Growth Rates of Poplar Cultivars across Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planting Material
2.2. Study Sites
2.3. Site Management
2.4. Data Collection and Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- UNECE. Forest Landscape Restoration in the Caucasus and Central Asia—Challenges and Opportunities, Background Paper for the Ministerial Roundtable on Forest Landscape Restoration in the Caucasus and Central Asia (21–22 June 2018, Astana, Kazakhstan); UNECE: Geneva, Switzerland, 2019. [Google Scholar]
- Thevs, N.; Gombert, A.J.; Strenge, E.; Lleshi, R.; Aliev, K.; Emileva, B. Tree Wind Breaks in Central Asia and Their Effects on Agricultural Water Consumption. Land 2019, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Thevs, N.; Strenge, E.; Aliev, K.; Eraaliev, M.; Lang, P.; Baibagysov, A.; Xu, J. Tree Shelterbelts as an Element to Improve Water Resource Management in Central Asia. Water 2017, 9, 842. [Google Scholar] [CrossRef] [Green Version]
- Kort, J. Benefits of Windbreaks to Field and Forage Crops. Agric. Ecosyst. Environ. 1988, 22, 165–190. [Google Scholar] [CrossRef]
- Schroeder, R.W.; Kort, J. Shelterbelts in the Soviet Union. J. Soil Water Conserv. 1989, 2, 130–134. [Google Scholar]
- Albenskii, A.V.; Kalashnikov, A.F.; Ozolin, G.P.; Nikitin, P.L.; Surmach, G.P.; Kulik, N.F.; Senkevich, A.A.; Kasyanov, F.M.; Pavlovskii, E.S.; Roslyakov, N.V. Agroforestry Melioration; Lesnaya Promyshlennost: Moscow, Russia, 1972. [Google Scholar]
- Stepanov, A.M. Agroforestry Melioration in Irrigated Lands; Agropromizdat: Moscow, Russia, 1987. [Google Scholar]
- Dokuchaev Scientific Research Institute of Agriculture. Agroforestry Melioration of Vegetable Cultures and Potato; Voronesh Publishing House: Voronesh, Russia, 1961. [Google Scholar]
- Ruppert, D.; Welp, M.; Spies, M.; Thevs, N. Farmers’ Perceptions of Tree Shelterbelts on Agricultural Land in Rural Kyrgyzstan. Sustainability 2020, 12, 1093. [Google Scholar] [CrossRef] [Green Version]
- Ozolin, G.P. Cultivation of Poplars under Conditions of Artificial Irrigation; Lesnaya Promyslennost: Moscow, Russia, 1966. [Google Scholar]
- Usmanov, A.U. Poplar. In Dendrology of Uzbekistan. Volume III; Esenina, T.S., Ed.; Fan Uxber SSR: Tashkent, Uzbekistan, 1971. [Google Scholar]
- Ceulemans, R.; Deraedt, W. Production Physiology and Growth Potential of Poplars under Short-Rotation Forestry Culture. For. Ecol. Manag. 1999, 121, 9–23. [Google Scholar] [CrossRef]
- Isebrands, J.G.; Richardson, J. Poplars and Willows—Trees for Society and the Environment; FAO: Rome, Italy; CABI: Wellingford, UK, 2014. [Google Scholar]
- Clifton-Brown, J.; Harfouche, A.; Casler, M.D.; Jones, H.D.; MacAlpine, W.J.; Murphy-Bokern, D.; Smart, L.B.; Adler, A.; Ashman, C.; Awty-Carroll, D.; et al. Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy 2019, 11, 118–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annicchiarico, P. Genotype x Environment Interaction; FAO Plant Production and Protection Paper 174; FAO: Rome, Italy, 2002. [Google Scholar]
- Landgraf, D.; Carl, C.; Neupert, M. Biomass Yield of 37 Different SRC Poplar Varieties Grown on a Typical Site in North Eastern Germany. Forests 2020, 11, 1048. [Google Scholar] [CrossRef]
- Bergante, S.; Facciotto, G.; Marchi, M. Growth dynamics of ‘Imola’ poplar clone (Populus ×canadensis Mönch) under different cultivation inputs. Ann. Silvic. Res. 2020, 44, 71. [Google Scholar]
- Stanton, B.J.; Bourque, A.; Coleman, M.; Eisenbies, M.; Emerson, R.M.; Espinoza, J.; Gantz, C.; Himes, A.; Rodstrom, A.; Shuren, R.; et al. The practice and economics of hybrid poplar biomass production for biofuels and bioproducts in the Pacific Northwest. BioEnergy Res. 2020, 1–18. [Google Scholar] [CrossRef]
- Maier, C.A.; Burley, J.; Cook, R.; Ghezehei, S.B.; Hazel, D.W.; Nichols, E.G. Tree Water Use, Water Use Efficiency, and Carbon Isotope Discrimination in Relation to Growth Potential in Populus deltoides and Hybrids under Field Conditions. Forests 2019, 10, 993. [Google Scholar] [CrossRef] [Green Version]
- Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenergy 2010, 34, 1028–1040. [Google Scholar] [CrossRef]
- Maissupova, I.K.; Sarsekova, D.N.; Weger, J.; Bubeník, J. Comparison of the growth of fast-growing poplar and willow in two sites of Central Kazakhstan. J. For. Sci. 2017, 63, 239. [Google Scholar]
- Albenskii, A.V. Cultivation of Poplars; State Forestry Publishing House: Moscow, Russia, 1946. [Google Scholar]
- Niemczyk, M.; Kaliszewski, A.; Jewiarz, M.; Wróbel, M.; Mudryk, K. Productivity and biomass characteristics of selected poplar (Populus spp.) cultivars under the climatic conditions of northern Poland. Biomass Bioenergy 2018, 111, 46–51. [Google Scholar] [CrossRef]
- Dillen, S.Y.; Marron, N.; Sabatti, M.; Ceulemans, R.; Bastien, C. Relationships among productivity determinants in two hybrid poplar families grown during three years at two contrasting sites. Tree Physiol. 2009, 29, 975–987. [Google Scholar] [CrossRef] [Green Version]
- Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F. Yield in 8 year-old hybrid poplar plantations on abandoned farmland along climatic and soil fertility gradients. For. Ecol. Manag. 2012, 267, 228–239. [Google Scholar] [CrossRef]
- Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F. Biomass and Volume Yield in Mature Hybrid Poplar Plantations on Temperate Abandoned Farmland. Forests 2014, 5, 3107–3130. [Google Scholar] [CrossRef] [Green Version]
- Barigah, T.; Saugier, B.; Mousseau, M.; Guittet, J.; Ceulemans, R. Photosynthesis, leaf area and productivity of 5 poplar clones during their establishment year. Ann. For. Sci. 1994, 51, 613–625. [Google Scholar] [CrossRef]
- Zalesny, J.R.S.; Stange, C.M.; Birr, B.A. Survival, Height Growth, and Phytoextraction Potential of Hybrid Poplar and Russian Olive (Elaeagnus Angustifolia L.) Established on Soils Varying in Salinity in North Dakota, USA. Forests 2019, 10, 672. [Google Scholar] [CrossRef] [Green Version]
- Shifflett, S.D.; Hazel, D.W.; Nichols, E.G. Sub-Soiling and Genotype Selection Improves Populus Productivity Grown on a North Carolina Sandy Soil. Forests 2016, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Welham, C.; Van Rees, K.; Seely, B.; Kimmins, H. Projected long-term productivity in Saskatchewan hybrid poplar plantations: Weed competition and fertilizer effects. Can. J. For. Res. 2007, 37, 356–370. [Google Scholar] [CrossRef]
Cultivar | Parentage | Almaty | Bishkek I | Bishkek II | Jalalabad | Osh | Lavar | Tup | Khorog | Naryn |
---|---|---|---|---|---|---|---|---|---|---|
Mirza Terek | PN | ● | ● | ● | ● | ● | ● | |||
Pyramidalis 1 | PN | ● | ||||||||
Samsun | PD | ● | ● | ● | ||||||
89M060 | PD | ● | ● | ● | ||||||
Oudenberg | PDN | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Orion | PDN | ● | ● | ● | ● | ● | ● | ● | ● | ● |
H-8 | PDN | ● | ● | ● | ● | ● | ● | ● | ||
H-11 | PDN | ● | ● | ● | ● | ● | ● | ● | ||
H-17 | PDN | ● | ● | ● | ● | ● | ● | ● | ● | ● |
H-33 | PDN | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Tiepolo | PDN | ● | ● | ● | ||||||
Bellini | PDN | ● | ● | ● | ||||||
Veronese | PDN | ● | ● | ● | ||||||
Vesten | PDN | ● | ● | ● | ● | |||||
Kazakhstani | PLfND | ● | ● | ● | ● | ● | ||||
Kyzyl-Tan | PLfND | ● | ||||||||
H-275 | PMT | ● | ● | ● | ● | ● | ● | ● | ● | |
Matrix-11 | PMT | ● | ● | ● | ● | ● | ● | ● | ● | |
Matrix-49 | PMT | ● | ||||||||
Matrix-24 | PMT | ● | ||||||||
Fastwood 1 | PMT | ● | ● | ● | ● | |||||
Fastwood 2 | PMT | ● | ● | ● | ● | |||||
Max-3 | PNM | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Max-4 | PNM | ● | ● | ● | ● | |||||
Max-1 | PNM | ● | ||||||||
Muhle Larsen | PT | ● | ● | ● | ● | ● | ||||
Fritzi Pauley | PT | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Trichobel | PT | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Ozolin | PA | ● | ● | ● | ||||||
P. pamirica | PPa | ● | ||||||||
P. simonii | PSi | ● | ● | ● |
Site Name | Country | Geographical Position | Elevation [m a.s.l.] | Climate Zone 1 |
---|---|---|---|---|
Almaty | Kazakhstan | 43.18° N 76.87° E | 1014 | Dfa |
Bishkek I and II | Kyrgyzstan | 42.92° N 74.62° E | 701 | Dsa |
Jalalabad | Kyrgyzstan | 40.94° N 72.97° E | 779 | Dsa |
Osh | Kyrgyzstan | 40.54° N 72.89° E | 1022 | Dsa |
Lavar | Kazakhstan | 43.57° N 78.09° E | 572 | BSk |
Tup | Kyrgyzstan | 42.8° N 78.49° E | 1771 | Dfb |
Khorog | Tajikistan | 37.46° N 71.61° E | 2183 | BSk |
Naryn | Kyrgyzstan | 41.42° N 75.74° E | 1938 | BSk |
Site | Average January Temperature [°C] | Average July Temperature [°C] | Annual Precipitation [mm] | First Month of the Year with >5 °C |
---|---|---|---|---|
Almaty | −4.7 | 23.8 | 570 | April: 11.5 °C |
Bishkek | −2.6 | 24.9 | 452 | March: 5.3 °C |
Jalalabad | −1 | 25 | 430 | March: 8 °C |
Osh | −3.4 | 25.1 | 378 | March: 6.9 °C |
Lavar | −9.4 | 23.1 | 198 | April: 14.9 °C |
Tup | −10.7 | 18.5 | 423 | April: 7.6 °C |
Khorog | −6 | 22 | 260 | April: 10 °C |
Naryn | −16 | 16 | 300 | April: 7 °C |
Site | Planting Date | Planting Scheme | Total Number of Cuttings | Cuttings Planted per ha |
---|---|---|---|---|
Almaty | 18 April 2018 | 0.8 m × 0.2 m | 242 | 62,500 |
Bishkek I | 7 April 2018 | 0.6 m × 0.6 m to 1.2 m × 0.6 m | 309 | 27,700 to 13,800 |
Bishkek II | 6 April 2019 | 1 m × 0.6 m | 743 | 16,700 |
Jalalabad | 10 April 2019 | 0.7 m × 1.5 m | 580 | 9500 |
Osh | 27 May 2020 | 0.7 m × 0.6 m | 535 | 23,800 |
Lavar | 29 March 2019 | 1.6 m × 0.6 m | 284 | 10,400 |
Tup | 16 April 2019 | 1.4 m × 0.6 m | 828 | 11,900 |
Khorog | 20 March 2019 | 0.5 m × 0.2 m | 352 | 100,000 |
Naryn | 9 May 2020 | 1 m × 0.4 m | 379 | 25,000 |
Site | Water Supply | Weed Control | Plant Nutrition |
---|---|---|---|
Almaty | Manually by water can: Every 2–3 days from mid-May through September. | Site was covered with geo-textile. | None |
Bishkek I | Drip irrigation: Every 2–3 days from mid-May to mid-September, 3rd season once per week from June to mid-September. | Manual: 1st season: every 3 weeks until July. 2nd season: once in May and June. | 1st season: 3 g Ammophos and 6 g NPK fertilizer per tree. 2nd season: 16 g NPK fertilizer per tree. |
Bishkek II | Drip irrigation: 1st season every 2–3 days from mid-May to mid-September, 2nd season no irrigation. | Manual: 1st season: every 3 weeks until July. 2nd season: no weed control. | 1st season: 16 g NPK fertilizer per tree. 2nd season: no fertilizer. |
Lavar | Furrow irrigation: 1st season: once in April, once per week in May, twice per week end of July to mid-Sep. 2nd season: every 2 weeks. | Manual: Once per month from April to July | none |
Jalalabad | Furrow irrigation: 1st season: once in April, once per week in May, twice per week end of July to mid-September 2nd season: every 2 weeks during summer. | Once per month from April to July. Manual in April, May, and July, herbicide in June. | 1st season: 3 g Ammophos and 6 g NPK fertilizer per tree. 2nd season: none. |
Osh | Furrow irrigation: Twice per month from June to September. | Once per month from April to June. Manual in April, May, herbicide in June. | Manure before planting. 3 g Ammophos and 6 g NPK fertilizer per tree. |
Tup | Furrow irrigation: Once per week from July to September | Mowing and manual: 1st season: 22 April and once per week during July. 2nd season: once per month. | 1st and 2nd season: 3 g Ammophos and 6 g NPK fertilizer per tree. |
Khorog | Furrow irrigation: Once per week from June to August. | Manual: Twice per week from June to August. | 1st season: 3 g Ammophos per tree. |
Naryn | Flood irrigation: Every 10 days in June, July, and August. | Manual: Once per month in June, July, and August. | None |
Site | Tree Height [m] at the End of the 1st Season | Tree Height [m] at the End of the 2nd Season |
---|---|---|
Almaty | 254 ± 75 a | 424 ± 169 b |
Bishkek I | 260 ± 86 a | 550 ± 106 a |
Bishkek II | 73 ± 43 e | 142 ± 55 e |
Jalalabad | 167 ± 68 b | 334 ± 63 c |
Osh | 104 ± 42 d | |
Lavar | 48 ± 28 f | 79 ± 55 f |
Tup | 131 ± 45 c | 281 ± 61 d |
Khorog | 74 ± 45 e | 169 ± 66 e |
Naryn | 107 ± 35 d |
Cultivar | Tree Height [m] | DBH [cm] | Stem Volume [dm3] |
---|---|---|---|
Oudenberg | 8 ± 0.1 | 5.2 ± 0.5 | 9.9 ± 2.3 |
Orion | 9.5 ± 0.05 | 7.5 ± 0.4 | 21.4 ± 2.2 |
H-33 | 10.2 ± 0.5 | 10.5 ± 1.5 | 47.4 ± 12.7 |
H-17 | 8.9 ± 0.7 | 7.2 ± 0.6 | 20.5 ± 5.1 |
Vesten | 9.3 ± 0.2 | 6.2 ± 0.2 | 14.7 ± 1.6 |
Max-3 | 8.5 ± 0.4 | 5.9 ± 0.9 | 12.6 ± 3.9 |
Max-4 | 8.1 ± 0.3 | 6.8 ± 0.2 | 16.1 ± 1.3 |
H-275 | 5.9 ± 0.9 | 4.2 ± 1.3 | 6.1 ± 3.2 |
Matrix-11 | 7.1 ± 0.3 | 4.8 ± 0.5 | 8.3 ± 2.3 |
Fritzi-Pauley | 7.5 ± 0.3 | 3.7 ± 0.6 | 5.7 ± 2 |
Trichobel | 3.8 | 1.8 | 0.9 |
Cultivar | Volume [dm3]. Average ± Standard Deviation | ||||
---|---|---|---|---|---|
Almaty (2019) | Bishkek I (2019) | Bishkek II (2020) | Jalalabad (2020) | Tup (2020) | |
Mirza Terek | 0.14 ± 0.03 a | 1.8 ± 1.2 a | 0.7 ± 0.5 b | ||
Samsun | 0.22 ± 0.31 a | 1.7 ± 0.8 a | 1.2 ± 1 ab | ||
89M060 | 0.24 ± 0.15 a | 1.7 ± 0.7 a | 1.2 ± 0.6 ab | ||
Oudenberg | 2.5 ± 1.7 bcd | 2.9 ± 1.5 bc | 0.18 ± 0.14 a | 2.4 ± 0.6 a | |
Orion | 3.4 ± 2.2 abc | 4.1 ± 1.1 a | |||
H-8 | 3.4 ± 2.5 abc | ||||
H-11 | 2.2 ± 1.2 bcd | 1.4 ± 0.3 a | |||
H-17 | 4.1 ± 4 ab | 3.7 ± 1.3 ab | 0.07 ± 0.03 a | ||
H-33 | 5.6 ± 3.4 a | 4.6 ± 2.6 a | 0.06 ± 0.01 a | 0.6 ± 0.06 a | |
Tiepolo | 0.07 ± 0.01a | 0.9 ± 0.3 a | |||
Bellini | 0.19 ± 0.17 a | ||||
Veronese | 0.14 ± 0.11 a | 1.5 ± 0.8 ab | |||
Vesten | 5.1 ± 2 a | 2.7 ± 1.3 bc | |||
Kazakhstani | 1.4 ± 0.6 ab | ||||
H-275 | 0.7 ± 0.4 d | 1.8 ± 0.7 cd | 1.7 ± 0.8 ab | ||
Matrix-11 | 0.3 ± 0.2 d | 1.4 ± 0.6 d | 2.2 ± 1.2 a | ||
Matrix-49 | 0.3 ± 0.5 d | ||||
Matrix-24 | 0.8 ± 0.5 d | ||||
Fastwood 1 | 1.7 ± 0.7 ab | ||||
Fastwood 2 | 0.9 ± 0.3 a | 2.6 ± 0.9 a | |||
Max-3 | 2.4 ± 1.3 bcd | 2.7 ± 1 bc | 0.34 ± 0.34 a | 2 ± 0.8 a | 1.7 ± 0.8 ab |
Max-4 | 1.1 ± 0.9 d | 2.7 ± 1.6 bc | |||
Max-1 | 1.3 ± 0.8 cd | ||||
Fritzi-Pauli | 0.5 ± 0.3 d | 1 ± 0.5 d | 0.13 ± 0.05 a | 0.6 ± 0.3 a | 1.2 ± 0.4 ab |
Trichobel | 0.3 ± 0.2 d | 0.8 ± 0.3 d | 1.4 ± 0.7 a | 1.2 ± 0.4 ab | |
Ozolin | 0.12 ± 0.12 a | ||||
P. simonii | 1.6 ± 0.6 ab | ||||
All cuttings | 1.9 ± 2 b | 2.6 ± 1.7 a | 0.2 ± 0.2 c | 1.5 ± 0.8 b | 1.4 ± 0.8 b |
Trees per ha | 10,000 | 15,000 | 18,500 | 20,000 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wood Density in t/m3 | 0.3 | 0.35 | 0.4 | 0.3 | 0.35 | 0.4 | 0.3 | 0.35 | 0.4 | 0.3 | 0.35 | 0.4 | |
Cultivar | Stem Volume [dm3] | ||||||||||||
Oudenberg | 2.9 | 4.4 | 5.1 | 5.9 | 6.6 | 7.7 | 8.8 | 8.1 | 9.5 | 10.9 | 8.8 | 10.3 | 11.7 |
Orion | 4.1 | 6.2 | 7.2 | 8.3 | 9.3 | 10.8 | 12.4 | 11.5 | 13.4 | 15.3 | 12.4 | 14.4 | 16.5 |
H-33 | 4.6 | 6.8 | 8.0 | 9.1 | 10.3 | 12.0 | 13.7 | 12.6 | 14.8 | 16.9 | 13.7 | 15.9 | 18.2 |
H-17 | 3.7 | 5.5 | 6.5 | 7.4 | 8.3 | 9.7 | 11.1 | 10.2 | 12.0 | 13.7 | 11.1 | 12.9 | 14.8 |
Vesten | 2.7 | 4.1 | 4.8 | 5.5 | 6.2 | 7.2 | 8.2 | 7.6 | 8.9 | 10.2 | 8.2 | 9.6 | 11.0 |
Max-3 | 2.7 | 4.0 | 4.6 | 5.3 | 6.0 | 7.0 | 8.0 | 7.4 | 8.6 | 9.8 | 8.0 | 9.3 | 10.6 |
Max-4 | 2.7 | 4.1 | 4.8 | 5.4 | 6.1 | 7.1 | 8.2 | 7.5 | 8.8 | 10.1 | 8.2 | 9.5 | 10.9 |
H-275 | 1.8 | 2.7 | 3.1 | 3.6 | 4.0 | 4.7 | 5.4 | 5.0 | 5.8 | 6.6 | 5.4 | 6.3 | 7.2 |
Matrix-11 | 1.4 | 2.1 | 2.5 | 2.8 | 3.2 | 3.7 | 4.2 | 3.9 | 4.6 | 5.2 | 4.2 | 4.9 | 5.6 |
Fritzi-Pauley | 1 | 1.5 | 1.7 | 2.0 | 2.2 | 2.6 | 3.0 | 2.8 | 3.2 | 3.7 | 3.0 | 3.5 | 4.0 |
Trichobel | 0.76 | 1.1 | 1.3 | 1.5 | 1.7 | 2.0 | 2.3 | 2.1 | 2.5 | 2.8 | 2.3 | 2.7 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thevs, N.; Fehrenz, S.; Aliev, K.; Emileva, B.; Fazylbekov, R.; Kentbaev, Y.; Qonunov, Y.; Qurbonbekova, Y.; Raissova, N.; Razhapbaev, M.; et al. Growth Rates of Poplar Cultivars across Central Asia. Forests 2021, 12, 373. https://doi.org/10.3390/f12030373
Thevs N, Fehrenz S, Aliev K, Emileva B, Fazylbekov R, Kentbaev Y, Qonunov Y, Qurbonbekova Y, Raissova N, Razhapbaev M, et al. Growth Rates of Poplar Cultivars across Central Asia. Forests. 2021; 12(3):373. https://doi.org/10.3390/f12030373
Chicago/Turabian StyleThevs, Niels, Steffen Fehrenz, Kumar Aliev, Begaiym Emileva, Rinat Fazylbekov, Yerzhan Kentbaev, Yodgor Qonunov, Yosumin Qurbonbekova, Nurgul Raissova, Muslim Razhapbaev, and et al. 2021. "Growth Rates of Poplar Cultivars across Central Asia" Forests 12, no. 3: 373. https://doi.org/10.3390/f12030373
APA StyleThevs, N., Fehrenz, S., Aliev, K., Emileva, B., Fazylbekov, R., Kentbaev, Y., Qonunov, Y., Qurbonbekova, Y., Raissova, N., Razhapbaev, M., & Zikirov, S. (2021). Growth Rates of Poplar Cultivars across Central Asia. Forests, 12(3), 373. https://doi.org/10.3390/f12030373