Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. I. Genotype × Environment Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Clone Selection
2.3. Phyto Buffer Establishment and Experimental Design
2.4. Field Measurements
2.5. Health Assessments
2.6. Data Analysis
3. Results
3.1. Health
3.2. Biomass and Growth
4. Discussion and Conclusions
4.1. Genotype × Environment Interactions
4.2. Generalist and Specialist Response Groups
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fuller, K.; Shear, H.; Wittig, J. The Great Lakes: An Environmental Atlas and Resource Book, 3rd ed; U.S. Environmental Protection Agency and Government of Canada: Washington, DC, USA, 1995; Volume 95, p. 46. Issue 1 of EPA 905-B.
- GLRI (Great Lakes Restoration Initiative). Action Plan I (2010–2014); GLRI: Washington, DC, USA, 2010; 41p. [Google Scholar]
- MEA (Millenium Ecosystem Assessment). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; p. 155. [Google Scholar]
- Steinman, A.D.; Cardinale, B.J.; Munns, W.R.; Ogdahl, M.E.; Allan, J.D.; Angadi, T.; Bartlett, S.; Brauman, K.; Byappanahalli, M.; Doss, M.; et al. Ecosystem services in the Great Lakes. J. Great Lakes Res. 2017, 43, 161–168. [Google Scholar] [CrossRef]
- Michigan Sea Grant. Available online: https://www.michiganseagrant.org (accessed on 8 April 2020).
- Campbell, M.; Cooper, M.J.; Friedman, K.; Anderson, W.P. The economy as a driver of change in the Great Lakes–St. Lawrence River basin. J. Great Lakes Res. 2015, 41, 69–83. [Google Scholar] [CrossRef]
- Allan, J.D.; McIntyre, P.B.; Smith, S.D.P.; Halpern, B.S.; Boyer, G.L.; Buchsbaum, A.; Burton, G.A.; Campbell, L.M.; Chadderton, W.L.; Ciborowski, J.J.H.; et al. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc. Natl. Acad. Sci. USA 2012, 110, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vörösmarty, C.J.; Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. BioScience 2000, 50, 753–765. [Google Scholar] [CrossRef] [Green Version]
- Donohoe, M. Causes and health consequences of environmental degradation and social injustice. Soc. Sci. Med. 2003, 56, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhou, H.; Tam, N.F.; Tian, Y.; Tan, Y.; Zhou, S.; Li, Q.; Chen, Y.; Leung, J.Y. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals. Mar. Pollut. Bull. 2016, 104, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Cureton, P.M.; Groenevelt, P.H.; McBride, R.A. Landfill Leachate Recirculation: Effects on Vegetation Vigor and Clay Surface Cover Infiltration. J. Environ. Qual. 1991, 20, 17–24. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Duggan, J. The potential for landfill leachate treatment using willows in the UK—A critical review. Resour. Conserv. Recycl. 2005, 45, 97–113. [Google Scholar] [CrossRef]
- Wong, M.; Leung, C. Landfill Leachate as Irrigation Water for Tree and Vegetable Crops. Waste Manag. Res. 1989, 7, 311–323. [Google Scholar] [CrossRef]
- Allan, J.D.; Smith, S.D.; McIntyre, P.B.; A Joseph, C.; E Dickinson, C.; Marino, A.L.; Biel, R.G.; Olson, J.C.; Doran, P.J.; Rutherford, E.S.; et al. Using cultural ecosystem services to inform restoration priorities in the Laurentian Great Lakes. Front. Ecol. Environ. 2015, 13, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Wortley, L.; Hero, J.-M.; Howes, M.J. Evaluating Ecological Restoration Success: A Review of the Literature. Restor. Ecol. 2013, 21, 537–543. [Google Scholar] [CrossRef]
- Nunez-Mir, G.C.; Iannone, B.V.; Curtis, K.; Fei, S. Evaluating the evolution of forest restoration research in a changing world: A “big literature” review. New For. 2015, 46, 669–682. [Google Scholar] [CrossRef]
- Lima, A.T.; Mitchell, K.; O’Connell, D.W.; Verhoeven, J.; Van Cappellen, P. The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environ. Sci. Policy 2016, 66, 227–233. [Google Scholar] [CrossRef]
- Arthur, E.L.; Rice, P.J.; Rice, P.J.; Anderson, T.A.; Baladi, S.M.; Henderson, K.L.D.; Coats, J.R. Phytoremediation—An Overview. Crit. Rev. Plant Sci. 2005, 24, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Burken, J.G.; Schnoor, J.L. Predictive Relationships for Uptake of Organic Contaminants by Hybrid Poplar Trees. Environ. Sci. Technol. 1998, 32, 3379–3385. [Google Scholar] [CrossRef]
- Cooke, J.A.; Johnson, M.S. Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environ. Rev. 2002, 10, 41–71. [Google Scholar] [CrossRef] [Green Version]
- Chaney, R.L.; Baklanov, I.A. Phytoremediation and Phytomining. Adv. Bot. Res. 2017, 83, 189–221. [Google Scholar] [CrossRef]
- Dickmann, D. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now. Biomass Bioenergy 2006, 30, 696–705. [Google Scholar] [CrossRef]
- Johnson, J.M.; Coleman, M.D.; Gesch, R.W.; Jaradat, A.A.; Mitchell, R.; Reicosky, D.C.; Wilhelm, W.W. Biomass-bioenergy crops in the United States: A changing paradigm. Am. J. Plant Sci. Biotechnol. 2007, 1, 1–28. [Google Scholar]
- Zalesny, R.S., Jr.; Headlee, W.L. Developing Woody Crops for the Enhancement of Ecosystem Services under Changing Climates in the North Central United States. J. For. Environ. Sci. 2015, 31, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, R.S., Jr.; Stanturf, J.A.; Gardiner, E.S.; Perdue, J.H.; Young, T.M.; Coyle, D.R.; Headlee, W.L.; Bañuelos, G.S.; Hass, A. Ecosystem Services of Woody Crop Production Systems. BioEnergy Res. 2016, 9, 465–491. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, R.S., Jr.; Berndes, G.; Dimitriou, I.; Fritsche, U.; Miller, C.; Eisenbies, M.; Ghezehei, S.; Hazel, D.; Headlee, W.L.; Mola-Yudego, B.; et al. Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, 345. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Stanturf, J.A.; Gardiner, E.S.; Bañuelos, G.S.; Hallett, R.A.; Hass, A.; Stange, C.M.; Perdue, J.H.; Young, T.M.; Coyle, D.R.; et al. Environmental Technologies of Woody Crop Production Systems. BioEnergy Res. 2016, 9, 492–506. [Google Scholar] [CrossRef]
- Licht, L.A.; Isebrands, J. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 2005, 28, 203–218. [Google Scholar] [CrossRef]
- Pilipović, A.; Orlovic, S.; Rončević, S.; Nikolić, N.; Župunski, M.; Spasojevic, J. Results of selection of poplars and willows for water and sediment phytoremediation. J. Agric. For. 2015, 61, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, R.S., Jr.; E Riemenschneider, D.; Hall, R.B. Early rooting of dormant hardwood cuttings of Populus: Analysis of quantitative genetics and genotype × environment interactions. Can. J. For. Res. 2005, 35, 918–929. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, J.A.; Zalesny, R.S., Jr.; Wiese, A.H.; Hall, R.B. Choosing Tree Genotypes for Phytoremediation of Landfill Leachate Using Phyto-Recurrent Selection. Int. J. Phytoremediat. 2007, 9, 513–530. [Google Scholar] [CrossRef] [Green Version]
- Pilipović, A.; Orlović, S.; Nikolić, N.; Borišev, M.; Krstić, B.; Rončević, S. Growth and plant physiological parameters as markers for selection of poplar clones for crude oil phytoremediation. Šumarski List 2012, 136, 273–281. [Google Scholar]
- Nikolić, N.; Zorić, L.; Cvetković, I.; Pajević, S.; Borišev, M.; Orlović, S.; Pilipović, A. Assessment of cadmium tolerance and phytoextraction ability in young Populus deltoides L. and Populus × euramericana plants through morpho-anatomical and physiological responses to growth in cadmium enriched soil. iForest Biogeosci. For. 2017, 10, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, R.S., Jr.; Bauer, E.O. Genotypic variability and stability of poplars and willows grown onnitrate-contaminated soils. Int. J. Phytoremediat. 2019, 21, 969–979. [Google Scholar] [CrossRef]
- Orlović, S.; Guzina, V.; Merkulov, L. Genetic variability in anatomical, physiological and growth characteristics of hybrid poplar (Populus × euramericana Dode (Guinier)) and eastern cottonwood (Populus deltoides Bartr.) clones. Silvae Genet. 1998, 47, 183–189. [Google Scholar]
- Reboud, X.; Bell, G. Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity 1997, 78, 507–514. [Google Scholar] [CrossRef]
- Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 2002, 15, 173–190. [Google Scholar] [CrossRef] [Green Version]
- Stout, A.B.; Schreiner, E.J. Results of a Project in Hybridizing Poplars. J. Hered. 1933, 24, 217–229. [Google Scholar] [CrossRef]
- Bradshaw, H.; Ceulemans, R.; Davis, J.; Stettler, R. Emerging Model Systems in Plant Biology: Poplar (Populus) as A Model Forest Tree. J. Plant Growth Regul. 2000, 19, 306–313. [Google Scholar] [CrossRef]
- Isebrands, J.; Zalesny, R.S., Jr. Reflections on the contributions of Populus research at Rhinelander, Wisconsin, USA. Can. J. For. Res. 2021, 51, 139–153. [Google Scholar] [CrossRef]
- Sommer, R.J. Phenotypic Plasticity: From Theory and Genetics to Current and Future Challenges. Genetics 2020, 215, 1–13. [Google Scholar] [CrossRef]
- De Leon, N.; Jannink, J.-L.; Edwards, J.W.; Kaeppler, S.M. Introduction to a Special Issue on Genotype by Environment Interaction. Crop. Sci. 2016, 56, 2081–2089. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Suontama, M.; Burdon, R.D.; Dungey, H.S. Genotype by environment interactions in forest tree breeding: Review of methodology and perspectives on research and application. Tree Genet. Genomes 2017, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Calleja-Rodriguez, A.; Gull, B.A.; Wu, H.X.; Mullin, T.J.; Persson, T. Genotype-by-environment interactions and the dynamic relationship between tree vitality and height in northern Pinus sylvestris. Tree Genet. Genomes 2019, 15, 36. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N.D.; Berguson, W.E.; McMahon, B.G.; Meilan, R.; Smart, L.B.; Gouker, F.E.; Bloese, P.; Miller, R.; Volk, T.A.; Cai, M.; et al. Discovery of Geographically Robust Hybrid Poplar Clones. Silvae Genet. 2019, 68, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N.D.; Meilan, R.; Berguson, W.E.; McMahon, B.G.; Cai, M.; Buchman, D. Growth performance of hybrid poplar clones on two agricultural sites with and without early irrigation and fertilization. Silvae Genet. 2019, 68, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Riemenschneider, D.E.; Isebrands, J.G.; Berguson, W.E.; Dickmann, D.I.; Hall, R.B.; Mohn, C.A.; Stanosz, G.R.; Tuskan, G.A. Poplar breeding and testing strategies in the north-central U.S.: Demonstration of potential yield and consideration of future research needs. For. Chron. 2001, 77, 245–253. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Hall, R.B.; Zalesny, J.A.; McMahon, B.G.; Berguson, W.E.; Stanosz, G.R. Biomass and Genotype × Environment Interactions of Populus Energy Crops in the Midwestern United States. BioEnergy Res. 2009, 2, 106–122. [Google Scholar] [CrossRef]
- Sixto, H.; Salvia, J.; Barrio, M.; Ciria, M.P.; Cañellas, I. Genetic variation and genotype-environment interactions in short rotation Populus plantations in southern Europe. New For. 2011, 42, 163–177. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Bauer, E.O.; Hall, R.B.; Zalesny, J.A.; Kunzman, J.; Rog, C.J.; Riemenschneider, D.E. Clonal Variation in Survival and Growth of Hybrid Poplar and Willow in an in situ trial on Soils Heavily Contaminated with Petroleum Hydrocarbons. Int. J. Phytoremediat. 2005, 7, 177–197. [Google Scholar] [CrossRef]
- Semerci, A.; Guevara, C.A.; Gonzalez-Benecke, C.A. Water availability effects on growth and phenology of 11 poplar cultivars growing in semiarid areas in Turkey. New For. 2020, 1–20. [Google Scholar] [CrossRef]
- Pliura, A.; Zhang, S.; MacKay, J.; Bousquet, J. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For. Ecol. Manag. 2007, 238, 92–106. [Google Scholar] [CrossRef]
- Headlee, W.L.; Zalesny, R.S., Jr.; Hall, R.B.; Bauer, E.O.; Bender, B.; Birr, B.A.; Miller, R.O.; Randall, J.A.; Wiese, A.H.; Zalesny, R.S. Specific Gravity of Hybrid Poplars in the North-Central Region, USA: Within-Tree Variability and Site × Genotype Effects. Forests 2013, 4, 251–269. [Google Scholar] [CrossRef] [Green Version]
- Cervera, M.T.; Storme, V.; Soto, A.; Ivens, B.; Van Montagu, M.; Rajora, O.P.; Boerjan, W. Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers. Theor. Appl. Genet. 2005, 111, 1440–1456. [Google Scholar] [CrossRef]
- Nelson, N.D.; Berguson, W.E.; McMahon, B.G.; Cai, M.; Buchman, D.J. Growth performance and stability of hybrid poplar clones in simultaneous tests on six sites. Biomass Bioenergy 2018, 118, 115–125. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Bauer, E.O. Selecting and Utilizing Populus and Salixfor Landfill Covers: Implications for Leachate Irrigation. Int. J. Phytoremediat. 2007, 9, 497–511. [Google Scholar] [CrossRef]
- Rogers, E.R.; Zalesny, R.S., Jr.; Hallett, R.A.; Headlee, W.L.; Wiese, A.H. Relationships among Root–Shoot Ratio, Early Growth, and Health of Hybrid Poplar and Willow Clones Grown in Different Landfill Soils. Forests 2019, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, R.S., Jr.; Donner, D.M.; Coyle, D.R.; Headlee, W.L. An approach for siting poplar energy production systems to increase productivity and associated ecosystem services. For. Ecol. Manag. 2012, 284, 45–58. [Google Scholar] [CrossRef]
- Headlee, W.L.; Zalesny, R.S., Jr.; Donner, D.M.; Hall, R.B. Using a Process-Based Model (3-PG) to Predict and Map Hybrid Poplar Biomass Productivity in Minnesota and Wisconsin, USA. BioEnergy Res. 2012, 6, 196–210. [Google Scholar] [CrossRef]
- Miller, R.O. Growth Variation Among Hybrid Poplar Varieties in Michigan, USA and the Implications for Commercial Biomass Production. BioEnergy Res. 2018, 11, 816–825. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Burken, J.G.; Hallett, R.A.; Pilipović, A.; Wiese, A.H.; Rogers, E.R.; Bauer, E.O.; Buechel, L.; DeBauche, B.S.; Henderson, D.; et al. The Great Lakes Restoration Initiative: Reducing Runoff from landfills in the Great Lakes Basin, USA. In Proceedings of the 12th Biennial Short Rotation Woody Crops Operations Working Group Conference: 2018 Woody Crops International Conference, Rhinelander, WI, USA, 22–27 July 2018. [Google Scholar]
- Zalesny, R.S., Jr.; Burken, J.G.; Hallett, R.A.; Wiese, A.H. Using Phyto-Recurrent Selection to Reduce Impacts of Runoff from Closed Landfills in the Lake Michigan Drainage Basin, USA. In Proceedings of the 14th International Phytotechnologies Conference: Phytotechnologies–New Sustainable Solutions for Environmental Challenges, Montreal, QC, Canada, 25–29 September 2017. [Google Scholar]
- Hansen, E.A. Root length in young hybrid Populus plantations: Its implications for border width of research plots. For. Sci. 1981, 27, 808–814. [Google Scholar] [CrossRef]
- Zavitkovski, J. Small plots with unplanted plot border can distort data in biomass production studies. Can. J. For. Res. 1981, 11, 9–12. [Google Scholar] [CrossRef]
- Kershaw, J.A.; Ducey, M.J.; Beers, T.W.; Husch, B. Forest Mensuration; Wiley: Hoboken, NY, USA, 2016; p. 630. [Google Scholar]
- Headlee, W.L.; Zalesny, R.S., Jr. Allometric Relationships for Aboveground Woody Biomass Differ Among Hybrid Poplar Genomic Groups and Clones in the North-Central USA. BioEnergy Res. 2019, 12, 966–976. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Headlee, W.L.; Gopalakrishnan, G.; Bauer, E.O.; Hall, R.B.; Hazel, D.W.; Isebrands, J.G.; Licht, L.A.; Negri, M.C.; Nichols, E.G.; et al. Ecosystem services of poplar at long-term phytoremediation sites in the Midwest and Southeast, United States. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, 349. [Google Scholar] [CrossRef]
- Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenergy 2010, 34, 1028–1040. [Google Scholar] [CrossRef]
- Ghezehei, S.B.; Nichols, E.G.; Maier, C.A.; Hazel, D.W. Adaptability of Populus to Physiography and Growing Conditions in the Southeastern USA. Forests 2019, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Bálint, M.; Bartha, L.; O’Hara, R.B.; Olson, M.S.; Otte, J.; Pfenninger, M.; Robertson, A.L.; Tiffin, P.; Schmitt, I. Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol. Ecol. 2014, 24, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Guet, J.; Fabbrini, F.; Fichot, R.; Sabatti, M.; Bastien, C.; Brignolas, F. Genetic variation for leaf morphology, leaf structure and leaf carbon isotope discrimination in European populations of black poplar (Populus nigra L.). Tree Physiol. 2015, 35, 850–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, G.P.S.; Singh, A.; Singh, P.; Sidhu, D.S. Field Evaluation of Populus deltoides Bartr. ex Marsh. at Two Sites in Indo-gangetic Plains of India. Silvae Genet. 2010, 59, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.A.; Ostry, M.E.; Johnson, W.D.; Tolsted, D.N.; Netzer, D.A.; Berguson, W.E.; Hall, R.B. Field Performance of Populus in Short-Rotation Intensive Culture Plantations in the North-Central U.S.; USDA Forest Service: Washington, DC, USA, 1994; Volume 320, p. 13.
- Hansen, E. Mid-rotation yields of biomass plantations in the north central U.S. Mid Rotat. Yields Biomass Plant. North Cent. U.S. 1992, 309, 8. [Google Scholar] [CrossRef] [Green Version]
- Sixto, H.; Gil, P.; Ciria, P.; Camps, F.; Sánchez, M.; Cañellas, I.; Voltas, J. Performance of hybrid poplar clones in short rotation coppice in Mediterranean environments: Analysis of genotypic stability. GCB Bioenergy 2013, 6, 661–671. [Google Scholar] [CrossRef]
- Netzer, D.; Tolsted, D.; Ostry, M.E.; Isebrands, J.G.; Riemenschneider, D.; Ward, K. Growth, Yield, and Disease Resistance of 7- to 12-Year-Old Poplar Clones in the North Central United States; USDA Forest Service: Washington, DC, USA, 2002; Volume 229, p. 31.
- Ghezehei, S.B.; Wright, J.; Zalesny, R.S., Jr.; Nichols, E.G.; Hazel, D.W. Matching site-suitable poplars to rotation length for optimized productivity. For. Ecol. Manag. 2020, 457, 117670. [Google Scholar] [CrossRef]
- Ghezehei, S.B.; Nichols, E.G.; Hazel, D.W. Early Clonal Survival and Growth of Poplars Grown on North Carolina Piedmont and Mountain Marginal Lands. BioEnergy Res. 2016, 9, 548–558. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Zhu, J.Y.; Headlee, W.L.; Gleisner, R.; Pilipović, A.; Van Acker, J.; Bauer, E.O.; Birr, B.A.; Wiese, A.H. Ecosystem Services, Physiology, and Biofuels Recalcitrance of Poplars Grown for Landfill Phytoremediation. Plants 2020, 9, 1357. [Google Scholar] [CrossRef]
- Marais, D.L.D.; Hernandez, K.M.; Juenger, T.E. Genotype-by-Environment Interaction and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 5–29. [Google Scholar] [CrossRef] [Green Version]
- Zalesny, J.A.; Zalesny, R.S.; Coyle, D.R.; Hall, R.B. Growth and biomass of Populus irrigated with landfill leachate. For. Ecol. Manag. 2007, 248, 143–152. [Google Scholar] [CrossRef]
Site | Bellevue, WI | Caledonia, WI | Escanaba, MI | Manitowoc, WI | Marquette, MI |
---|---|---|---|---|---|
County | Brown | Racine | Delta | Manitowoc | Marquette |
Buffer group (i.e., year of planting) | 2017, 2018 | 2017, 2018 | 2019 | 2018 | 2018 |
Total number of phyto buffers | 3 | 2 | 2 | 1 | 1 |
Annual precipitation (P) (mm) | 613 ± 27 | 686 ± 36 | 556 ± 32 | 614 ± 27 | 530 ± 28 |
Average temperature (Tavg) (°C) | 15.3 ± 0.2 | 15.7 ± 0.2 | 13.6 ± 0.2 | 14.8 ± 0.2 | 13.1 ± 0.4 |
Maximum temperature (Tmax) (°C) | 21.1 ± 0.2 | 21.5 ± 0.2 | 20.0 ± 0.3 | 19.2 ± 0.3 | 17.3 ± 0.4 |
Minimum temperature (Tmin) (°C) | 9.5 ± 0.1 | 10.0 ± 0.1 | 7.2 ± 0.2 | 10.4 ± 0.2 | 8.9 ± 0.4 |
Maximum–minimum temperature (Tdiff) (°C) | 11.6 ± 0.1 | 11.5 ± 0.1 | 12.8 ± 0.2 | 15.8 ± 0.4 | 8.5 ± 0.1 |
Annual growing degree days (GDDannual) | 1342 ± 27 | 1418 ± 31 | 1017 ± 24 | 1213 ± 37 | 997 ± 54 |
Drought index (abnormally dry) (D0) (%) | 24.0 ± 5.3 | 22.4 ± 5.7 | 31.4 ± 6.9 | 20.1 ± 5.0 | 36.5 ± 7.7 |
Drought index (moderate drought) (D1) (%) | 8.0 ± 3.1 | 9.5 ± 4.6 | 10.3 ± 3.8 | 7.9 ± 3.2 | 14.7 ± 4.8 |
Drought index (severe drought) (D2) (%) | 0.8 ± 0.8 | 4.9 ± 3.0 | 3.9 ± 2.0 | 1.2 ± 1.1 | 4.5 ± 2.4 |
Site | Menomonee Falls, WI | Munising, MI | Ontonagon, MI | Slinger, WI | Whitelaw, WI |
County | Waukesha | Alger | Ontonagon | Washington | Manitowoc |
Buffer group (i.e., year of planting) | 2017 | 2019 | 2019 | 2017 | 2017 |
Total number of phyto buffers | 2 | 1 | 2 | 1 | 1 |
Annual precipitation (P) (mm) | 649 ± 23 | 655 ± 25 | 551 ± 26 | 653 ± 36 | 640 ± 26 |
Average temperature (Tavg) (°C) | 15.3 ± 0.1 | 12.3 ± 0.2 | 13.4 ± 0.2 | 15.1 ± 0.2 | 14.9 ± 0.1 |
Maximum temperature (Tmax) (°C) | 21.2 ± 0.2 | 17.0 ± 0.2 | 19.7 ± 0.3 | 21.1 ± 0.2 | 21.0 ± 0.2 |
Minimum temperature (Tmin) (°C) | 9.4 ± 0.1 | 7.7 ± 0.2 | 7.1 ± 0.2 | 9.0 ± 0.2 | 8.9 ± 0.1 |
Maximum–minimum temperature (Tdiff) (°C) | 11.8 ± 0.1 | 9.3 ± 0.1 | 12.7 ± 0.1 | 12.1 ± 0.1 | 12.1 ± 0.1 |
Annual growing degree days (GDDannual) | 1344 ± 26 | 877 ± 30 | 1044 ± 39 | 1286 ± 29 | 1295 ± 26 |
Drought index (abnormally dry) (D0) (%) | 20.9 ± 5.4 | 28.4 ± 6.4 | 37.9 ± 8.0 | 17.7 ± 5.1 | 20.1 ± 5.0 |
Drought index (moderate drought) (D1) (%) | 9.1 ± 4.4 | 9.0 ± 3.3 | 15.2 ± 6.3 | 9.2 ± 4.2 | 7.9 ± 3.2 |
Drought index (severe drought) (D2) (%) | 4.1 ± 2.5 | 3.6 ± 2.1 | 7.2 ± 3.8 | 2.7 ± 1.7 | 1.2 ± 1.1 |
Phyto Buffer a | BC | BE | BW | CE | CW | EE, EW | MA | ME, MW | MQ | MU | ON, OS | SL | WH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil series | Manawa | Kewaunee | Bellevue | Fox | Matherton | Croswell | Hochheim | Sebewa | Schweitzer | Kalkaska | Oldman | Casco | Boyer |
Drainage class b | SPD | WD | SPD | MWD | SPD | MWD | WD | PD | WD | SED | MWD | SED | WD |
Slope (%) | 0 to 3 | 2 to 6 | 2 to 6 | 2 to 6 | 1 to 3 | 0 to 3 | 6 to 12 | 0 to 2 | 6 to 25 | 0 to 6 | 6 to 35 | 20 to 30 | 6 to 12 |
K factor (erodibility, 0.02 to 0.69 scale) | 0.37 | 0.49 | 0.28 | 0.37 | 0.28 | 0.05 | 0.37 | 0.37 | 0.20 | 0.04 | 0.37 | 0.32 | 0.43 |
Texture c | SiCL | SiCL | SiCL | L | L | S | L | L | SL | S | L | SL | SCL |
Sand (%) | 10.1 | 13.3 | 19.8 | 39.5 | 50.1 | 87.4 | 45.4 | 37.3 | 55.9 | 94.7 | 51.4 | 54.0 | 58.2 |
Silt (%) | 45.9 | 47.7 | 50.0 | 39.7 | 28.1 | 10.4 | 34.4 | 42.1 | 41.1 | 4.4 | 41.4 | 28.6 | 18.8 |
Clay (%) | 44.0 | 39.0 | 30.2 | 20.8 | 21.8 | 2.2 | 20.2 | 20.6 | 3.0 | 0.9 | 7.2 | 17.4 | 23.0 |
Organic matter (%) | 1.3 | 1.1 | 3.7 | 1.1 | 1.5 | 6.8 | 1.3 | 1.5 | 2.2 | 3.5 | 6.4 | 0.6 | 0.4 |
Soil organic carbon (%) | 0.7 | 0.6 | 2.2 | 0.6 | 0.9 | 4.0 | 0.7 | 0.8 | 1.3 | 2.0 | 3.7 | 0.4 | 0.2 |
pH | 7.0 | 6.6 | 7.2 | 5.8 | 6.2 | 4.9 | 7.4 | 7.0 | 4.9 | 5.0 | 4.6 | 7.4 | 6.9 |
Bulk density (g cm−3) | 1.43 | 1.45 | 1.48 | 1.53 | 1.52 | 1.45 | 1.51 | 1.47 | 1.47 | 1.51 | 1.36 | 1.53 | 1.61 |
Cation exchange capacity (meq 100 g-1) | 23.1 | 20.0 | 25.0 | 12.7 | 13.6 | na d | 10.8 | 17.1 | 7.4 | 1.1 | na | 13.8 | 8.1 |
Saturated hydraulic conductivity (Ksat) (µm sec−1) | 1.6 | 3.4 | 3.0 | 9.0 | 17.7 | 91.7 | 6.5 | 9.0 | 8.0 | 90.3 | 20.0 | 13.2 | 13.2 |
Frost free days (#) | 160 | 160 | 135 | 173 | 150 | 130 | 145 | 152 | 115 | 130 | 110 | 169 | 140 |
Depth to water table (cm) | >200 | >200 | 0 | 178 | 30 | 60 | >200 | 15 | >200 | >200 | 30 | >200 | >200 |
Available water capacity (cm cm−1) | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 |
Available water storage (cm) | 8.4 | 8.8 | 11.6 | 10.9 | 10.0 | 6.0 | 9.1 | 12.0 | 7.7 | 5.0 | 8.3 | 6.0 | 8.7 |
Water content (15 Bar) (%) | 25.7 | 22.1 | 22.7 | 13.5 | 14.2 | 3.1 | 12.7 | 13.1 | 3.5 | 2.7 | 3.2 | 11.2 | 14.3 |
Water content (1/3 Bar) %) | 33.9 | 31.4 | 34.3 | 26.8 | 24.2 | 11.7 | 23.4 | 26.3 | 10.7 | 9.2 | 9.3 | 21.0 | 21.5 |
Genomic Group a | Clone | Buffer Group | Clone Group b | ||
---|---|---|---|---|---|
P. deltoides ‘D’ | 7300502 | 2017 | 2018 | Experimental | |
P. deltoides × P. maximowiczii ‘DM’ | DM114 | 2017 | 2018 | 2019 | Experimental |
NC14106 | 2017 | Experimental | |||
P. deltoides × P. nigra ‘DN’ | 99038022 | 2017 | 2019 | NRRI | |
99059016 | 2017 | NRRI | |||
9732-11 | 2018 | 2019 | NRRI | ||
9732-24 | 2018 | 2019 | NRRI | ||
9732-31 | 2018 | 2019 | NRRI | ||
9732-36 | 2017 | 2018 | 2019 | NRRI | |
DN2 | 2018 | 2019 | Experimental | ||
DN5 | 2017 | 2018 | Common | ||
DN34 | 2017 | 2018 | 2019 | Common | |
DN177 | 2017 | 2019 | Experimental | ||
P. nigra × P. maximowiczii ‘NM’ | NM2 | 2017 | 2018 | 2019 | Common |
NM5 | 2017 | 2018 | 2019 | Experimental | |
NM6 | 2017 | 2018 | 2019 | Common |
Phyto Buffer a | |||||||
---|---|---|---|---|---|---|---|
Clone | Response Group b | BW | CE | ME | MW | SL | WH |
99038022 | Generalist | 6 | 6 | 5 | 4 | 5 | 4 |
99059016 | Specialist | 5 | 7 | 6 | 6 | 7 | 11 |
9732-36 | Generalist | 9 | 9 | 7 | 9 | 8 | 9 |
7300502 | Specialist | 3 | 5 | 8 | 5 | 9 | 12 |
DM114 | Generalist | 11 | 11 | 11 | 11 | 10 | 8 |
DN177 | Specialist | 8 | 8 | 9 | 8 | 4 | 6 |
NC14106 | Generalist | 12 | 12 | 12 | 12 | 12 | 10 |
NM5 | Generalist | 1 | 2 | 1 | 3 | 2 | 1 |
DN5 | Generalist | 7 | 4 | 4 | 7 | 6 | 5 |
DN34 | Specialist | 10 | 10 | 10 | 10 | 11 | 7 |
NM2 | Generalist | 2 | 1 | 2 | 2 | 1 | 2 |
NM6 | Generalist | 4 | 3 | 3 | 1 | 3 | 3 |
Clone | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Buffer a | 99038022 | 99059016 | 9732-36 | 7300502 | DM114 | DN177 | ||||||
2017 Measurement year | ||||||||||||
BW | 51 ± 34 | i | 14 ± 38 | v | 26 ± 33 | i | 29 ± 54 | w | 32 ± 39 | gh | 29 ± 34 | s |
CE | 74 ± 41 | i | 56 ± 42 | v | 101 ± 42 | i | 137 ± 38 | w | 100 ± 39 | fgh | 154 ± 36 | t |
ME | 199 ± 36 | h | 78 ± 54 | v | 180 ± 34 | i | 128 ± 28 | w | 168 ± 38 | f | 188 ± 34 | t |
MW | 247 ± 38 | gh | 48 ± 44 | v | 106 ± 23 | i | 203 ± 27 | w | 130 ± 44 | fg | 143 ± 41 | t |
SL | 359 ± 64 | g | 109 ± 47 | wv | 250 ± 42 | i | 460 ± 23 | w | 279 ± 42 | e | 337 ± 47 | u |
WH | 39 ± 33 | i | 13 ± 38 | v | 27 ± 33 | i | 3 ± 54 | w | 26 ± 35 | h | 17 ± 34 | s |
2018 Measurement year | ||||||||||||
BW | 6412 ± 992 | de | 4859 ± 1145 | yx | 4221 ± 992 | fgh | 2323 ± 1620 | w | 3559 ± 1060 | cd | 4748 ± 992 | wv |
CE | 5084 ± 1145 | ef | 6080 ± 1255 | yx | 5653 ± 1254 | efg | 4702 ± 1145 | xw | 5204 ± 1145 | bcd | 6303 ± 1060 | xw |
ME | 8719 ± 992 | bcd | 8800 ± 1620 | y | 8305 ± 992 | bcde | 4599 ± 1060 | xw | 5663 ± 992 | bc | 7861 ± 992 | x |
MW | 9423 ± 1060 | bc | 8780 ± 1145 | y | 6579 ± 992 | defg | 6418 ± 1060 | yx | 6105 ± 1254 | abc | 7842 ± 992 | x |
SL | 8076 ± 1403 | cde | 7336 ± 1619 | yx | 7327 ± 1403 | cdef | 3520 ± 1620 | xw | 5383 ± 1403 | bcd | 9714 ± 1402 | yx |
WH | 3286 ± 992 | f | 1454 ± 1145 | wv | 1852 ± 992 | hi | 504 ± 1620 | w | 2230 ± 992 | d | 2396 ± 992 | v |
2019 Measurement year | ||||||||||||
BW | 7837 ± 1848 | cde | 8008 ± 2134 | yx | 7026 ± 1848 | cdefg | 6827 ± 3018 | yx | 6622 ± 1976 | abc | 9900 ± 1848 | yx |
CE | 11,140 ± 2134 | bc | 10,301 ± 2338 | zy | 10,429 ± 2338 | abcd | 9992 ± 2134 | zy | 10,684 ± 2134 | a | 12,331 ± 1976 | y |
ME | 17,228 ± 1848 | a | 14,235 ± 3018 | z | 15,618 ± 1848 | a | 9834 ± 1976 | zy | 9903 ± 1848 | a | 13,598 ± 1848 | y |
MW | 17,490 ± 1976 | a | 14,740 ± 2134 | z | 11,408 ± 1849 | abc | 14,137 ± 1976 | z | 8800 ± 2338 | ab | 12,334 ± 1848 | y |
SL | 14,022 ± 2614 | ab | 10,795 ± 3018 | zy | 12,544 ± 2614 | ab | 5379 ± 3018 | yxw | 8762 ± 2613 | abc | 20,272 ± 2614 | z |
WH | 4834 ± 1848 | ef | 2393 ± 2134 | xw | 2770 ± 1848 | ghi | 1669 ± 3018 | w | 3909 ± 1848 | bcd | 4960 ± 1848 | xw |
Buffer | NC14106 | NM5 | DN5 | DN34 | NM2 | NM6 | ||||||
2017 Measurement year | ||||||||||||
BW | 32 ± 33 | d | 70 ± 44 | qp | 34 ± 32 | j | 27 ± 34 | s | 45 ± 36 | e | 24 ± 33 | v |
CE | 69 ± 38 | d | 68 ± 36 | qp | 184 ± 32 | i | 108 ± 36 | ts | 159 ± 36 | e | 114 ± 38 | v |
ME | 115 ± 33 | d | 269 ± 41 | r | 182 ± 32 | i | 190 ± 34 | ut | 121 ± 33 | e | 202 ± 33 | v |
MW | 93 ± 38 | d | 133 ± 44 | q | 118 ± 47 | ij | 140 ± 36 | t | 169 ± 34 | e | 151 ± 33 | v |
SL | 245 ± 48 | d | 330 ± 57 | r | 409 ± 51 | h | 276 ± 51 | u | 415 ± 47 | e | 323 ± 47 | v |
WH | 18 ± 36 | d | 20 ± 43 | p | 42 ± 34 | j | 24 ± 34 | s | 18 ± 34 | e | 22 ± 36 | v |
2018 Measurement year | ||||||||||||
BW | 2675 ± 992 | c | 6631 ± 1060 | ut | 5872 ± 992 | efg | 6424 ± 992 | xw | 4820 ± 1060 | d | 3399 ± 992 | w |
CE | 3951 ± 1145 | Bc | 4398 ± 669 | ts | 6646 ± 992 | efg | 5988 ± 1060 | xw | 6071 ± 1060 | cd | 5337 ± 1145 | xw |
ME | 4340 ± 992 | bc | 10,815 ± 992 | yv | 8521 ± 992 | cde | 7185 ± 992 | yxw | 6296 ± 992 | cd | 6517 ± 992 | x |
MW | 5300 ± 1145 | abc | 6875 ± 1060 | vu | 7869 ± 992 | def | 8656 ± 1060 | yx | 8644 ± 992 | c | 7505 ± 992 | yx |
SL | 5102 ± 1403 | abc | 10,229 ± 1402 | v | 6930 ± 1403 | efg | 7040 ± 1402 | xw | 13,027 ± 1403 | b | 7628 ± 1403 | yx |
WH | 1815 ± 1060 | cd | 2129 ± 1060 | s | 3422 ± 1060 | g | 2605 ± 992 | v | 1567 ± 992 | e | 1548 ± 1060 | wv |
2019 Measurement year | ||||||||||||
BW | 4568 ± 1848 | abc | 11,230 ± 1976 | yv | 6959 ± 1848 | defg | 7644 ± 1848 | yxw | 8281 ± 1976 | c | 6106 ± 1848 | x |
CE | 9496 ± 2134 | a | 10,632 ± 1203 | v | 12,763 ± 1848 | ab | 9440 ± 1976 | zy | 15,705 ± 1976 | b | 11,155 ± 2134 | zy |
ME | 7928 ± 1848 | ab | 26,652 ± 1848 | z | 17,335 ± 1848 | a | 13,068 ± 1848 | z | 15,887 ± 1848 | b | 14,848 ± 1848 | z |
MW | 8497 ± 2134 | ab | 13,425 ± 1976 | y | 12,108 ± 1848 | bc | 9817 ± 1976 | zy | 15,186 ± 1848 | b | 13,598 ± 1848 | z |
SL | 7720 ± 2614 | abc | 23,814 ± 2614 | z | 11,875 ± 2613 | bcd | 10,255 ± 2614 | zy | 26,238 ± 2614 | a | 13,526 ± 2614 | z |
WH | 3344 ± 1976 | bc | 3051 ± 1976 | ts | 3982 ± 1976 | fg | 4076 ± 1848 | wv | 2812 ± 1848 | de | 2448 ± 1976 | wv |
Clone | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Buffer a | 9732-11 | 9732-24 | 9732-31 | 9732-36 | 7300502 | DM114 | ||||||
2018 Measurement year | ||||||||||||
BC | 57 ± 28 | f | 40 ± 30 | u | 69 ± 0 | f | 26 ± 33 | t | 28 ± 21 | d | 25 ± 00 | w |
BE | 70 ± 28 | f | 49 ± 36 | u | 59 ± 29 | f | 43 ± 28 | t | 42 ± 45 | d | 14 ± 23 | w |
CW | 157 ± 24 | f | 139 ± 24 | u | 182 ± 24 | ef | 147 ± 24 | ut | 71 ± 30 | d | 104 ± 24 | xw |
MA | 133 ± 20 | f | 95 ± 20 | u | 143 ± 23 | ef | 118 ± 25 | t | 33 ± 33 | d | 68 ± 22 | w |
MQ | 16 ± 23 | f | 31 ± 30 | u | 40 ± 25 | f | 31 ± 16 | t | 18 ± 66 | d | 17 ± 28 | w |
2019 Measurement year | ||||||||||||
BC | 2344 ± 930 | de | 2422 ± 930 | xwv | 2496 ± 930 | cd | 1522 ± 930 | vut | 867 ± 930 | cd | 1622 ± 930 | xw |
BE | 2239 ± 930 | e | 2117 ± 930 | wv | 2068 ± 994 | de | 1966 ± 930 | wvu | 1046 ± 1074 | bcd | 1587 ± 930 | xw |
CW | 5469 ± 930 | cd | 3901 ± 930 | yxw | 7876 ± 930 | b | 3893 ± 930 | xwv | 3455 ± 1176 | bc | 3072 ± 930 | x |
MA | 7857 ± 930 | bc | 5378 ± 930 | yx | 7162 ± 930 | b | 5251 ± 994 | yx | 3084 ± 1315 | bc | 4340 ± 930 | yx |
MQ | 474 ± 994 | ef | 718 ± 1176 | vu | 1002 ± 994 | def | 1068 ± 1176 | vut | 496 ± 2631 | cd | 607 ± 1316 | xw |
2020 Measurement year | ||||||||||||
BC | 6777 ± 2377 | bc | 7454 ± 2377 | y | 7886 ± 2377 | b | 5194 ± 2377 | yxw | 4258 ± 2377 | ab | 4751 ± 2377 | zyx |
BE | 6160 ± 2377 | bcd | 6240 ± 2377 | yx | 6031 ± 2541 | bc | 4870 ± 2377 | yxwv | 2364 ± 2745 | bcd | 3541 ± 2377 | yx |
CW | 9917 ± 2377 | b | 7452 ± 2377 | y | 23,912 ± 2377 | a | 7554 ± 2377 | y | 11,061 ± 3007 | a | 7537 ± 2377 | zy |
MA | 20,902 ± 2377 | a | 14,368 ± 2377 | z | 18,160 ± 2377 | a | 15,068 ± 2542 | z | 10,918 ± 3362 | a | 9297 ± 2377 | z |
MQ | 767 ± 2542 | ef | 945 ± 3007 | wvu | 1802 ± 2542 | def | 1935 ± 3007 | wvut | 549 ± 6724 | cd | 1242 ± 3362 | xw |
Buffer | DN2 | NM5 | DN5 | DN34 | NM2 | NM6 | ||||||
2018 Measurement year | ||||||||||||
BC | 45 ± 32 | f | 45 ± 16 | u | 37 ± 20 | d | 51 ± 29 | w | 30 ± 24 | e | 25 ± 24 | w |
BE | 73 ± 16 | f | 37 ± 22 | u | 30 ± 25 | d | 52 ± 39 | w | 27 ± 42 | e | 37 ± 23 | w |
CW | 116 ± 24 | f | 173 ± 25 | vu | 148 ± 25 | d | 117 ± 24 | w | 130 ± 24 | de | 170 ± 25 | w |
MA | 74 ± 23 | f | 148 ± 24 | u | 50 ± 20 | d | 136 ± 24 | w | 186 ± 25 | de | 160 ± 23 | w |
MQ | 20 ± 25 | f | 16 ± 33 | u | 12 ± 38 | d | 22 ± 33 | w | 20 ± 30 | e | 21 ± 38 | w |
2019 Measurement year | ||||||||||||
BC | 2796 ± 930 | e | 2584 ± 930 | w | 2780 ± 930 | cd | 3175 ± 1074 | w | 1592 ± 930 | de | 1684 ± 930 | w |
BE | 3120 ± 930 | de | 1981 ± 930 | wv | 2170 ± 994 | cd | 2500 ± 1074 | w | 1318 ± 930 | de | 1762 ± 930 | w |
CW | 7874 ± 930 | c | 8262 ± 994 | yx | 6381 ± 994 | b | 4564 ± 930 | xw | 6930 ± 930 | c | 5804 ± 994 | x |
MA | 5662 ± 930 | cd | 10,362 ± 930 | y | 4625 ± 930 | bc | 6640 ± 930 | yx | 11,085 ± 930 | b | 9552 ± 930 | y |
MQ | 555 ± 994 | ef | 380 ± 1315 | wvu | 288 ± 1519 | d | 481 ± 1315 | w | 321 ± 1074 | de | 478 ± 1519 | w |
2020 Measurement year | ||||||||||||
BC | 6135 ± 2377 | cd | 6280 ± 2377 | yx | 7036 ± 2377 | b | 7613 ± 2745 | yx | 4692 ± 2377 | cd | 3075 ± 2377 | xw |
BE | 6731 ± 2377 | c | 4971 ± 2378 | xw | 4073 ± 2541 | bcd | 5246 ± 2745 | yxw | 3384 ± 2377 | cde | 3010 ± 2377 | xw |
CW | 23,055 ± 2377 | a | 25,221 ± 2542 | z | 17,328 ± 2542 | a | 9214 ± 2377 | y | 21,570 ± 2377 | a | 17,352 ± 2542 | z |
MA | 16,079 ± 2377 | b | 27,220 ± 2377 | z | 13,630 ± 2377 | a | 16,728 ± 2377 | z | 24,636 ± 2377 | a | 22,265 ± 2377 | z |
MQ | 1157 ± 2541 | ef | 506 ± 3362 | wvu | 261 ± 3882 | d | 1132 ± 3362 | w | 713 ± 2745 | de | 340 ± 3882 | w |
Clone | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Buffer a | 99038022 | 9732-11 | 9732-24 | 9732-31 | 9732-36 | DM114 | ||||||
2019 Measurement year | ||||||||||||
EE | 73 ± 26 | b | 49 ± 25 | y | 98 ± 26 | c | 81 ± 28 | y | 44 ± 27 | d | 47 ± 26 | y |
EW | 396 ± 27 | b | 239 ± 27 | y | 198 ± 27 | c | 228 ± 27 | y | 312 ± 27 | cd | 215 ± 27 | y |
MU | 89 ± 26 | b | 28 ± 26 | y | 49 ± 26 | c | 20 ± 27 | y | 47 ± 26 | d | 38 ± 26 | y |
ON | 54 ± 27 | b | 28 ± 27 | y | 23 ± 27 | c | 29 ± 27 | y | 16 ± 27 | d | 36 ± 27 | y |
OS | 60 ± 27 | b | 49 ± 27 | y | 56 ± 27 | c | 33 ± 28 | y | 28 ± 27 | d | 42 ± 27 | y |
2020 Measurement year | ||||||||||||
EE | 517 ± 573 | b | 470 ± 573 | y | 1553 ± 573 | ab | 1040 ± 613 | zy | 463 ± 573 | bc | 828 ± 573 | y |
EW | 2397 ± 573 | a | 2206 ± 573 | z | 2444 ± 573 | a | 2155 ± 573 | z | 3189 ± 573 | a | 3166 ± 573 | z |
MU | 2075 ± 573 | a | 878 ± 573 | zy | 1709 ± 573 | ab | 950 ± 573 | zy | 1761 ± 573 | a | 2463 ± 573 | z |
ON | 691 ± 573 | b | 205 ± 573 | y | 189 ± 573 | c | 295 ± 573 | y | 285 ± 573 | cd | 924 ± 573 | y |
OS | 439 ± 573 | b | 785 ± 573 | zy | 805 ± 573 | bc | 494 ± 613 | y | 441 ± 573 | bcd | 806 ± 573 | y |
Buffer | DN2 | DN177 | NM5 | DN34 | NM2 | NM6 | ||||||
2019 Measurement year | ||||||||||||
EE | 45 ± 26 | b | 56 ± 26 | y | 42 ± 26 | c | 50 ± 26 | y | 43 ± 27 | b | 47 ± 26 | x |
EW | 382 ± 27 | b | 231 ± 27 | y | 304 ± 27 | c | 278 ± 27 | y | 337 ± 27 | b | 269 ± 27 | x |
MU | 29 ± 27 | b | 20 ± 26 | y | 45 ± 27 | c | 56 ± 27 | y | 35 ± 27 | b | 60 ± 27 | x |
ON | 14 ± 27 | b | 09 ± 27 | y | 24 ± 29 | c | 18 ± 27 | y | 26 ± 27 | b | 29 ± 27 | x |
OS | 33 ± 27 | b | 18 ± 27 | y | 25 ± 27 | c | 26 ± 27 | y | 26 ± 27 | b | 38 ± 27 | x |
2020 Measurement year | ||||||||||||
EE | 531 ± 573 | b | 755 ± 573 | y | 543 ± 573 | bc | 668 ± 573 | y | 645 ± 573 | b | 510 ± 573 | x |
EW | 2675 ± 573 | a | 2448 ± 573 | z | 7687 ± 573 | a | 1881 ± 573 | z | 8910 ± 573 | a | 6129 ± 573 | z |
MU | 1834 ± 573 | a | 1230 ± 573 | z | 1932 ± 573 | b | 2245 ± 573 | z | 1770 ± 573 | b | 3302 ± 573 | y |
ON | 206 ± 573 | b | 106 ± 573 | y | 93 ± 613 | c | 275 ± 573 | y | 337 ± 573 | b | 278 ± 573 | x |
OS | 727 ± 573 | b | 305 ± 573 | y | 267 ± 573 | c | 515 ± 573 | y | 339 ± 573 | b | 662 ± 573 | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalesny, R.S., Jr.; Pilipović, A.; Rogers, E.R.; Burken, J.G.; Hallett, R.A.; Lin, C.-H.; McMahon, B.G.; Nelson, N.D.; Wiese, A.H.; Bauer, E.O.; et al. Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. I. Genotype × Environment Interactions. Forests 2021, 12, 430. https://doi.org/10.3390/f12040430
Zalesny RS Jr., Pilipović A, Rogers ER, Burken JG, Hallett RA, Lin C-H, McMahon BG, Nelson ND, Wiese AH, Bauer EO, et al. Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. I. Genotype × Environment Interactions. Forests. 2021; 12(4):430. https://doi.org/10.3390/f12040430
Chicago/Turabian StyleZalesny, Ronald S., Jr., Andrej Pilipović, Elizabeth R. Rogers, Joel G. Burken, Richard A. Hallett, Chung-Ho Lin, Bernard G. McMahon, Neil D. Nelson, Adam H. Wiese, Edmund O. Bauer, and et al. 2021. "Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. I. Genotype × Environment Interactions" Forests 12, no. 4: 430. https://doi.org/10.3390/f12040430
APA StyleZalesny, R. S., Jr., Pilipović, A., Rogers, E. R., Burken, J. G., Hallett, R. A., Lin, C. -H., McMahon, B. G., Nelson, N. D., Wiese, A. H., Bauer, E. O., Buechel, L., DeBauche, B. S., Peterson, M., Seegers, R., & Vinhal, R. A. (2021). Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. I. Genotype × Environment Interactions. Forests, 12(4), 430. https://doi.org/10.3390/f12040430