Phylogenetic Community and Nearest Neighbor Structure of Disturbed Tropical Rain Forests Encroached by Streblus macrophyllus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Data Collection
2.2. Data Analysis
2.2.1. Community Phylogenetic Structure
2.2.2. Community Nearest Neighbor Structure
3. Results
3.1. Forest Community Structure
3.2. Community Nearest Neighbor Structure
3.2.1. M-U Bivariate Distribution
3.2.2. M-W Bivariate Distribution
3.2.3. W-U Bivariate Distribution
4. Discussion
4.1. Forest Community Structure
4.2. Community Nearest Neighbor Structure
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. | P1 | P2 | P3 | |||
---|---|---|---|---|---|---|
Species | N | Species | N | Species | N | |
1 | Streblus macrophyllus | 483 | Streblus macrophyllus | 392 | Miliusa balansae | 68 |
2 | Hydnocarpus kurzii | 33 | Saraca dives | 117 | Bleekrodea tonkinensis | 66 |
3 | Caryodaphnopsis tonkinensis | 29 | Hydnocarpus kurzii | 94 | Streblus macrophyllus | 64 |
4 | Saraca dives | 22 | Ficus cyrtophylla | 32 | Saraca dives | 63 |
5 | Cleidion bracteosum | 21 | Caryodaphnopsis tonkinensis | 29 | Dimocarpus longan | 48 |
6 | Litsea balansae | 16 | Toxicodendron rhetsoides | 27 | Mischocarpus pentapetalus | 36 |
7 | Miliusa balansae | 16 | Chisocheton ceramicus | 14 | Chionanthus macrocarpus | 33 |
8 | Pterospermum acerifolium | 8 | Sterculia lanceolata | 14 | Amesiodendron chinense | 22 |
9 | Amesiodendron chinense | 7 | Aglaia lawii | 13 | Streblus asper | 20 |
10 | Garcinia fagraeoides | 7 | Clerodendrum chinense | 12 | Albizia lucidior | 10 |
11 | Cryptocarya concinna | 6 | Amesiodendron chinense | 11 | Cryptocarya oblongifolia | 10 |
12 | Antidesma montanum | 5 | Antidesma ambiguum | 11 | Castanopsis lecomtei | 9 |
13 | Albizia lucidior | 3 | Carya sinensis | 10 | Goniothalamus macrocalyx | 9 |
14 | Alphonsea boniana | 3 | Chionanthus macrocarpus | 10 | Vitex stylosa | 8 |
15 | Aglaia spectabilis | 2 | Dysoxylum cauliflorum | 10 | Pilea plataniflora | 7 |
16 | Carya sinensis | 2 | Cryptocarya oblongifolia | 9 | Senna hirsuta | 7 |
17 | Castanopsis kawakamii | 2 | Diospyros bonii | 9 | Canarium album | 6 |
18 | Ilex chinensis | 2 | Teucrium viscidum | 9 | Callicarpa longifolia | 5 |
19 | Syzygium lanceolatum | 2 | Albizia lucidior | 8 | Coffea canephora | 5 |
20 | Toxicodendron rhetsoides | 2 | Cleidion bracteosum | 8 | Ficus nervosa | 5 |
21 | Vitex quinata | 2 | Glycosmis cyanocarpa | 8 | Syzygium lanceolatum | 5 |
22 | Aglaia lawii | 1 | Goniothalamus macrocalyx | 8 | Antidesma ambiguum | 4 |
23 | Bridelia balansae | 1 | Holarrhena pubescens | 8 | Elaeocarpus sylvestris | 4 |
24 | Callicarpa longifolia | 1 | Castanopsis lecomtei | 7 | Radermachera boniana | 4 |
25 | Camellia flava | 1 | Adina pilulifera | 6 | Scleropyrum pentandrum | 4 |
26 | Canarium bengalense | 1 | Callicarpa longifolia | 6 | Aglaia spectabilis | 3 |
27 | Castanopsis lecomtei | 1 | Garcinia fagraeoides | 6 | Bridelia balansae | 3 |
28 | Drypetes perreticulata | 1 | Knema globularia | 6 | Camellia flava | 3 |
29 | Ficus nervosa | 1 | Beilschmiedia laevis | 5 | Cleistanthus monoicus | 3 |
30 | Ficus tinctoria | 1 | Drypetes perreticulata | 5 | Clerodendrum glandulosum | 3 |
31 | Ficus vasculosa | 1 | Gironniera subaequalis | 5 | Kydia glabrescens | 3 |
32 | Polyalthia lauii | 1 | Turpinia montana | 5 | Sapindus saponaria | 3 |
33 | Sterculia lanceolata | 1 | Canarium album | 4 | Toxicodendron rhetsoides | 3 |
34 | Teucrium viscidum | 1 | Meliosma pinnata | 4 | Adina pilulifera | 2 |
35 | Unidentified | 18 | Baccaurea ramiflora | 3 | Chisocheton ceramicus | 2 |
36 | Cinnamomum bejolghota | 3 | Dracontomelon duperreanum | 2 | ||
37 | Elaeocarpus griffithii | 3 | Ficus trivia | 2 | ||
38 | Firmiana colorata | 3 | Garcinia fagraeoides | 2 | ||
39 | Ilex chinensis | 3 | Knema globularia | 2 | ||
40 | Illigera celebica | 3 | Lithocarpus bacgiangensis | 2 | ||
41 | Lithocarpus bacgiangensis | 3 | Micromelum integerrimum | 2 | ||
42 | Litsea balansae | 3 | Trevesia sphaerocarpa | 2 | ||
43 | Litsea glutinosa | 3 | Vatica odorata | 2 | ||
44 | Polyalthia lauii | 3 | Wrightia arborea | 2 | ||
45 | Prunus zippeliana | 3 | Ageratum conyzoides | 1 | ||
46 | Aglaia spectabilis | 2 | Albizia lebbeck | 1 | ||
47 | Albizia lebbeck | 2 | Alphonsea boniana | 1 | ||
48 | Dimocarpus longan | 2 | Alphonsea tonquinensis | 1 | ||
49 | Dysoxylum gotadhora | 2 | Anogeissus acuminata | 1 | ||
50 | Ficus nervosa | 2 | Archidendron clypearia | 1 | ||
51 | Ficus trivia | 2 | Artocarpus lacucha | 1 | ||
52 | Garcinia oblongifolia | 2 | Baccaurea ramiflora | 1 | ||
53 | Heteropanax fragrans | 2 | Brownlowia tabularis | 1 | ||
54 | Oreocnide integrifolia | 2 | Castanopsis chinensis | 1 | ||
55 | Ormosia balansae | 2 | Cleidion bracteosum | 1 | ||
56 | Pilea plataniflora | 2 | Ficus altissima | 1 | ||
57 | Pterospermum acerifolium | 2 | Firmiana colorata | 1 | ||
58 | Scleropyrum pentandrum | 2 | Garuga pinnata | 1 | ||
59 | Syzygium lanceolatum | 2 | Macaranga denticulata | 1 | ||
60 | Vitex quinata | 2 | Magnolia henryi | 1 | ||
61 | Ardisia crenata | 1 | Mallotus microcarpus | 1 | ||
62 | Bridelia balansae | 1 | Ocotea lancifolia | 1 | ||
63 | Camellia flava | 1 | Polyalthia lauii | 1 | ||
64 | Castanopsis kawakamii | 1 | Prunus zippeliana | 1 | ||
65 | Celtis timorensis | 1 | Pterospermum heterophyllum | 1 | ||
66 | Chionanthus ramiflorus | 1 | Teucrium viscidum | 1 | ||
67 | Clerodendrum glandulosum | 1 | ||||
68 | Ficus hispida | 1 | ||||
69 | Flacourtia indica | 1 | ||||
70 | Helicia cochinchinensis | 1 | ||||
71 | Ilex cinerea | 1 | ||||
72 | Litsea verticillata | 1 | ||||
73 | Microdesmis caseariifolia | 1 | ||||
74 | Mischocarpus pentapetalus | 1 | ||||
75 | Polyalthia cerasoides | 1 | ||||
76 | Senna hirsuta | 1 | ||||
77 | Syzygium bullockii | 1 |
References
- Ricklefs, R.; Miller, G. Ecology; WH Freeman: New York, NY, USA, 1990. [Google Scholar]
- Wright, J.S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 2002, 130, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Stoll, P.; Prati, D. Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecology 2001, 82, 319–327. [Google Scholar] [CrossRef]
- Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 1994, 75, 2–16. [Google Scholar] [CrossRef]
- Stoll, P.; Weiner, J. A neighborhood view of interactions among individual plants. In The Geometry of Ecological Interactions: Simplifying Spatial Complexity; Cambridge University Press: Cambridge, UK, 2000; pp. 11–27. [Google Scholar]
- Getzin, S.; Wiegand, T.; Hubbell, S.P. Stochastically driven adult–recruit associations of tree species on Barro Colorado Island. Proc. R. Soc. B 2014, 281, 20140922. [Google Scholar] [CrossRef]
- Matthews, T.J.; Whittaker, R.J. Neutral theory and the species abundance distribution: Recent developments and prospects for unifying niche and neutral perspectives. Ecol. Evol. 2014, 4, 2263–2277. [Google Scholar] [CrossRef]
- Pommerening, A.; Stoyan, D. Edge-correction needs in estimating indices of spatial forest structure. Can. J. For. Res 2006, 36, 1723–1739. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hui, G.; Yu, S.; Luo, Y.; Yao, X.; Ye, S. Nearest neighbour relationships in Pinus yunnanensis var. tenuifolia forests along the Nanpan River, China. iForest 2017, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, O.; Hui, G.; Gadow, K.V.; Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 2003, 183, 137–145. [Google Scholar] [CrossRef]
- Gadow, K.V.; Zhang, C.Y.; Wehenkel, C.; Pommerening, A.; Corral-Rivas, J.; Korol, M.; Myklush, S.; Hui, G.Y.; Kiviste, A.; Zhao, X.H. Forest structure and diversity. In Continuous Cover Forestry; Springer: Dordrecht, The Netherlands, 2011; pp. 29–83. [Google Scholar]
- Petritan, A.M.; Biris, I.A.; Merce, O.; Turcu, D.O.; Petritan, I.C. Structure and diversity of a natural temperate sessile oak (Quercus petraea L.)–European Beech (Fagus sylvatica L.) forest. For. Ecol. Manag. 2012, 280, 140–149. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Erfanifard, Y.; Petritan, I.C. Nearest Neighborhood Characteristics of a Tropical Mixed Broadleaved Forest Stand. Forests 2018, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Webb, C.O.; Ackerly, D.D.; McPeek, M.A.; Donoghue, M.J. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 2002, 33, 475–505. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.A.; Roger, A.; Courtois, E.A.; Jabot, F.; Norden, N.; Paine, C.T.; Baraloto, C.; Thébaud, C.; Chave, J. Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest. J. Ecol. 2010, 98, 137–146. [Google Scholar] [CrossRef]
- Santo-Silva, E.E.; Santos, B.A.; Arroyo-Rodríguez, V.; Melo, F.P.; Faria, D.; Cazetta, E.; Mariano-Neto, E.; Hernández-Ruedas, M.A.; Tabarelli, M. Phylogenetic dimension of tree communities reveals high conservation value of disturbed tropical rain forests. Divers. Distrib. 2018, 24, 776–790. [Google Scholar] [CrossRef] [Green Version]
- eFlohras. Flora of China; Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria: Cambridge, MA, USA, 2010. [Google Scholar]
- Lan, P.N.; Hong, P.N.; Hung, T.V.; Thin, N.N.; Chan, L.T. Tropical Forest Ecology of Vietnam; Ministry of Agriculture and Rural Development: Hanoi, Vietnam, 2006. [Google Scholar]
- Nguyen, H.; Wiegand, K.; Getzin, S. Spatial patterns and demographics of Streblus macrophyllus trees in a tropical evergreen forest, Vietnam. J. Trop. For. Sci. 2014, 26, 309–319. [Google Scholar]
- APG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Phylodiversity Network. Available online: http://Www.Phylodiversity.Net (accessed on 22 January 2020).
- Boyle, B.; Hopkins, N.; Lu, Z.; Garay, J.A.R.; Mozzherin, D.; Rees, T.; Matasci, N.; Narro, M.L.; Piel, W.H.; Mckay, S.J. The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics 2013, 14, 16. [Google Scholar] [CrossRef] [Green Version]
- Webb, C.; Ackerly, D.; Kembel, S. Phylocom: Software for the Analysis of Phylogenetic Community Structure and Character Evolution, with Phylomatic, Version: 4.2, 2011. Available online: https://phylodiversity.net/phylocom/ (accessed on 22 January 2020).
- Bell, C.D.; Soltis, D.E.; Soltis, P.S. The age and diversification of the angiosperms re-revisited. Am. J. Bot. 2010, 97, 1296–1303. [Google Scholar] [CrossRef]
- Webb, C.O.; Ackerly, D.D.; Kembel, S.W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 2008, 24, 18. [Google Scholar] [CrossRef] [Green Version]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Champely, S.; Chessel, D. Measuring biological diversity using Euclidean metrics. Environ. Ecol. Stat. 2002, 9, 167–177. [Google Scholar] [CrossRef]
- Gadow, K.V.; Hui, G. Characterizing forest spatial structure and diversity. In Sustainable Forestry in Temperate Regions; Bjoerk, L., Ed.; Materiały konferencyjne IUFRO: Lund, Sweden, 2002; pp. 20–30. [Google Scholar]
- Pommerening, A.; CRANCOD. A program for the analysis and reconstruction of spatial forest structure. Version 1.4, 2012. Available online: http://www.pommerening.org/wiki/index.php?title=CRANCOD_-_A_Program_for_the_Analysis_and_Reconstruction_of_Spatial_Forest_Structure (accessed on 25 January 2020).
- Wiegand, T.; Moloney, K.A. Handbook of Spatial Point-Pattern Analysis in Ecology; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Nguyen, H.H.; Uria-Diez, J.; Wiegand, K. Spatial distribution and association patterns in a tropical evergreen broad-leaved forest of north-central Vietnam. J. Veg. Sci. 2016, 27, 318–327. [Google Scholar] [CrossRef]
- Berry, N.J.; Phillips, O.L.; Ong, R.C.; Hamer, K.C. Impacts of selective logging on tree diversity across a rainforest landscape: The importance of spatial scale. Landsc. Ecol. 2008, 23, 915–929. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steudel, B.; Hallmann, C.; Lorenz, M.; Abrahamczyk, S.; Prinz, K.; Herrfurth, C.; Feussner, I.; Martini, J.W.; Kessler, M. Contrasting biodiversity–ecosystem functioning relationships in phylogenetic and functional diversity. New Phytol. 2016, 212, 409–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasky, J.R.; Uriarte, M.; Boukili, V.K.; Erickson, D.L.; John Kress, W.; Chazdon, R.L. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 2014, 17, 1158–1167. [Google Scholar] [CrossRef]
- Cadotte, M.W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl. Acad. Sci. USA 2013, 110, 8996–9000. [Google Scholar] [CrossRef] [Green Version]
- Satdichanh, M.; Ma, H.; Yan, K.; Dossa, G.G.; Winowiecki, L.; Vågen, T.G.; Gassner, A.; Xu, J.; Harrison, R.D. Phylogenetic diversity correlated with above-ground biomass production during forest succession: Evidence from tropical forests in Southeast Asia. J. Ecol. 2019, 107, 1419–1432. [Google Scholar] [CrossRef]
- Ding, Y.; Zang, R.; Letcher, S.G.; Liu, S.; He, F. Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 2012, 121, 1263–1270. [Google Scholar] [CrossRef]
- Larkin, D.J.; Hipp, A.L.; Kattge, J.; Prescott, W.; Tonietto, R.K.; Jacobi, S.K.; Bowles, M.L. Phylogenetic measures of plant communities show long-term change and impacts of fire management in tallgrass prairie remnants. J. Appl. Ecol. 2015, 52, 1638–1648. [Google Scholar] [CrossRef] [Green Version]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Harms, K.E.; Condit, R.; Hubbell, S.P.; Foster, R.B. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J. Ecol. 2001, 89, 947–959. [Google Scholar] [CrossRef]
- Condit, R.; Ashton, P.S.; Baker, P.; Bunyavejchewin, S.; Gunatilleke, S.; Gunatilleke, N.; Hubbell, S.P.; Foster, R.B.; Itoh, A.; LaFrankie, J.V. Spatial patterns in the distribution of tropical tree species. Science 2000, 288, 1414–1418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, L.; Guo, Q.; Nie, D.; Bai, X.; Jiang, Y. Research on changes of dominant tree population distribution patterns during developmental processes of a climax forest community. Acta Phytoecol. Sin. 1999, 23, 256–268. [Google Scholar]
- Peters, H.A. Neighbour-regulated mortality: The influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol. Lett. 2003, 6, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Hubbell, S.P.; Foster, R.B. Community Ecology. In Biology, Chance, and History and the Structure of Tropical Rain Forest Tree Communities; Harper and Row Publishers: New York, NY, USA, 1986; pp. 314–329. [Google Scholar]
Characteristics | Plot P1 | Plot P2 | Plot P3 |
---|---|---|---|
Number of individuals | 705 | 1006 | 601 |
Number of species | 34 | 77 | 66 |
Number of genus | 30 | 62 | 60 |
Number of families | 21 | 39 | 31 |
Number of S. macrophyllus individuals | 483 | 392 | 64 |
Number of species with one individual | 17 | 26 | 38 |
Number of species with ≥30 individuals | 3 | 5 | 7 |
Mean nearest distance of all trees (m) | 2.06 | 1.56 | 2.07 |
Mean nearest distance of S. macrophyllus (m) | 2.15 | 1.55 | 1.83 |
Total basal area (m2/ha) | 36.39 | 36.60 | 19.79 |
Phylogenetic Metrics | Plot P1 | Plot P2 | Plot P3 |
---|---|---|---|
Species number | 34 | 77 | 66 |
Simpson’s diversity | 0.49 | 0.81 | 0.93 |
Phylogenetic distance (PD) | 208 | 344 | 355 |
Phylogenetic diversity (Pd) | 5.79 | 9.05 | 11.88 |
Mean phylogenetic distance (MPD ± Standard deviation) | 11.58 ± 2.07 | 18.11 ± 2.22 | 23.77 ± 2.46 |
Net related index (NRI) | 0.74 | 1.47 | 0.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hai, N.H.; Erfanifard, Y.; Bao, T.Q.; Petritan, A.M.; Mai, T.H.; Petritan, I.C. Phylogenetic Community and Nearest Neighbor Structure of Disturbed Tropical Rain Forests Encroached by Streblus macrophyllus. Forests 2020, 11, 722. https://doi.org/10.3390/f11070722
Hai NH, Erfanifard Y, Bao TQ, Petritan AM, Mai TH, Petritan IC. Phylogenetic Community and Nearest Neighbor Structure of Disturbed Tropical Rain Forests Encroached by Streblus macrophyllus. Forests. 2020; 11(7):722. https://doi.org/10.3390/f11070722
Chicago/Turabian StyleHai, Nguyen Hong, Yousef Erfanifard, Tran Quang Bao, Any Mary Petritan, Trinh Hien Mai, and Ion Catalin Petritan. 2020. "Phylogenetic Community and Nearest Neighbor Structure of Disturbed Tropical Rain Forests Encroached by Streblus macrophyllus" Forests 11, no. 7: 722. https://doi.org/10.3390/f11070722
APA StyleHai, N. H., Erfanifard, Y., Bao, T. Q., Petritan, A. M., Mai, T. H., & Petritan, I. C. (2020). Phylogenetic Community and Nearest Neighbor Structure of Disturbed Tropical Rain Forests Encroached by Streblus macrophyllus. Forests, 11(7), 722. https://doi.org/10.3390/f11070722