Liming Alters the Soil Microbial Community and Extracellular Enzymatic Activities in Temperate Coniferous Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling
2.3. Soil Chemical Properties
2.4. Soil Microbial Biomass and Extracellular Enzyme Activity
2.5. Soil Microbial Community Structure and Composition
2.6. Statistical Analysis
3. Results
3.1. Soil Chemical Property
3.2. Microbial Biomass and Extracellular Enzyme Activity
3.3. Microbial Community Structure
3.4. Factors Affecting Biological Property
4. Discussion
4.1. Effects of Liming on Microbial Biomass and Extracellular Enzyme Activity
4.2. Effects of Liming on Microbial Community Structure
4.3. Ecological Implications of Liming
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Breemen, N.; Mulder, J.; Driscoll, C.T. Acidification and alkalinization of soils. Plant Soil 1983, 75, 283–308. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Persson, H.; Ahlström, K. The effects of forest liming on fertilization on fine-root growth. Water Air Soil Pollut. 1990, 54, 365–375. [Google Scholar] [CrossRef]
- Nilsson, L.O.; Hüttl, R.F.; Johansson, U.T.; Jochheim, H. Nutrient uptake and cycling in forest ecosystems-present status and future research directions. Plant Soil 1995, 168, 5–13. [Google Scholar]
- Kim, J.H. Atmospheric Acidic Deposition: Response to Soils and Forest Ecosystems. J. Ecol. Environ. 2005, 28, 417–431. [Google Scholar]
- Jeong, Y.G.; Lee, H.H. Effects of Lime and NPK Application Rates on the Soil Characteristics after a 10-year Experiment in Oversown Hilly Pasture of Mixed Grass-Clover Sward I. Changes in the pH, contents of TN, organic matter and available P2O5, coefficient of P2O5 absorption, and lime requirement by the soil depth. J. Korean Soc. Grassl. Forage Sci. 1993, 13, 49–57. [Google Scholar]
- Yoo, J.H.; Byun, J.K.; Kim, C.; Lee, C.H.; Kim, Y.K.; Lee, W.K. Effects of lime, magnesium sulfate, and compound fertilizers on soil chemical properties of acidified forest soils. J. Korean Soc. For. Sci. 1998, 87, 341–346. [Google Scholar]
- Hwang, J.; Son, Y. Short-term effects of thinning and liming on forest soils of pitch pine and Japanese larch plantations in central Korea. Ecol. Res. 2006, 21, 671–680. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef] [Green Version]
- de Ruiter, P.C.; van Veen, J.A.; Moore, J.C.; Brussaard, L.; Hunt, H.W. Calculation of nitrogen mineralization in soil food webs. Plant Soil 1993, 157, 263–273. [Google Scholar] [CrossRef]
- de Vries, F.T.; Hoffland, E.; van Eekeren, N.; Brussaard, L.; Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 2006, 38, 2092–2103. [Google Scholar] [CrossRef] [Green Version]
- Wallenstein, M.D.; McNulty, S.; Fernandez, I.J.; Boggs, J.; Schlesinger, W.H. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For. Ecol. Manag. 2006, 222, 459–468. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol. Ecol. 2007, 62, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Rousk, J.; Bååth, E. Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil. Biol. Biochem. 2007, 39, 2173–2177. [Google Scholar] [CrossRef]
- Rajapaksha, R.M.C.P.; Tobor-Kapłon, M.A.; Bååth, E. Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently. Appl. Environ. Microbiol. 2004, 70, 2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Deng, S.; Popova, I. Carbohydrate hydrolases. In Method for Soil Enzymology; Dick, R.P., Ed.; SSSA: Madison, WI, USA, 2011; pp. 185–210. [Google Scholar] [CrossRef]
- Puissant, J.; Cécillon, L.; Mills, R.T.E.; Robroek, B.J.M.; Gavazov, K.; De Danieli, S.; Spiegelberger, T.; Buttler, A.; Brun, J.-J. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biol. Biochem. 2015, 80, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.C.; Solly, E.F.; Dawes, M.A.; Graf, F.; Hagedorn, F.; Egli, S.; Clement, C.R.; Nagy, L.; Rixen, C.; Peter, M. Responses of soil extracellular enzyme activities to experimental warming and CO2 enrichment at the alpine treeline. Plant Soil 2017, 416, 527–537. [Google Scholar] [CrossRef]
- Andersson, S.; Nilsson, S.I.; Saetre, P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biol. Biochem. 2000, 32, 1–10. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Wright, D.; Goulding, K.W.T.; Jones, D.L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 2006, 38, 898–911. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Wright, D.; Jones, D.L. Soil acidification used as a management strategy to reduce nitrate losses from agricultural land. Soil Biol. Biochem. 2005, 37, 867–875. [Google Scholar] [CrossRef]
- Aciego Pietri, J.C.; Brookes, P.C. Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biol. Biochem. 2008, 40, 797–802. [Google Scholar] [CrossRef]
- Firestone, M.K.; Killham, K.; McColl, J.G. Fungal Toxicity of Mobilized Soil Aluminum and Manganese. Appl. Environ. Microbiol. 1983, 46, 758–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flis, S.E.; Glenn, A.R.; Dilworth, M.J. The interaction between aluminium and root nodule bacteria. Soil Biol. Biochem. 1993, 25, 403–417. [Google Scholar] [CrossRef]
- Frostegård, Å.; Bååth, E.; Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 1993, 25, 723–730. [Google Scholar] [CrossRef]
- Bååth, E.; Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003, 35, 955–963. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Appl. Environ. Microbiol. 2009, 75, 5111. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martínez, V.; Tabatabai, M.A. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 2000, 31, 85–91. [Google Scholar] [CrossRef]
- German, D.P.; Weintraub, M.N.; Grandy, A.S.; Lauber, C.L.; Rinkes, Z.L.; Allison, S.D. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 2011, 43, 1387–1397. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.; Stuanes, A.O. Short-term effects of liming and vitality fertilization on forest soil and nutrient leaching in a Scots pine ecosystem in Norway. For. Ecol. Manag. 2003, 176, 371–386. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Brookes, P.C. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 m K2SO4 soil extracts. Soil Biol. Biochem. 1990, 22, 1023–1027. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Phosphatases in soils. Soil Biol. Biochem. 1977, 9, 167–172. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol Biochem 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Parham, J.A.; Deng, S.P. Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol. Biochem. 2000, 32, 1183–1190. [Google Scholar] [CrossRef]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Wright, R.J. Soil aluminum toxicity and plant growth. Commun. Soil Sci. Plant Anal. 1989, 20, 1479–1497. [Google Scholar] [CrossRef]
- Kraal, P.; Nierop, K.G.J.; Kaal, J.; Tietema, A. Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins. Soil Biol. Biochem. 2009, 41, 2318–2327. [Google Scholar] [CrossRef]
- Stege, P.W.; Messina, G.A.; Bianchi, G.; Olsina, R.A.; Raba, J. Determination of β-glucosidase activity in soils with a bioanalytical sensor modified with multiwalled carbon nanotubes. Anal. Bioanal. Chem. 2010, 397, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Aslanzadeh, S.; Ishola, M.M.; Richards, T.; Taherzadeh, M.J. An Overview of existing individual unit operations. In Biorefineries; Qureshi, N., Hodge, D.B., Vertès, A.A., Eds.; Elsevier: Amsterdam, The Netherland, 2014; pp. 3–36. [Google Scholar]
- Turner, B.L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 2010, 76, 6485. [Google Scholar] [CrossRef] [Green Version]
- Sinsabaugh, R.L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Bååth, E. Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiol. Ecol. 2010, 73, 149–156. [Google Scholar] [CrossRef]
- Booth, I.R. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 1985, 49, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, K.A.; Hurdman, B.F.; Pitt, J.I. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 1991, 12, 141–149. [Google Scholar] [CrossRef]
- Nevarez, L.; Vasseur, V.; Le Madec, A.; Le Bras, M.A.; Coroller, L.; Leguérinel, I.; Barbier, G. Physiological traits of Penicillium glabrum strain LCP 08.5568, a filamentous fungus isolated from bottled aromatised mineral water. Int. J. Food Microbiol. 2009, 130, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, Y.; Wang, H.; Man, B.; Xiang, X.; Zhou, J.; Qiu, X.; Duan, Y.; Engel, A.S. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front. Microbiol. 2016, 7, 1955. [Google Scholar] [CrossRef]
- Qi, D.; Wieneke, X.; Tao, J.; Zhou, X.; Desilva, U. Soil pH is the primary factor correlating with soil microbiome in karst rocky desertification regions in the Wushan county, Chongqing, China. Front. Microbiol. 2018, 9, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, P.; Padmanabhan, S.; DeRito, C.; Gray, A.; Gannon, D.; Snape, J.R.; Tsai, C.S.; Park, W.; Jeon, C.; Madsen, E.L. Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl. Environ. Microbiol. 2003, 69, 1614. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Bastida, F.; Selevsek, N.; Torres, I.F.; Hernández, T.; García, C. Soil restoration with organic amendments: Linking cellular functionality and ecosystem processes. Sci. Rep. 2015, 5, 15550. [Google Scholar] [CrossRef] [Green Version]
- Hungate, B.A.; Mau, R.L.; Schwartz, E.; Caporaso, J.G.; Dijkstra, P.; van Gestel, N.; Koch, B.J.; Liu, C.M.; McHugh, T.A.; Marks, J.C.; et al. Quantitative Microbial Ecology through Stable Isotope Probing. Appl. Environ. Microbiol. 2015, 81, 7570. [Google Scholar] [CrossRef] [Green Version]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, E.M.; Mau, R.L.; Schwartz, E.; Caporaso, J.G.; Dijkstra, P.; van Gestel, N.; Koch, B.J.; Liu, C.M.; Hayer, M.; McHugh, T.A.; et al. Phylogenetic organization of bacterial activity. ISME J. 2016, 10, 2336–2340. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, C.C.; Nemergut, D.R.; Schmidt, S.K.; Townsend, A.R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 2007, 82, 229–240. [Google Scholar] [CrossRef]
- Ho, A.; Di Lonardo, D.P.; Bodelier, P.L.E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef] [Green Version]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Zhang, X.; Johnston, E.R.; Li, L.; Konstantinidis, K.T.; Han, X. Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME J. 2017, 11, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Kim, S.; Han, S.H.; Chang, H.; Du, D.; Son, Y. Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biol. Biochem. 2018, 120, 212–221. [Google Scholar] [CrossRef]
- Welch, S.A.; Barker, W.W.; Banfield, J.F. Microbial extracellular polysaccharides and plagioclase dissolution. Geochim. Cosmochim. Acta 1999, 63, 1405–1419. [Google Scholar] [CrossRef]
- Rogers, J.R.; Bennett, P.C. Mineral stimulation of subsurface microorganisms: Release of limiting nutrients from silicates. Chem. Geol. 2004, 203, 91–108. [Google Scholar] [CrossRef]
- Xiao, B.; Lian, B.; Sun, L.; Shao, W. Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus. Chem. Geol. 2012, 306–307, 1–9. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Wu, X.; Yang, Q.; Luo, Y.; Christie, P. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ. Geochem. Health 2006, 28, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Meng, H.; Gu, J.-D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J. Environ. Manag. 2017, 197, 539–549. [Google Scholar] [CrossRef]
- Allison, S.D.; Weintraub, M.N.; Gartner, T.B.; Waldrop, M.P. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In Soil Enzymology; Shukla, G., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 229–243. [Google Scholar]
- Freeman, C.; Ostle, N.J.; Fenner, N.; Kang, H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol. Biochem. 2004, 36, 1663–1667. [Google Scholar] [CrossRef]
- Allison, S.D.; Gartner, T.B.; Holland, K.; Weintraub, M.; Sinsabaugh, R.L. Soil enzymes: Linking proteomics and ecological processes. In Manual of Environmental Microbiology, 3rd ed.; Hurst, C., Crawford, R., Garland, J., Lipson, D., Mills, A., Stetzenbach, L., Eds.; American Society of Microbiology: Washington, DC, USA, 2007; pp. 704–711. [Google Scholar]
- Puissant, J.; Jones, B.; Goodall, T.; Mang, D.; Blaud, A.; Gweon, H.S.; Malik, A.; Jones, D.L.; Clark, I.M.; Hirsch, P.R.; et al. The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biol. Biochem. 2019, 138, 107601. [Google Scholar] [CrossRef]
- Kang, H.; Kwon, M.J.; Kim, S.; Lee, S.; Jones, T.G.; Johncock, A.C.; Haraguchi, A.; Freeman, C. Biologically driven DOC release from peatlands during recovery from acidification. Nat. Commun. 2018, 9, 3807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, W.H.; Richardson, C.J.; Vilgalys, R.; Bruland, G.L. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc. Natl. Acad. Sci. USA 2008, 105, 17842. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, A.M.; Bloem, J.; van Dalen, B.R.; Kalbitz, K. Differences in activity and N demand between bacteria and fungi in a microcosm incubation experiment with selective inhibition. Appl. Soil Ecol. 2016, 99, 29–39. [Google Scholar] [CrossRef]
- Cavigelli, M.A.; Robertson, G.P. The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 2000, 81, 1402–1414. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Balser, T.C.; Firestone, M.K. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 2000, 32, 1837–1846. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Ritz, K.; Wheatley, R.; Kuan, H.L.; Boag, B.; Christensen, S.; Ekelund, F.; Sørensen, S.J.; Muller, S.; Bloem, J. An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biol. Biochem. 2001, 33, 1713–1722. [Google Scholar] [CrossRef]
- Carney, K.M.; Matson, P.A.; Bohannan, B.J.M. Diversity and composition of tropical soil nitrifiers across a plant diversity gradient and among land-use types. Ecol. Lett. 2004, 7, 684–694. [Google Scholar] [CrossRef]
pH | OM | TN | P2O5 | EC | Ale | K+ | Na+ | Ca2+ | Mg2+ | ||
---|---|---|---|---|---|---|---|---|---|---|---|
(1:5) | (%) | (%) | (mg kg−1) | (1:5) | (mg kg−1) | (cmol+ kg−1) | |||||
Gw | Control | 4.20 | 13.24 | 0.18 | 8.64 | 0.30 | 294.88 | 0.10 | 0.08 | 0.13 | 0.23 |
0.13 | 2.97 | 0.05 | 1.44 | 0.04 | 92.71 | 0.02 | 0.02 | 0.03 | 0.04 | ||
Lime | 4.31 | 13.9 | 0.20 | 17.16 | 0.31 | 255.17 | 0.10 | 0.09 | 0.34 | 0.31 | |
0.06 | 3.84 | 0.06 | 6.56 | 0.04 | 227.07 | 0.02 | 0.01 | 0.07 | 0.10 | ||
Ta | Control | 4.61 | 6.7 | 0.13 | 12.89 | 0.32 | 264.16 | 0.15 | 0.12 | 1.11 | 0.96 |
0.28 | 1.27 | 0.03 | 8.82 | 0.12 | 84.32 | 0.06 | 0.03 | 0.47 | 0.35 | ||
Lime | 6.64 | 5.98 | 0.10 | 2.89 | 0.38 | 6.73 | 0.22 | 0.15 | 6.75 | 2.86 | |
0.59 | 0.48 | 0.02 | 2.39 | 0.09 | 10.74 | 0.05 | 0.02 | 2.06 | 2.34 | ||
Cj | Control | 4.9 | 7.39 | 0.09 | 24.25 | 0.21 | 271.02 | 0.21 | 0.07 | 0.96 | 0.74 |
0.10 | 0.27 | 0.01 | 1.05 | 0.04 | 22.95 | 0.06 | 0 | 0.18 | 0.06 | ||
Lime | 7.27 | 8.28 | 0.10 | 22.47 | 0.37 | 2.61 | 0.26 | 0.09 | 7.03 | 6.22 | |
0.30 | 0.73 | 0.01 | 0.61 | 0.07 | 2.74 | 0.11 | 0.01 | 1.19 | 1.08 | ||
Cc | Control | 4.85 | 8.4 | 0.12 | 9.19 | 0.18 | 546.93 | 0.12 | 0.07 | 0.83 | 0.44 |
0.12 | 0.72 | 0.02 | 4.54 | 0.03 | 88.23 | 0.04 | 0.01 | 0.43 | 0.22 | ||
Lime | 4.93 | 9.58 | 0.15 | 29.72 | 0.25 | 421.26 | 0.34 | 0.07 | 2.93 | 1.36 | |
0.65 | 0.55 | 0.02 | 18.87 | 0.06 | 243.71 | 0.15 | 0.01 | 3.35 | 1.18 | ||
Gy | Control | 4.55 | 8.88 | 0.14 | 25.59 | 0.28 | 465.25 | 0.32 | 0.09 | 0.92 | 0.88 |
0.11 | 1.95 | 0.05 | 8.33 | 0.07 | 134.88 | 0.18 | 0.01 | 0.55 | 0.38 | ||
Lime | 5.22 | 7.16 | 0.10 | 19.11 | 0.27 | 194.96 | 0.46 | 0.10 | 2.41 | 3.29 | |
0.15 | 1.16 | 0.06 | 13.77 | 0.08 | 115.54 | 0.26 | 0.01 | 0.92 | 1.62 |
MBC | MBN | MBP | BG | NAG | AP | POX | ||
---|---|---|---|---|---|---|---|---|
(mg kg−1 soil) | (mg p−Nitrophenol kg−1 soil h−1) | (µmol h−1 kg−1) | ||||||
Gw | Control | 273.25 | 70.33 | 92.41 | 424.19 | 174.14 | 993.31 | 130.64 |
56.97 | 21.54 | 34.84 | 102.46 | 73.97 | 144.88 | 68.50 | ||
Lime | 293.16 | 78.34 | 124.35 | 385.12 | 227.24 | 1061.05 | 228.37 | |
91.75 | 22.34 | 71.25 | 113.78 | 65.48 | 260.33 | 59.86 | ||
Ta | Control | 337.06 | 104.08 | 99.23 | 191.12 | 212.07 | 1196.20 | 150.0 |
146.91 | 37.66 | 53.68 | 45.49 | 57.07 | 106.82 | 51.09 | ||
Lime | 263.73 | 131.79 | 67.05 | 149.26 | 186.89 | 783.83 | 344.42 | |
42.0 | 37.34 | 30.07 | 27.83 | 23.36 | 157.72 | 117.48 | ||
Cj | Control | 249.09 | 76.39 | 66.07 | 193.73 | 175.22 | 1028.71 | 166.13 |
74.45 | 18.72 | 18.99 | 31.0 | 54.43 | 82.30 | 43.21 | ||
Lime | 334.92 | 109.80 | 72.95 | 214.52 | 193.54 | 634.51 | 314.08 | |
180.78 | 30.21 | 23.60 | 49.81 | 34.55 | 100.45 | 90.86 | ||
Cc | Control | 180.04 | 52.42 | 51.16 | 168.58 | 389.95 | 877.23 | 129.34 |
45.08 | 14.32 | 20.88 | 64.42 | 229.48 | 134.87 | 43.91 | ||
Lime | 295.31 | 69.83 | 54 | 164.49 | 285.84 | 935.87 | 127.03 | |
127.03 | 23.18 | 10.70 | 52.39 | 137.86 | 153.71 | 45.05 | ||
Gy | Control | 251.74 | 31.71 | 37.67 | 283.82 | 238.30 | 1108.50 | 70.34 |
55.47 | 19.01 | 27.41 | 39.93 | 68.70 | 64.68 | 39.09 | ||
Lime | 174.24 | 27.95 | 29.45 | 267.29 | 227.84 | 1097.16 | 210.87 | |
79.37 | 21.37 | −12.22 | −140.09 | 75.95 | 108.44 | 111.12 |
Bacteria | Fungi | ||||||
---|---|---|---|---|---|---|---|
OTU | Chao1 | Shannon | OTU | Chao1 | Shannon | ||
Gw | Control | 545.4 | 655.55 | 6.11 | 151.0 | 155.20 | 4.27 |
67.29 | 88.06 | 0.51 | 16.72 | 17.33 | 0.82 | ||
Lime | 613.8 | 731.08 | 6.93 | 164.2 | 168.27 | 4.62 | |
44.38 | 48.46 | 0.08 | 17.51 | 17.49 | 0.21 | ||
Ta | Control | 625.60 | 728.67 | 6.98 | 170.0 | 178.40 | 4.55 |
70.13 | 66.42 | 0.20 | 37.22 | 37.26 | 0.43 | ||
Lime | 858.0 | 1032.06 | 7.44 | 153.2 | 160.80 | 4.96 | |
71.58 | 93.45 | 0.34 | 20.84 | 29.07 | 0.38 | ||
Cj | Control | 781.0 | 940.98 | 7.38 | 164.6 | 165.97 | 5.12 |
21.85 | 48.52 | 0.11 | 18.26 | 17.95 | 0.36 | ||
Lime | 897.2 | 1083.94 | 7.45 | 154.6 | 156.52 | 5.00 | |
46.09 | 55.85 | 0.26 | 20.21 | 19.06 | 0.65 | ||
Cc | Control | 730.8 | 859.16 | 7.30 | 186.4 | 188.95 | 4.01 |
56.48 | 83.88 | 0.06 | 23.16 | 21.47 | 0.33 | ||
Lime | 742.8 | 882.91 | 7.41 | 262.8 | 271.41 | 4.91 | |
114.95 | 152.32 | 0.22 | 39.88 | 49.90 | 0.35 | ||
Gy | Control | 588.0 | 693.82 | 6.91 | 219.8 | 222.35 | 4.93 |
70.67 | 105.79 | 0.19 | 45.55 | 46.60 | 0.71 | ||
Lime | 728.4 | 866.76 | 7.33 | 221.8 | 223.26 | 4.79 | |
75.21 | 100.07 | 0.26 | 45.38 | 45.92 | 0.76 |
Dependent Variable | Regression Equation | R2 | F-Value |
---|---|---|---|
Microbial biomass | |||
MBN | = 110.2 + (−0.128 × Ale) | 0.472 | 7.14 (p = 0.028) |
= 144.2 + (−0.140 × Ale) + (−136.0 × K+) | 0.709 | 8.53 (p = 0.013) | |
MBP | =111.687 + (−185.75 × K+) | 0.585 | 11.28 (p = 0.010) |
Enzyme activity | |||
BG | = −25.75 + (30.16 × OM) | 0.707 | 19.32 (p = 0.002) |
NAG | = 160.11 + (0.261 × Ale) | 0.504 | 8.14 (p = 0.021) |
= −127.95 + (0.454 × Ale) + (45.72 × pH) | 0.726 | 9.23 (p = 0.011) | |
AP | = 1678.68 + (−137.4 × pH) | 0.678 | 16.86 (p = 0.03) |
POX | = −177.11 + (70.78 × pH) | 0.670 | 16.23 (p = 0.004) |
Bacterial community | |||
OTU | = 182.94 + (102.64 × pH) | 0.792 | 30.51 (p = 0.001) |
= 257.81 + (130.98 × Ale) + (−771.08 × EC) | 0.918 | 39.08 (p < 0.001) | |
Shannon | = 8.14 + (−7.76 × TN) | 0.471 | 7.08 (p = 0.029) |
Fungal community | |||
OTU | = 135.99 + (214.77 × K+) | 0.467 | 7.02 (p = 0.029) |
= 94.14 + (239.32 × K+) + (0.133 × Ale) | 0.918 | 20.88 (p = 0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, S.; Kim, Y.S.; Lee, A.L.; Lee, D.-H.; Koo, N. Liming Alters the Soil Microbial Community and Extracellular Enzymatic Activities in Temperate Coniferous Forests. Forests 2021, 12, 190. https://doi.org/10.3390/f12020190
Cha S, Kim YS, Lee AL, Lee D-H, Koo N. Liming Alters the Soil Microbial Community and Extracellular Enzymatic Activities in Temperate Coniferous Forests. Forests. 2021; 12(2):190. https://doi.org/10.3390/f12020190
Chicago/Turabian StyleCha, Sangsub, Yong Suk Kim, Ah Lim Lee, Dong-Hyeon Lee, and Namin Koo. 2021. "Liming Alters the Soil Microbial Community and Extracellular Enzymatic Activities in Temperate Coniferous Forests" Forests 12, no. 2: 190. https://doi.org/10.3390/f12020190
APA StyleCha, S., Kim, Y. S., Lee, A. L., Lee, D. -H., & Koo, N. (2021). Liming Alters the Soil Microbial Community and Extracellular Enzymatic Activities in Temperate Coniferous Forests. Forests, 12(2), 190. https://doi.org/10.3390/f12020190