (Odonata) in upland wales. Biol. Conserv. 1990, 54, 241–251. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Turley, M.D.; Bilotta, G.S.; Chadd, R.P.; Extence, C.A.; Brazier, R.E.; Burnside, N.G.; Pickwell, A.G. A sediment-specific family-level biomonitoring tool to identify the impacts of fine sediment in temperate rivers and streams. Ecol. Indic. 2016, 70, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Reiber, L.; Knillmann, S.; Foit, K.; Liess, M. Species occurrence relates to pesticide gradient in streams. Sci. Total Environ. 2020, 735, 138807. [Google Scholar] [CrossRef] [PubMed]
- Ek, T.; Johannesson, J. Multi-Purpose Managementof Oak Habitats: Examples of Best Practice from the County of Östergötland, Sweden; Report 16; County Administration of Östergötland: Östergötland, Sweden, 2005. [Google Scholar]
- Bütler, R.; Lachat, T.; Larrieu, L.; Paillet, Y. Habitat trees: Key elements for forest biodiversity. In Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity; Kraus, D., Krumm, F., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 84–91. [Google Scholar]
- Rosenvald, R.; Lõhmus, P.; Rannap, R.; Remm, L.; Rosenvald, K.; Runnel, K.; Lõhmus, A. Assessing long-term effectiveness of green-tree retention. For. Ecol. Manag. 2019, 448, 543–548. [Google Scholar] [CrossRef]
- Lindenmayer, D.; Pierson, J.; Barton, P.; Beger, M.; Branquinho, C.; Calhoun, A.; Caro, T.; Greig, H.; Gross, J.; Heino, J.; et al. A new framework for selecting environmental surrogates. Sci. Total Environ. 2015, 538, 1029–1038. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Fischer, J.; Felton, A.; Montague-Drake, R.D.; Manning, A.; Simberloff, D.; Youngentob, K.; Saunders, D.; Wilson, D.M.; Felton, A.; et al. The complementarity of single-species and ecosystem-oriented research in conservation research. Oikos 2007, 116, 1220–1226. [Google Scholar] [CrossRef]
- Landres, P.B.; Verner, J.; Thomas, J.W. Ecological uses of vertebrate indicator species: A critique. Conserv. Biol. 1988, 2, 316–328. [Google Scholar] [CrossRef]
- Roberge, J.M.; Angelstam, P. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 2004, 18, 76–85. [Google Scholar] [CrossRef]
- Lõhmus, A.; Soon, M. The use of umbrella species in ecologically sustainable forestry: A critical review and the perspectives in Estonia. For. Stud. 2004, 41, 73–85. [Google Scholar]
- Remm, L.; Lõhmus, P.; Leis, M.; Lõhmus, A. Long-term impacts of forest ditching on non-aquatic biodiversity: Conservation perspectives for a novel ecosystem. PLoS ONE 2013, 8, e63086. [Google Scholar] [CrossRef] [Green Version]
- DeRoy, B.; Darimont, C. Biocultural indicators to support locally led environmental management and monitoring. Ecol. Soc. 2019, 24, 21. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Likens, G.E. Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 2011, 14, 47–59. [Google Scholar] [CrossRef]
- Gao, T.; Nielsen, A.B.; Hedblom, M. Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe. Ecol. Indic. 2015, 57, 420–434. [Google Scholar] [CrossRef]
- Yu, D.; Lu, N.; Fu, B. Establishment of a comprehensive indicator system for the assessment of biodiversity and ecosystem services. Landsc. Ecol. 2017, 32, 1563–1579. [Google Scholar] [CrossRef]
- Uusitalo, L.; Lehikoinen, A.; Helle, I.; Myrberg, K. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ. Model. Softw. 2015, 63, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Laurila-Pant, M.; Lehikoinen, A.; Uusitalo, L.; Venesjärvi, R. How to value biodiversity in environmental management? Ecol. Indic. 2015, 55, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rose, D.C.; Mukherjee, N.; Simmons, B.I.; Tew, E.R.; Robertson, R.J.; Vadrot, A.B.; Doubleday, R.; Sutherland, W.J. Policy windows for the environment: Tips for improving the uptake of scientific knowledge. Environ. Sci. Policy 2017. [Google Scholar] [CrossRef] [Green Version]
- Jones-Farrand, D.T.; Fearer, T.M.; Thogmartin, W.E.; Thompson, F.R., III; Nelson, M.D.; Tirpak, J.M. Comparison of statistical and theoretical habitat models for conservation planning: The benefit of ensemble prediction. Ecol. Appl. 2011, 21, 2269–2282. [Google Scholar] [CrossRef] [Green Version]
- Penaluna, B.E.; Olson, D.H.; Flitcroft, R.L.; Weber, M.A.; Bellmore, J.R.; Wondzell, S.M.; Dunham, J.B.; Johnson, S.L.; Reeves, G.H. Aquatic biodiversity in forests: A weak link in ecosystem services resilience. Biodivers. Conserv. 2017, 26, 3125–3155. [Google Scholar] [CrossRef]
- Strayer, D.L. Challenges for freshwater invertebrate conservation. J. N. Am. Benthol. Soc. 2006, 25, 271–287. [Google Scholar] [CrossRef]
- Menezes, S.; Baird, D.J.; Soares, A.M. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol. 2010, 47, 711–719. [Google Scholar] [CrossRef]
- Schmera, D.; Heino, J.; Podani, J.; Erős, T.; Dolédec, S. Functional diversity: A review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 2017, 787, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Supp, S.R.; Ernest, S.M. Species-level and community-level responses to disturbance: A cross-community analysis. Ecology 2014, 95, 1717–1723. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Dang, H.; Wang, M.; Chai, Y.; Guo, Y.; Chen, Y.; Zhang, C.; Yue, M. Is phylogeny more useful than functional traits for assessing diversity patterns under community assembly processes? Forests 2019, 10, 1159. [Google Scholar] [CrossRef] [Green Version]
- Forest Stewardship Council. FSC International Standard: FSC Principles and Criteria for Forest Stewardship. FSC-STD-01–001 V5–2. Available online: https://fsc.org/en/document-centre/documents/resource/392 (accessed on 18 May 2020).
- Eckelt, A.; Müller, J.; Bense, U.; Brustel, H.; Bußler, H.; Chittaro, Y.; Cizek, L.; Frei, A.; Holzer, E.; Kadej, M.; et al. “Primeval forest relict beetles” of Central Europe: A set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 2018, 22, 15–28. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Fischer, J.; Hobbs, R. The need for pluralism in landscape models: A reply to Dunn and Majer. Oikos 2007, 116, 1419–1421. [Google Scholar] [CrossRef]
- Bryan, B.A.; Crossman, N.D.; King, D.; Meyer, W.S. Landscape futures analysis: Assessing the impacts of environmental targets under alternative spatial policy options and future scenarios. Environ. Model. Softw. 2011, 26, 83–91. [Google Scholar] [CrossRef]
- Parrott, L.; Meyer, W.S. Future landscapes: Managing within complexity. Front. Ecol. Environ. 2012, 10, 382–389. [Google Scholar] [CrossRef] [Green Version]
Focal Taxon, Study System and Focus 1 | Summary of the Scenario Results | Reference 2 |
---|---|---|
I. Twenty-eight vertebrates sensitive to diverse habitat changes in western US | In 100 years, landscape management for ecosystem health and services would improve habitat of old-forest species to >80% and of a snag-dependent bird to ⅔ of the 19th-century levels. Fine-scale planning can increase high-quality habitat at a stable average habitat quality level. | [75] |
I. Ten taxa (birds; mammals; macrolichens) in Oregon | Projecting the 1990s forestry policies for 100 years shows increased contrasts in habitat distribution by ownership. Public lands support an increase in old forest. Expanding retention forestry to private lands is needed to mitigate the loss of semi-open forests. Loss of hardwood habitats remains to be addressed. | [100,101] |
I. A lichen, a bird and a butterfly in Scotland | Restoring a part of conifer plantations to native woodland and open land supports specialist species and has no apparent detrimental influence on generalist species on the landscape. | [102] |
I. Nine vertebrates sensitive to diverse habitat changes near Seattle, US | Suburbanization generally reduces forest habitats, but some mature-forest specialists may also benefit from reduced logging if human settlers tend not to clear forests near houses. | [103]* |
II. Sixteen habitat specialist birds and amphibians in North Carolina, US | Wood bioenergy use scenarios predict habitat gains for shrub-associated species and habitat loss for mature forest species in 40 years; the species negatively affected tend to be threatened by other processes as well. | [104] |
II. Three mature-forest vertebrates in Washington, US | In 80-year projections, moderate thinnings to accelerate forest growth appear as the best silvicultural strategy that does not reduce the habitat of any species while producing substantial timber revenues (39% of intensive forestry). | [105] |
II. Twenty-seven saproxylic insects, fungi, lichens in Finland | In a 60-year perspective, a cost-effective strategy to increase habitat quality of production forests is to reduce the area that is conventionally thinned. | [106]# |
II. Woodland caribou and Martes americana in British Columbia | In a landscape with production and protected forests, a management strategy that keeps the total area of caribou winter habitat at a stable level through time optimizes the trade-offs between old-growth protection and timber harvest. | [107]# |
II. Picoides arcticus in Canadian conifer forests | In 100 years, current-level harvesting would much reduce recruitment of this old-growth bird. Wildfire intensification due to climate change aggravates the decline. Reduced harvesting and promoting conifers mitigate these impacts. | [108] |
II. Seiurus aurocapillus in Canadian hardwoods | In 80 years, immigration to intensively managed districts retains a sink population of this hardwood specialist at only 25% lower densities than without harvest. Replacing 10%-20% of selection cuttings with shelterwood would add little stress, but climate change would much accelerate reduction. | [109] |
II. Three birds and a beetle specific to forest successional stages in Sweden | Extended or shortened rotations affect the species positively or negatively depending on habitat requirements. However, even favorable scenarios can cause temporary reductions in 150 years due to uneven distribution of stand-ages. | [110] |
III. Two passerines with distinct niches in the central U.S. | Restoring forest area (afforestation) supported population increase better than restoring existing forest habitats, but it was effective only when targeted non-randomly to key areas to reduce fragmentation. | [111]# |
III. Tympanuchus phasianellus in clearcuts in Wisconsin | Clearcutting greatly affects this early-successional species even in the presence of stable open habitat. Yet the harvest regimes creating the largest clearcut areas are not necessarily best for population viability. | [112] |
III. Five epiphytic lichens on old oaks in Sweden | Promoting host tree availability (regeneration or clearing brushwood around shaded oaks) may effectively support the metapopulations in areas with high densities of trees still present, but not in impoverished landscapes. | [113]# |
IV. Oncorhynchus spp. in forest streams in Oregon | Projecting the 1990s forestry policies for 100 years increases suitable stream habitat with large trees on river banks for one salmon species, while another species cannot recover without additional policies on private lands. | [114]* |
IV. Strix occidentalis in the Pacific Northwest | Old-forest reserves are efficient in capturing current owl habitat, but official 2007 proposals would have reduced that efficiency, and it will, nevertheless, decline due to climate change. The performance of the network and its value for 130 accompanying species can be enhanced by prioritizing connectivity of current and future habitat. | [115,116,117]* |
IV. Seventeen flagship mammals in Thailand | Along with forest cover decline from 57% to 50% by 2050, most species lose habitat despite proposed additional reserves. The vulnerability of the reserves to isolation is much increased due to climate-change caused habitat turnover. | [118] |
V. Three birds of vulnerable forest ecosystems in South Africa | Based on the species’ habitat connectivity mapping and climate-change scenarios, the study maps and prioritizes potential extensions of the current protected area network in the region. | [119] |
V. Martes americana in the Appalachians | For this old-forest species, the reduction in logging can mitigate population declines that are expected due to climate change in this vulnerable hotspot region. | [120] |
Ecological Profile | |||||||
---|---|---|---|---|---|---|---|
Characteristic | D1 Gap Dynamics | D2 Picea, Saproxylic | D3 Populus, Succession | D4 Nemoral Tree Species, Epiphyte | D5 Vert. Struct., Interior | D6 Soil and Litter | D7 Streams |
Focal taxa | |||||||
Taxon group | Vascular plants | Fungi | Old-aspen specialists | Lichens, bryophytes | Verteb- rates | Snails | Aquatic insects |
Frequent, sensitive species | Tilia cordata | Phellinus ferrugineo- fuscus | Megalaria grossa | Chrysothrix candelaris | Ficedula parva | Acanthinu-la aculeata | Plectrocne- mia conspersa |
Rare, threatened species | Bromus benekenii | Antrodia piceata | Junghuhnia pseudo- zilingiana | Dicranum viride, Lobaria pulmonaria | - | Bulgarica cana | Cordulegas- ter boltonii |
Model variables1 | |||||||
Soil type | *** | *** | |||||
Stand age | *** | *** | *** | *** | *** | *** | ** |
Tree species | *** | *** | *** | *** | *** | ** | * |
Tree layers | ** | * | * | * | |||
Stand density | * | * | * | ||||
Dead wood | ** | ** | |||||
Continuity | *** | *** | *** | ||||
Thinning | ** | ** | * | ||||
Draining | *** | ||||||
Landscape | * | ** | |||||
Habitat extent (%)2 | |||||||
Unsuitable 2019 | 45 | 54 | 56 | 81 | 42 | 35 | 96 |
High: 2019 | 26 | 11 | 28 | 4 | 20 | 5 | 1 |
HighC 2009-19 | -3 | +4 | +4 | +2 | +5 | 0 | 0 |
HighC 2019-29 | +2 | +12 | +4 | +2 | +11 | 0 | 0 |
Key ref. | [167,180,181,182] | [91,183] | [91,183,184] | [185,186,187,188,189] | [190,191,192,193] | [194,195] | [196,197,198,199] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lõhmus, A.; Kont, R.; Runnel, K.; Vaikre, M.; Remm, L. Habitat Models of Focal Species Can Link Ecology and Decision-Making in Sustainable Forest Management. Forests 2020, 11, 721. https://doi.org/10.3390/f11070721
Lõhmus A, Kont R, Runnel K, Vaikre M, Remm L. Habitat Models of Focal Species Can Link Ecology and Decision-Making in Sustainable Forest Management. Forests. 2020; 11(7):721. https://doi.org/10.3390/f11070721
Chicago/Turabian StyleLõhmus, Asko, Raido Kont, Kadri Runnel, Maarja Vaikre, and Liina Remm. 2020. "Habitat Models of Focal Species Can Link Ecology and Decision-Making in Sustainable Forest Management" Forests 11, no. 7: 721. https://doi.org/10.3390/f11070721
APA StyleLõhmus, A., Kont, R., Runnel, K., Vaikre, M., & Remm, L. (2020). Habitat Models of Focal Species Can Link Ecology and Decision-Making in Sustainable Forest Management. Forests, 11(7), 721. https://doi.org/10.3390/f11070721