Quantification of One-Year Gypsy Moth Defoliation Extent in Wonju, Korea, Using Landsat Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Satellite Image Acquisition and Analysis
2.3. Field Survey
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pasquarella, V.J.; Bradley, B.A.; Woodcock, C.E. Near-Real-Time Monitoring of Insect Defoliation Using Landsat Time Series. Forests 2017, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Housman, I.W.; Chastain, R.A.; Finco, M.V. An evaluation of forest health insect and disease survey data and satellite-based remote sensing forest change detection methods: Case studies in the United States. Remote Sens. 2018, 10, 1184. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.J.; Castilla, G.; White, J.C.; Cooke, B.J.; Skakun, R.S. Remote sensing of forest pest damage: A review and lessons learned from a Canadian perspective. Can. Entomol. 2016, 148, S296–S356. [Google Scholar] [CrossRef]
- Olsson, P.-O.; Jönsson, A.M.; Eklundh, L. A new invasive insect in Sweden—Physokermes inopinatus: Tracing forest damage with satellite based remote sensing. For. Ecol. Manag. 2012, 285, 29–37. [Google Scholar] [CrossRef]
- Pasquarella, V.A.; Elkinton, J.S.; Bradley, B.A. Extensive gypsy moth defoliation in Southern New England characterized using Landsat satellite observations. Biol. Invasions 2018, 20, 3047–3053. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Weiskittel, A.R.; Kneeshaw, D.; MacLean, D.A. Detection of Annual spruce budworm defoliation and severity classification using Landsat imagery. Forests 2018, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Spruce, J.P.; Sader, S.; Ryan, R.E.; Smoot, J.; Kuper, P.; Ross, K.; Prados, D.; Russell, J.; Gasser, G.; McKellip, R.; et al. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sens. Environ. 2011, 115, 427–437. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Townsend, P.A.; Eshleman, K.N.; Welcker, C. Remote sensing of gypsy moth defoliation to assess variations in stream nitrogen concentrations. Ecol. Appl. 2004, 14, 504–516. [Google Scholar] [CrossRef]
- Elkinton, J.S.; Liebhold, A.M. Population dynamics of gypsy moth in North America. Ann. Rev. Entomol. 1990, 35, 571–596. [Google Scholar] [CrossRef]
- Lyu, D.; Lee, D.W. Occurrence of Gypsy Moth, Lymantria dispar around pier in Korea and comparison of insecticide response depending on instar. Korean J. Pestic. Sci. 2019, 23, 1–7. [Google Scholar] [CrossRef]
- Pemberton, R.W.; Lee, J.H.; Reed, D.K.; Carlson, R.W.; Han, H.Y. Natural Enemies of the Asian Gypsy Moth (Lepidoptera: Lymantridae) in South Korea. Ann. Entomol. Soc. Am. 1993, 86, 423–440. [Google Scholar] [CrossRef]
- Lee, H.-P.; Lee, H.-M. Seasonal occurrence and monitoring of gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae) by sex pheromone trap in Mt. Namsan, Seoul. Korean J. Ecol. 1999, 22, 299–303. [Google Scholar]
- Shin, S.C.; Choi, K.S.; Choi, W.I.; Chung, Y.J.; Lee, S.G.; Kim, C.S. An New Illustrated Book of Forest Insect Pests; Upgo MunHwa: Seoul, Korea, 2008. [Google Scholar]
- Jung, J.-K.; Nam, Y.W.; Kim, D.S.; Lee, S.H.; Lim, J.H.; Choi, W.I.; Kim, E.S. Tree-crown defoliation caused by outbreak of forest insect pests in Korea during 2020. Korean J. Appl. Entomol. 2020, 59, 409–410. [Google Scholar]
- Kim, E.-S.; Lee, B.; Lim, J.-H. Forest damage detection using daily normal vegetation index based on time series Landsat Images. Korean J. Remote Sens. 2019, 35, 1133–1148. [Google Scholar]
- Lastovicka, J.; Svec, P.; Paluba, D.; Kobliuk, N.; Svoboda, J.; Hladky, R.; Stych, P. Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sens. 2020, 12, 1914. [Google Scholar] [CrossRef]
- USGS. Landsat Surface Reflectance-Derived Spectral Indices-Normalized Difference Moisture Index. 2020. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/normalized-difference-moisture-index (accessed on 26 April 2021).
- Kang, Y.; Jang, E.; Im, J.; Kwon, C.; Kim, S. Developing a New Hourly Forest Fire Risk Index Based on Catboost in South Korea. Appl. Sci. 2020, 10, 8213. [Google Scholar] [CrossRef]
- Chesson, J. Measuring preference in selective predation. Ecology 1978, 59, 211–215. [Google Scholar] [CrossRef]
- Richardson, J. Analysis of Field and Laboratory Foraging ‘Selectapref’ R Package Version. 2017. Available online: https://CRAN.R-pro-ject.org/package=selectapref (accessed on 26 April 2021).
- Cha, S.; Lee, W.-K.; Kim, M.; Lee, S.-G.; Jo, H.-W.; Choi, W.I. Characterization the spatial distribution of oak wilt disease using remote sensing data. J. Korean For. Soc. 2017, 106, 310–319. [Google Scholar]
- Kim, S.-R.; Kim, E.-S.; Nam, Y.W.; Choi, W.I.; Kim, C.-M. Distribution characteristics analysis of pine wilt disease using time series hyperspectral aerial imagery. Korean J. Remote Sens. 2015, 31, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Smitley, D.; Andresen, J.; Priest, R.; Mech, R.; Mccullough, D. Winter mortality of gypsy moth (Lepidoptera: Lymantriidae) eggs in Michigan. Environ. Entomol. 1998, 3, 700–708. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, H.-P. Parasites and phenology of Lymantria mathura Moore (Lymantriidae: Lepidoptera) in Kyonggi Province, Korea. Korean J. Entomol. 1996, 26, 393–401. [Google Scholar]
- Nam, Y.; Koh, S.-H.; Jeon, S.-J.; Youn, H.-J.; Park, Y.-S.; Choi, W.I. Hazard rating of coastal pine forests for a black pine bast scale using self-organizing map (SOM) and random forest approaches. Ecol. Inform. 2015, 29, 206–213. [Google Scholar] [CrossRef]
- Dargahi, M.; Newson, T.; Moore, J.R. A Numerical Approach to Estimate Natural Frequency of Trees with Variable Properties. Forests 2020, 11, 915. [Google Scholar] [CrossRef]
- Kayet, N.; Chakrabarty, A.; Pathak, K.; Sahoo, S.; Dutta, T.; Hatai, B.K. Comparative analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in Melghat Tiger Reserve (MTR) forest. J. For. Res. 2020, 31, 565–579. [Google Scholar] [CrossRef]
- He, S.; Lin, L.; Wu, Z.; Chen, Z. Application of Finite Element Analysis in Properties Test of Finger-jointed Lumber. J. Bioresour. Bioprod. 2020, 5, 124–133. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Adegun, I.K.; Omoniyi, P.O.; Ogedengbe, T.S.; Alabi, O.O. Numerical investigation of thermo-physical properties of non-newtonian fliud in a modelled intestine. J. Bioresour. Bioprod. 2020, 5, 211–221. [Google Scholar] [CrossRef]
Defoliation Severity | Forest Type | Total | ||||||
---|---|---|---|---|---|---|---|---|
Pinus densiflora | Pinus koraiensis | Larix kaempferi | Other Coniferous | Quercus Spp. | Other Deciduous | Mixed | ||
Severe | 27 | 14 | 274 | 24 | 82 | 178 | 57 | 656 |
(0.3%) | (0.5%) | (5.2%) | (2.2%) | (0.4%) | (1.1%) | (0.7%) | (1.1%) | |
Moderate | 119 | 44 | 301 | 47 | 235 | 404 | 198 | 1350 |
(1.5%) | (1.6%) | (5.7%) | (4.4%) | (1.2%) | (2.5%) | (2.6%) | (2.2%) | |
Light | 788 | 184 | 626 | 108 | 1457 | 1573 | 1084 | 5820 |
(10.1%) | (6.7%) | (11.8%) | (10.1%) | (7.6%) | (9.7%) | (14.0%) | (9.7%) | |
None | 6843 | 2491 | 4105 | 894 | 17,511 | 14,139 | 6378 | 52,361 |
(88.0%) | (91.1%) | (77.4%) | (83.3%) | (90.8%) | (86.8%) | (82.6%) | (87.0%) | |
Total | 7777 | 2734 | 5306 | 1073 | 19,285 | 16,294 | 7717 | 60,186 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.-I.; Kim, E.-S.; Yun, S.-J.; Lim, J.-H.; Kim, Y.-E. Quantification of One-Year Gypsy Moth Defoliation Extent in Wonju, Korea, Using Landsat Satellite Images. Forests 2021, 12, 545. https://doi.org/10.3390/f12050545
Choi W-I, Kim E-S, Yun S-J, Lim J-H, Kim Y-E. Quantification of One-Year Gypsy Moth Defoliation Extent in Wonju, Korea, Using Landsat Satellite Images. Forests. 2021; 12(5):545. https://doi.org/10.3390/f12050545
Chicago/Turabian StyleChoi, Won-IL, Eun-Sook Kim, Soon-Jin Yun, Jong-Hwan Lim, and Ye-Eun Kim. 2021. "Quantification of One-Year Gypsy Moth Defoliation Extent in Wonju, Korea, Using Landsat Satellite Images" Forests 12, no. 5: 545. https://doi.org/10.3390/f12050545
APA StyleChoi, W. -I., Kim, E. -S., Yun, S. -J., Lim, J. -H., & Kim, Y. -E. (2021). Quantification of One-Year Gypsy Moth Defoliation Extent in Wonju, Korea, Using Landsat Satellite Images. Forests, 12(5), 545. https://doi.org/10.3390/f12050545