Population Structure and Regeneration Status of Woody Plants in Relation to the Human Interventions, Arasbaran Biosphere Reserve, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Sampling
2.4. Data Analysis
3. Results
3.1. Species Composition and Dominant Species
3.2. Species Diversity
3.3. Height and DBH Class Distribution and Stem Density
3.4. DBH and Density Distribution and Destrucion Class
3.5. Disturbance Index and Population Diversity and Structure
3.6. Regeneration Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sagheb-Talebi, K.; Pourhashemi, M.; Sajedi, T. Forests of Iran: A Treasure from the Past, a Hope for the Future; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Hart, S.A.; Chen, H.Y. Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest. Ecol. Monogr. 2008, 78, 123–140. [Google Scholar] [CrossRef]
- Raustiala, K.; Victor, D.G. Biodiversity since Rio: The future of the Convention on Biological Diversity. Environ. Sci. Policy Sustain. Dev. 1996, 38, 16–45. [Google Scholar] [CrossRef]
- Haq, S.M.; Rashid, I.; Khuroo, A.A.; Malik, Z.A.; Malik, A.H. Anthropogenic disturbances alter community structure in the forests of Kashmir Himalaya. Trop. Ecol. 2019, 60, 6–15. [Google Scholar] [CrossRef]
- Rasquinha, D.N.; Mishra, D.R. Impact of wood harvesting on mangrove forest structure, composition and biomass dynamics in India. Estuar. Coast. Shelf Sci. 2020, 106974, in press. [Google Scholar] [CrossRef]
- Ghazanfari, H.; Namiranian, M.; Sobhani, H.; Mohajer, R.M. Traditional forest management and its application to encourage public participation for sustainable forest management in the northern Zagros Mountains of Kurdistan Province, Iran. Scand. J. For. Res. 2004, 19, 65–71. [Google Scholar] [CrossRef]
- Maua, J.O.; MugatsiaTsingalia, H.; Cheboiwo, J.; Odee, D. Population structure and regeneration status of woody species in a remnant tropical forest: A case study of South Nandi forest, Kenya. Glob. Ecol. Conserv. 2020, 21, e00820. [Google Scholar] [CrossRef]
- Dutta, G.; Devi, A. Plant diversity, population structure, and regeneration status in disturbed tropical forests in Assam, northeast India. J. For. Res. 2013, 24, 715–720. [Google Scholar] [CrossRef]
- Bogale, T.; Datiko, D.; Belachew, S. Structure and natural regeneration status of woody plants of berbere afromontane moist forest, bale zone, South East Ethiopia; implication to biodiversity conservation. Open J. For. 2017, 7, 352. [Google Scholar]
- Malik, Z.A.; Bhatt, A. Regeneration status of tree species and survival of their seedlings in Kedarnath Wildlife Sanctuary and its adjoining areas in Western Himalaya, India. Trop. Ecol. 2016, 57, 677–690. [Google Scholar]
- Ghanbari Sharafeh, A.; Mohajer, M.; Zobeiri, M. Natural regeneration of Yew in Arasbaran forests. Iran. J. For. Poplar Res. 2010, 18, 380–389. [Google Scholar]
- Maleknia, R.; Azizi, R. Investigating the Sustainability of Zagros Forests in Different Conditions of Human Intervention (Case Study: Karzan Ilam Customary area). In Proceedings of the National Conference of Central Zagros Forests, Capabilities and Limitations, Lorestan, Iran, 23 November 2011. [Google Scholar]
- Parma, R.; Shataee Jouybari, S. Impact of physiographic and human factors on crown cover and diversity of woody species in the Zagros forests (Case study: Ghalajeh forests, Kermanshah province). Iran. J. For. Poplar Res. 2010, 18, 539–555. [Google Scholar]
- Javanmiri Pour, M.; Marvi Mohdjer, M.; Etenad, V.; Zobeiri, M. The Effects of Grazing on Change and Diversity of Natural Regeneration (A Case Study: Patom District, Kheyroud Forest). For. Wood Prod. 2014, 66, 401–426. [Google Scholar] [CrossRef]
- Singh, S.; Malik, Z.A.; Sharma, C.M. Tree species richness, diversity, and regeneration status in different oak (Quercus spp.) dominated forests of Garhwal Himalaya, India. J. Asia Pac. Biodivers. 2016, 9, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Atsbha, T.; Desta, A.B.; Zewdu, T. Woody species diversity, population structure, and regeneration status in the Gra-Kahsu natural vegetation, southern Tigray of Ethiopia. Heliyon 2019, 5, e01120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wang, X.; Li, J.; Kang, D. Species diversity of primary and secondary forests in Wanglang Nature Reserve. Glob. Ecol. Conserv. 2020, 22, e01022. [Google Scholar] [CrossRef]
- Ghanbari, S.; Heshmatol Vaezin, S.M.; Shamekhi, T.; Eastin, I.L.; Lovrić, N.; Aghai, M.M. The Economic and Biological Benefits of Non-wood Forest Products to Local Communities in Iran. Econ. Bot. 2020, 74, 59–73. [Google Scholar] [CrossRef]
- Ghanbari, S.; Heshmatol Vaezin, S.M.; Shamekhi, T.; Eastin, I.L. Market expansion’s influence on the harvesting of non-wood forest products in the Arasbaran forests of Iran. For. Chron. 2014, 90, 599–604. [Google Scholar] [CrossRef]
- Sefidi, K.; Sadeghi, S.M.M. Structural characteristics of Quercus macranthera forests in Arasbaran region, North west of Iran (Hatam Mashe Si, Meshgin-Shahr). Iran. J. For. 2019, 11, 347–361. [Google Scholar]
- Mohammadzadeh, A.; Basiri, R.; Tarahi, A.A.; Dadashian, R.; Elahiyan, M.R. Evaluation of biodiversity of plant species in Arasbaran area using non-parametric measures with respect to topographic factor of slope: A case study of aquiferous land of Ilgina and Kaleibar rivers. J. Plant Res. 2015, 27, 728–741. [Google Scholar]
- Singh, N.; Tewari, A.; Shah, S. Tree regeneration pattern and size class distribution in anthropogenically disturbed sub-alpine treeline areas of Indian Western Himalaya. Int. J. Sci. Tecnol. Res. 2019, 8, 537–546. [Google Scholar]
- Zamani, S.M.; Zolfaghari, R. Investigation of tree and grass biodiversity in the protected area of Western Dena and its relationship with environmental factors. J. Environ. Sci. 2013, 11, 131–140. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.R-project.org/ (accessed on 12 September 2020).
- Ghanbari, S.; Sheidai Karkaj, E. Diversity of tree and shrub species in woodlands of Guijeh-bel region of Ahar. Iran. J. For. Poplar Res. 2018, 26, 118–128. [Google Scholar] [CrossRef]
- Sefidi, K.; Copenheaver, C.A. Tree-Related Microhabitats: A Comparison of Managed and Unmanaged Oriental Beech–Dominated Forests in Northern Iran. For. Sci. 2020, 66, 747–753. [Google Scholar] [CrossRef]
- Naidu, M.T.; Kumar, O.A. Tree diversity, stand structure, and community composition of tropical forests in Eastern Ghats of Andhra Pradesh, India. J. Asia Pac. Biodivers. 2016, 9, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Abunie, A.A.; Dalle, G. Woody Species Diversity, Structure, and Regeneration Status of Yemrehane Kirstos Church Forest of Lasta Woreda, North Wollo Zone, Amhara Region, Ethiopia. Int. J. For. Res. 2018, 2018, 1–8. [Google Scholar]
- Ghanbari, S.; Sefidi, K. Comparison of quantitative and qualitative characteristics of woody species regeneration at the different conditions of human interventions in Arasbaran forests. Iran. J. For. Poplar Res. 2020, 28, 111–123. [Google Scholar]
- Pourbabaei, H.; Ebrahimi, S.S.; Torkaman, J.; Pothier, D. Comparison in woody species composition, diversity and community structure as affected by livestock grazing and human uses in beech forests of northern Iran. Forestry 2014, 20, 1–11. [Google Scholar]
- Ebrahimi, S.S.; Pourbabaei, H.; Potheir, D.; Omidi, A.; Torkaman, J. Effect of livestock grazing and human uses on herbaceous species diversity in oriental beech (Fagus orientalis Lipsky) forests, Guilan, Masal, northern Iran. J. For. Res. 2014, 25, 455–462. [Google Scholar] [CrossRef]
- Jouri, M.; Temzad, B.; Shokri, M.; Bani, H.B. Comparison of diversity and richness indices for evaluation of mountain rangeland health (Case study: Rangelands of Javaherdeh of Ramsar). Rangeland 2009, 2, 344–356. [Google Scholar]
- Cesa, A.; Paruelo, J. Changes in vegetation structure induced by domestic grazing in Patagonia (Southern Argentina). J. Arid. Environ. 2011, 75, 1129–1135. [Google Scholar] [CrossRef]
Equation Number | Index | Equation | Description and Reference |
---|---|---|---|
1 | Relative density (RDe) | [4,7] | |
2 | Species Richness (S) | [7,16] | |
3 | Simpson index of Dominance (D) | where D = Simpson index of dominance, where pi = the proportion of important value of the ith species (pi = ni/N, ni is the important value index of ith species and N is the important value index of all the species) [7,25] | |
4 | Simpson’s evenness (E) | E: Simpson’s evenness, S: species richness [7,16,25] | |
5 | Shannon-Wiener’s index of diversity (H) | where pi = ni/N; ni is the number of individual trees present for species i, and N is the total number of individuals [7,16,25] | |
6 | Frequency (%) | F (%) = | [7,17] |
7 | Relative frequency (RF) | RF= | [4,7] |
8 | Abundance | Abundance | [7] |
9 | Relative dominance (RDo) | RDo | [7] |
10 | The importance value index (IVI) | IVI = RDo + RDe + RF | [4,7,22] |
Species | Family | Importance Value Index | Basal Area (m2 ha−1) | Percent Basal Area (%) | Cumulative Percent of Basal Area (%) | ||
---|---|---|---|---|---|---|---|
Low Destruction (LD) | Medium Destruction (MD) | High Destruction (HD) | |||||
Quercus macranthera | Fagaceae | 168.5 | 144.6 | 196.32 | 1.76 | 65.1 | 65.1 |
Crataegus meyeri - Pojark. | Rosaceae | 56.01 | 95.32 | 134.78 | 0.56 | 20.8 | 85.8 |
Acer campestre L. | Sapindaceae | 49.15 | 51.48 | 32.62 | 0.13 | 4.7 | 90.5 |
Fraxinus excelsior L. | Oleaceae | 32.16 | 34.86 | 14.03 | 0.09 | 3.4 | 94.0 |
Corylus avellana L. | Betulaceae | 58.62 | 31.89 | 63.74 | 0.08 | 3.0 | 97.0 |
Malus orientalis | Rosaceae | 26.72 | 0 | 45.93 | 0.04 | 1.6 | 98.5 |
Pyrus communis L. | Rosaceae | 29.56 | 8.3 | 0 | 0.02 | 0.9 | 99.4 |
Mespilus germanica L. | Rosaceae | 31.43 | 0 | 0 | 0.01 | 0.4 | 99.8 |
Prunus domestica L. | Rosaceae | 0 | 0 | 22.83 | 0.004 | 0.1 | 99.9 |
Euonymus sp. | Celastraceae | 0 | 0 | 6.04 | 0.002 | 0.1 | 100 |
Variable | Destruction Class | Mean | SD | ||
---|---|---|---|---|---|
LD * | MD * | HD * | |||
Density (no. ha−1) | 211 | 115 | 102 | 145 | 59 |
Basal Area (m2 ha−1) | 0.16 | 0.11 | 0.09 | 0.01 | 0.005 |
Species Richness (no. ha−1) | 2.9 | 2 | 1.7 | 2.2 | 1.51 |
Simpson Dominance | 0.6 | 0.3 | 0.6 | 0.52 | 0.35 |
Simpson’s Evenness | 0.75 | 0.50 | 0.59 | 0.63 | 0.32 |
Shannon-Wiener’s Diversity | 2.6 | 1.8 | 1.3 | 1.87 | 1.7 |
Importance Value Index | 87.6 | 74.5 | 92.12 | 86.6 | 70.1 |
Height Class (m) | Destruction Class | ||
---|---|---|---|
LD | MD | HD | |
≤3 | 6 | 3 | 15 |
>3–5≤ | 117 | 43 | 123 |
>5–7 | 107 | 11 | 9 |
Mean ± SD | 4.6 ± 0.96 | 4.12 ± 2.53 | 3.37 ± 1.74 |
Pearson Correlation | Disturbance Index | Number of Trees | Height Mean | DBH Mean | DBH Max | Seedling (No) | QIV *** | ACIV *** | CRIV *** | H | S | E |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Disturbance index | 1 | |||||||||||
Number of trees | −0.437 * | 1 | ||||||||||
Height mean | −0.428 * | 0.615 ** | 1 | |||||||||
DBH mean | −0.287 | 0.533 ** | 0.843 ** | 1 | ||||||||
DBH max | −0.310 | 0.456 * | 0.758 ** | 0.769 ** | 1 | |||||||
Seedling (No) | −0.333 | 0.099 | 0.006 | 0.010 | −0.073 | 1 | ||||||
QIV | −0.492 ** | 0.259 | 0.650 ** | 0.577 ** | 0.457 * | 0.342 | 1 | |||||
ACIV | −0.221 | 0.165 | 0.305 | 0.422 * | 0.352 | −0.063 | 0.209 | 1 | ||||
CRIV | 0.383 * | 0.207 | 0.199 | 0.206 | 0.242 | −0.374 * | −0.451 * | −0.225 | 1 | |||
H | −0.346 | 0.648 ** | 0.0523 ** | 0.480 ** | 0.617 ** | −0.067 | 0.172 | 0.403 * | 0.151 | 1 | ||
S | −0.360 | 0.687 ** | 0.658 ** | 0.610 ** | 0.705 ** | −0.053 | 0.319 | 0.414 * | 0.190 | 0.975 ** | 1 | |
E | −0.180 | 0.360 | 0.761 ** | 0.637 ** | 0.692 ** | −0.283 | 0.491 ** | 0.160 | 0.297 | 0.285 | 0.425 * | 1 |
Variable | Sum of Squares | df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Density (no. ha−1) | 768.750 | 2 | 384.375 | 3.083 | 0.062 |
Height (m) mean | 20.143 | 2 | 10.071 | 3.502 | 0.044 |
DBH (cm) mean | 46.915 | 2 | 23.457 | 1.791 | 0.186 |
DBH (cm) max | 121.318 | 2 | 60.659 | 1.735 | 0.196 |
Seedling (No. ha−1) | 583.285 | 2 | 291.642 | 1.837 | 0.179 |
QIV | 53,795.605 | 2 | 26897.802 | 3.968 | 0.031 |
ACIV | 1346.655 | 2 | 673.328 | 1.180 | 0.323 |
CRIV | 18,167.971 | 2 | 9083.986 | 2.078 | 0.145 |
H | 10.085 | 2 | 5.043 | 1.835 | 0.179 |
S | 9.122 | 2 | 4.561 | 2.135 | 0.138 |
E | 0.287 | 2 | 0.144 | 1.436 | 0.255 |
Species | Family | Density (No. ha−1) | Density Frequency (%) | Cumulative Frequency of Density (%) | ||
---|---|---|---|---|---|---|
LD | MD | HD | ||||
Corylus avellana | Betulaceae | 61.8 | 148.3 | 93.8 | 25.37 | 25.37 |
Rosa canina | Rosaceae | 37.3 | 98.3 | 66.2 | 16.9 | 42.27 |
Quercus macranthera | Fagaceae | 93.6 | 35.0 | 26.2 | 14.45 | 56.72 |
Crataegus meyeri | Rosaceae | 22.7 | 46.7 | 36.2 | 9.1 | 65.82 |
Viburnum lantana | Caprifoliaceae | 40.9 | 25.0 | 19.2 | 7.9 | 73.72 |
Prunus domestica | Rosaceae | 32.7 | 25.0 | 20.8 | 7.1 | 80.82 |
Fraxinus excelsior | Oleaceae | 37.3 | 20.0 | 6.9 | 5.63 | 86.45 |
Acer campestre | Sapindaceae | 21.8 | 16.7 | 16.9 | 5.1 | 91.55 |
Euonymus sp. | Celastraceae | 18.2 | 6.7 | 5.4 | 2.82 | 94.37 |
Mespilus germanica | Rosaceae | 17.3 | 6.7 | 3.1 | 2.45 | 96.82 |
Rhamnus sp. | Rhamnaceae | 0.0 | 0.0 | 12.3 | 1.45 | 98.27 |
Smilax excelsa | Smilacaceae | 0.0 | 1.7 | 10.8 | 1.37 | 99.64 |
Pyrus communis | Rosaceae | 1.8 | 0.0 | 0.0 | 0.18 | 99.82 |
Sorbus graeca | Rosaceae | 0.0 | 0.0 | 1.5 | 0.18 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanbari, S.; Sefidi, K.; Kern, C.C.; Álvarez-Álvarez, P. Population Structure and Regeneration Status of Woody Plants in Relation to the Human Interventions, Arasbaran Biosphere Reserve, Iran. Forests 2021, 12, 191. https://doi.org/10.3390/f12020191
Ghanbari S, Sefidi K, Kern CC, Álvarez-Álvarez P. Population Structure and Regeneration Status of Woody Plants in Relation to the Human Interventions, Arasbaran Biosphere Reserve, Iran. Forests. 2021; 12(2):191. https://doi.org/10.3390/f12020191
Chicago/Turabian StyleGhanbari, Sajad, Kiomars Sefidi, Christel C. Kern, and Pedro Álvarez-Álvarez. 2021. "Population Structure and Regeneration Status of Woody Plants in Relation to the Human Interventions, Arasbaran Biosphere Reserve, Iran" Forests 12, no. 2: 191. https://doi.org/10.3390/f12020191
APA StyleGhanbari, S., Sefidi, K., Kern, C. C., & Álvarez-Álvarez, P. (2021). Population Structure and Regeneration Status of Woody Plants in Relation to the Human Interventions, Arasbaran Biosphere Reserve, Iran. Forests, 12(2), 191. https://doi.org/10.3390/f12020191