The Economic Value of Fuel Treatments: A Review of the Recent Literature for Fuel Treatment Planning
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Are Revenues Generated from Fuel Treatments Greater than the Costs of Implementation?
3.2. Are Averted Wildfire Related Costs (Borne by Land Management Agencies) Attributed to Fuel Treatments Greater than the Costs of Fuel Treatment Implementation?
3.3. Are the Broad Benefits of Fuel Treatments across Multiple Sectors of Society Greater than the Costs of Fuel Treatment Implementation?
3.4. Factors Influencing Whether Fuel Treatment Benefits Are Likely to Exceed Costs
3.4.1. Treatment Costs
3.4.2. Wildfire Regimes
3.4.3. Fuel Treatment Longevity
3.4.4. Fuel Treatment Scale
3.4.5. Fuel Treatment Spatial Configuration
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study | Study Site | Fuel Treatments | Net Benefit |
Ager et al., 2017 [16] | Oregon and Washingon, USA | M | −$4190 to $14,826 per hectare |
Ager et al., 2021 [31] | Arizona, USA | M | −$3626 to $2700 per hectare |
Alcasena et al., 2021 [12] | Catalonia, Spain | M, Rx | −34,127 to 465,968 Euros per year |
Alcensena et al., 2022 [32] | Idaho, USA | M, Rx | −$15.58 to −$0.78 million per year |
Belavenutti et al., 2021 [33] | Oregon and Washington, USA | M; Rx | −$107.7 to $46.1 million |
Belval et al. [42] | Western states, USA | W | |
Buckley et al., 2014 [34] | California, USA | M; Rx | $26 to $48 million |
Campbell and Anderson 2019 [35] | Colorado, USA | M; Rx | −$116.33 to −$25.19 million |
Cirulis et al., 2020 [19] | Capital Territory and Tasmania, Australia | Rx | |
Elia et al., 2016 [13] | Apulia, Italy | M | |
Fitch et al., 2018 [14] | Arizona, USA | M; Rx | |
Florec et al., 2019 [43] | Southwestern Australia | Rx | $163 to $835 million (Australian) |
Gannon et al., 2020 [50] | Colorado, USA | M; Rx | −$9301 to −$2439 per hectare |
Huang et al., 2013 [39] | Arizona, USA | M; Rx | −$3458 to $5029 per hectare |
Jones et al., 2017 [22] | Colorado, USA | M | −$60 to $60 million |
Jones et al., 2022 [44] | Colorado, USA | M; Rx | 0.12 to 2.58 benfit-cost ratio |
Loomis et al., 2019 [45] | USA | M; Rx | |
Pancheco and Claro 2021 [40] | Meditteranean countries | Rx | 36,695 to 116,457,800 Euros |
Penman et al., 2014 [20] | Sydney Basin, Australia | Rx | |
Penman and Cirulis 2020 [46] | Southeast Australia | Rx | |
Penmen et al., 2020 [41] | Eastern Australia | Rx | |
Sánchez et al., 2019 [47] | USA | M; Rx | |
Shrestha et al., 2021 [36] | Mississippi, USA | Rx | |
Spies et al., 2017 [21] | Oregon, USA | M; Rx | |
Taylor et al., 2013 [37] | Great Basin, USA | M; Rx; H; S | 0.06 to 13.3 benefit–cost ratio |
Taylor et al., 2015 [48] | Arizona, USA | M; Rx | −$2095 to $1722 net present value |
Thompson et al., 2017 [49] | California, USA | M; Rx | |
Zhou and Hemstrom 2014 [38] | Washington, USA | M; Rx |
References
- Hunter, M.E.; Robles, M.D. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. For. Ecol. Manag. 2020, 475, 118435. [Google Scholar] [CrossRef]
- Kalies, E.L.; Yocom Kent, L.L. Tamm review: Are fuel treatments effective at achieving ecological and social objectives? A systematic review. For. Ecol. Manag. 2016, 375, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Ingalsbee, T.; Raja, U. The rising costs of wildfire suppression and the case for ecological fire use. In The Ecological Importance of Mixed-Severity Fires: Natures’ Phoenix; DellaSala, D.A., Hanson, C.T., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 348–371. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the U.S. wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest fire activity. Science 2008, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Ecological Restoration Institute. The Efficacy of Hazardous Fuel Treatments: A Rapid Assessment of the Economic and Ecological Consequences of Alternative Hazardous Fuel Treatments: A Summary Document for Policy Makers; Northern Arizona University: Flagstaff, AZ, USA, 2013. [Google Scholar]
- Milne, M.; Clayton, H.; Dovers, S.; Cary, C.J. Evaluating benefits and costs of wildland fires: Critical review and future applications. Environ. Hazards 2014, 13, 114–132. [Google Scholar] [CrossRef]
- Thomas, D.; Butry, D.; Gilbert, S.; Webb, D.; Fung., J. The Costs and Losses of Wildfires: A Literature Review, NIST Special Publication 1215; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [CrossRef]
- Calkin, D.; Gebert, K. Modeling fuel treatment costs on forest service lands in the western United States. West. J. Appl. For. 2006, 41, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Barnett, K.; Parks, S.A.; Miller, C.; Naughton, H.T. Beyond fuel treatment effectiveness: Characterizing interactions between fire and treatments in the US. Forests 2016, 7, 237. [Google Scholar] [CrossRef] [Green Version]
- Yocom, L. Fuel Treatment Longevity: Ecological Restoration Institute Working Paper 27; Ecological Restoration Institute: Flagstaff, AZ, USA, 2013. [Google Scholar]
- Alcasena, F.; Rodrigues, M.; Gelabert, P.; Ager, A.; Salis, M.; Ameztegui, A.; Cervera, T.; Vega-Garcia, C. Fostering carbon credits to finance wildfire risk reduction forest management in Mediterranean landscapes. Land 2021, 10, 1104. [Google Scholar] [CrossRef]
- Elia, M.; Lovreglio, R.; Ranieri, N.A.; Sanesi, G.; Lafortezza, R. Cost-effectiveness of fuel removals in Mediterranean wildland-urban interfaces threatened by wildfires. Forests 2016, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Fitch, R.A.; Kim, Y.S.; Waltz, A.E.M.; Crouse, J.E. Changes in potential fire suppression costs due to restoration treatments in northern Arizona ponderosa pine forests. For. Policy Econ. 2018, 87, 101–114. [Google Scholar] [CrossRef]
- Ager, A.A.; Day, M.A.; Volger, K. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. J. Environ. Manag. 2016, 176, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Volger, K.C.; Day, M.A.; Bailey, J.D. Economic opportunities and trade-offs in collaborative forest landscape restoration. Ecol. Econ. 2017, 136, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.M.; Barros, A.M.G.; Ager, A.A.; Fernandes, P.M. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. Int. J. Wildland Fire 2016, 25, 619–632. [Google Scholar] [CrossRef]
- Scott, J.H.; Thompson, M.P.; Gilbertson-Day, J.W. Examining alternative fuel management strategies and the relative contribution of National Forest System land to wildfire risk to adjacent homes—A pilot assessment on the Sierra National Forest, California, USA. For. Ecol. Manag. 2016, 362, 29–37. [Google Scholar] [CrossRef]
- Cirulis, B.; Clarke, H.; Boer, M.; Penman, T.; Price, O.; Bradstock, R. Quantification of inter-regional differences in risk mitigation from prescribed burning across multiple management values. Int. J. Wildland Fire 2020, 29, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Penman, T.D.; Bradstock, R.A.; Price, O.F. Reducing wildfire risk to urban developments: Simulation of cost-effective fuel treatment solutions in southeastern Australia. Environ. Model. Softw. 2014, 52, 166–175. [Google Scholar] [CrossRef]
- Spies, T.A.; White, E.; Ager, A.; Kline, J.D.; Bolte, J.P.; Platt, E.K.; Olsen, K.A.; Pabst, R.J.; Barros, A.M.G.; Bailey, J.D.; et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol. Soc. 2017, 22, 25. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.W.; Gannon, J.B.; Saavedra, F.A.; Kampf, S.K.; Addington, R.N.; Cheng, A.S.; MacDonald, L.H.; Wilson, C.; Wolk, B. Return on investment from fuel treatments to reduce severe wildfire and erosion in a watershed investment program in Colorado. J. Environ. Manag. 2017, 198, 66–77. [Google Scholar] [CrossRef]
- Stevens, J.T.; Collins, B.M.; Long, J.W.; North, M.P.; Prichard, S.J.; Tarnay, L.W.; White, A.M. Evaluating potential trade-offs among fuel treatment strategies in mixed-conifer forests of the Sierra Nevada. Ecosphere 2016, 7, e01445. [Google Scholar] [CrossRef]
- Butry, D. Fighting fire with fire: Estimating the efficiency of wildfire mitigation programs using propensity scores. Environ. Ecol. Stat. 2009, 16, 291–319. [Google Scholar] [CrossRef]
- Gibbons, P.L.; van Bommel, L.; Gill, A.M.; Cary, G.J.; Driscoll, D.A.; Bradstock, R.A.; Knight, E.; Moritz, M.A.; Stephens, S.L.; Lindenmayer, D.B. Land management practices associated with house loss in wildfires. PLoS ONE 2012, 7, e29212. [Google Scholar] [CrossRef]
- Ager, A.A.; Houtman, R.M.; Day, M.A.; Ringo, C.; Palaiologou, P. Tradeoffs between US national forest harvest targets and fuel management to reduce wildfire transmission to the wildland urban interface. For. Ecol. Manag. 2019, 437, 99–109. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Sci. Total Environ. 2018, 621, 872–885. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.M.; Ager, A.A.; Day, M.A.; Palaiologou, P. Improving long-term fuel treatment effectiveness in the National Forest System through quantitative prioritization. For. Ecol. Manag. 2019, 433, 514–527. [Google Scholar] [CrossRef]
- Bhuiyan, T.H.; Moseley, M.C.; Medal, H.R.; Rashidi, E.; Grala, R.K. A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior. Eur. J. Oper. Res. 2019, 277, 699–718. [Google Scholar] [CrossRef]
- Jahangirian, M.; Eldabi, T.; Garg, L.; Jun, G.T.; Nassar, A.; Patel, B.; Stergioulas, L.; Young, T. A rapid review method for extremely large corpora of literature: Applications to the domains of modelling, simulation, and management. Int. J. Inf. Manag. 2011, 31, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Day, M.A.; Waltz, A.; Nigrelli, M.; Volger, K.C.; Lata, M. Balancing Ecological and Economic Objectives in Restoration of Fire-Adapted Forests: Case Study from the Four Forests Restoration Initiative; Gen. Tech. Rep. RMRS-GTR-424; USDA Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2021. [CrossRef]
- Alcasena, F.; Ager, A.A.; Belavenutti, P.; Krawchuk, M.; Day, M.A. Contrasting the efficiency of landscape versus community protection fuel treatment strategies to reduce wildfire exposure and risk. J. Environ. Manag. 2022, 309, 114650. [Google Scholar] [CrossRef]
- Belvanutti, P.; Chung, W.; Ager, A.A. The economic reality of the forest and fuel management deficit on a fire prone western US national forest. J. Environ. Manag. 2021, 293, 11285. [Google Scholar] [CrossRef]
- Buckley, M.; Beck, N.; Bowden, P.; Miller, M.E.; Hill, B.; Luce, C.; Elliot, W.J.; Enstice, N.; Podolak, K.; Winford, E.; et al. Mokelumne Watershed Avoided Cost Analysis: Why Sierra Fuel Treatments Make Economic Sense; Report prepared for the Sierra Nevada Conservancy, The Nature Conservancy, and USDA Forest Service; Sierra Nevada Conservancy: Auburn, CA, USA, 2014.
- Campbell, R.M.; Anderson, N.M. Comprehensive comparative economic evaluation of woody biomass energy from silvicultural fuel treatments. J. Environ. Manag. 2019, 250, 109422. [Google Scholar] [CrossRef]
- Shrestha, A.; Grala, R.K.; Grado, S.C.; Roberts, S.D.; Gordon, J.S.; Adhikari, R.K. Nonindustrial private forest landowner willingness to pay for prescribed burning to lower wildfire hazards. For. Pol. Econ. 2021, 127, 102451. [Google Scholar] [CrossRef]
- Taylor, M.H.; Rollins, K.; Kobayashi, M.; Tausch, R.J. The economics of fuel management: Wildfire, invasive plants, and the dynamics of sagebrush rangelands in the western United States. J. Environ. Manag. 2013, 126, 157–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Hemstrom, M.A. Chapter 4: Overview of the vegetation management treatment economic analysis module in the integrated landscape assessment project. In Integrating Social, Economic, and Ecological Values across Large Landscapes; Halofsky, J.E., Creutzburg, M.K., Hemstrom, M.A., Eds.; Gen. Tech. Rep. PNW-GTR-896; USDA Forest Service Pacific Northwest Research Station: Portland, OR, USA, 2014. [Google Scholar] [CrossRef]
- Huang, C.H.; Finkral, A.; Sorensen, C.; Kolb, T. Toward full economic valuation of forest fuels-reduction treatments. J. Environ. Manag. 2013, 130, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Pancheco, A.P.; Claro, J. Prescribed burning as a cost-effective way to address climate change and forest management in Mediterranean countries. Annals. For. Sci. 2021, 78, 1–11. [Google Scholar] [CrossRef]
- Penman, T.D.; Clarke, H.; Cirulis, B.; Boer, M.M.; Price, O.F.; Bradstock, R.A. Cost-effective prescribed burning solutions vary between landscapes in eastern Australia. Front. For. Glob. Chang. 2020, 3, 79. [Google Scholar] [CrossRef]
- Bevel, E.J.; O’Connor, C.D.; Thompson, M.P.; Hand, M.S. The role of previous fires in the management and expenditure of subsequent large wildfires. Fire 2019, 2, 57. [Google Scholar] [CrossRef] [Green Version]
- Florec, V.; Burton, M.; Pannell, D.; Kelso, J.; Milne, G. Where to prescribe burn: The costs and benefits of prescribed burning close to homes. Int. J. Wildland Fire 2019, 29, 440–458. [Google Scholar] [CrossRef]
- Jones, K.W.; Gannon, B.; Timberlake, T.; Chamberlain, J.L.; Wolk, B. Societal benefits from wildfire mitigation activities through payment for watershed services: Insights from Colorado. For. Pol. Econ. 2022, 135, 102661. [Google Scholar] [CrossRef]
- Loomis, J.; Sánchez; González-Cabán, A.; Rideout, D.; Reich, R. Do fuel treatments reduce wildfire suppression costs and property damages? In Analysis of Suppression Costs and Property Damages in U.S. National Forests; Gen. Tech. Rep. PSW-GTR-261; USDA Forest Service Pacific Southwest Research Station: Albany, CA, USA, 2019. [Google Scholar]
- Penman, T.D.; Cirulis, B.A. Cost-effectiveness of fire management strategies in southern Australia. Int. J. Wildland Fire 2020, 29, 427–439. [Google Scholar] [CrossRef]
- Sánchez, J.J.; Loomis, J.; González-Cabán, A.; Rideout, D.; Reich, R. Do fuel treatments in the U.S. national forests reduce wildfire suppression costs and property damage? J. Nat. Resour. 2019, 9, 42–67. [Google Scholar] [CrossRef]
- Taylor, M.H.; Sanchez Meador, A.J.; Kim, Y.S.; Rollins, K.; Will, H. The economics of ecological restoration and hazardous fuel reduction treatments in the ponderosa pine forest ecosystem. For. Sci. 2015, 61, 988–1008. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.P.; Riley, K.L.; Loeffler, D.; Haas, J.R. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts. Forests 2017, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Gannon, B.M.; Wei, Y.; MacDonald, L.H.; Kampf, S.K.; Jones, K.W.; Cannon, J.B.; Wolk, B.H.; Cheng, A.S.; Addington, R.N.; Thompson, M.P. Prioritising fuels reduction for water supply protection. Int. J. Wildland Fire 2019, 28, 785–803. [Google Scholar] [CrossRef] [Green Version]
- Rummer, B. Assessing the cost of fuel reduction treatments: A critical review. For. Pol. Econ. 2008, 10, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Hartsough, B.R.; Abrams, S.; Barbour, R.J.; Drews, E.S.; McIver, J.D.; Moghaddas, J.J.; Schwilk, D.W.; Stephens, S.L. The economics of alternative fuel reduction treatments in western United States dry forests: Financial and policy implications from the National Fire and Fire Surrogate Study. For. Pol. Econ. 2008, 10, 344–354. [Google Scholar] [CrossRef]
- Hunter, M.E.; Shepperd, W.D.; Lentile, L.B.; Lundquist, J.E.; Andreu, M.G.; Butler, J.L.; Smith, F.W. A Comprehensive Guide to Fuel Treatment Practices for Ponderosa Pine in the Black Hills, Colorado Front Range, and Southwest; Gen. Tech. Rep RMRS-GTR-198; USDA Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2007. [CrossRef] [Green Version]
- Fitch, R.A.; Kim, Y.S. Incorporating ecosystem health and fire resilience within the unified economic model of fire program analysis. Ecol. Econ. 2018, 149, 98–104. [Google Scholar] [CrossRef]
- Nielsen-Pincus, M.; Charnley, S.; Mossley, C. The influence of market proximity on national forest hazardous fuel treatments. For. Sci. 2013, 59, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Navarro, K.M.; Schweizer, D.; Balmes, J.R.; Cisneros, R. A review of community smoke exposure from wildfire compared to prescribed fire in the United States. Atmosphere 2018, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Price, O.F.; Russell-Smith, J.; Watt, F. The influence of prescribed fire on the extent of wildfire in savanna landscapes of western Arnhem Land, Australia. Int. J. Wildland Fire 2012, 21, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.M.; Sadler, R.J.; Wittkuhn, R.S.; McCaw, L.; Grierson, P.F. Long-term impacts of prescribed burning on regional extent and incidence of wildfires—Evidence from 50 years of active fire management in SW Australian forests. For. Ecol. Manag. 2009, 259, 132–142. [Google Scholar] [CrossRef]
- Price, O.F.; Pausas, J.G.; Govender, N.; Flannigan, M.; Fernandes, P.M.; Brooks, M.L.; Bliege Bird, R. Global patterns of fire leverage: The response of annual area burned to previous fire. Int. J. Wildland Fire 2015, 24, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Addington, R.N.; Hudson, S.J.; Hiers, K.J.; Hurteau, M.D.; Hutcherson, T.F.; Matusick, G.; Parker, J.M. Relationships among wildfire, prescribed fire, and drought in a fire-prone landscape in the south-eastern United States. Int. J. Wildland Fire 2015, 24, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Mercer, D.E.; Prestemon, J.P. Economic analysis of fuel treatments. In Cumulative Watershed Effects of Fuel Management in the Eastern United States Gen Tech. Rep. SRS-161; LaFayette, R., Brooks, M.T., Potyondy, J.P., Audin, L., Krieger, S.L., Trettin, C.C., Eds.; USDA Forest Service Southern Research Station: Asheville, NC, USA, 2012. [Google Scholar] [CrossRef]
- Warziniack, T.; Sims, C.; Haas, J. Fire and the joint production of ecosystem services: A spatial-dynamic optimization approach. For. Pol. Econ. 2019, 107, 101926. [Google Scholar] [CrossRef]
- Kreitler, J.; Thompson, M.P.; Vaillant, N.M.; Hawbaker, T.J. Cost-effective fuel treatment planning: A theoretical justification and case study. Int. J. Wildland Fire 2020, 29, 42–56. [Google Scholar] [CrossRef]
- Bennett, D.E.; Gosnell, H.; Lurie, S.; Duncan, S. Utility engagement with payment for watershed services. Ecosyst. Serv. 2014, 8, 56–64. [Google Scholar] [CrossRef]
- Rideout, D.B.; Ziesler, P.S.; Kernohan, N.J. Valuing fire planning alternatives in forest restoration: Using derived demand to integrate economics with ecological restoration. J. Environ. Manag. 2014, 141, 190–200. [Google Scholar] [CrossRef]
- Rideout, D.B.; Kernohan, N.; Epps, J.R. Large-scale fire risk planning for initial attack and fuels: The U.S. state of Idaho. Int. J. Saf. Secur. Eng. 2019, 9, 26–37. [Google Scholar] [CrossRef]
Studies | Net Benefits | Averted Losses | ||||
---|---|---|---|---|---|---|
Yes | No | Both | Yes | No | Both | |
Forest Product Revenue | ||||||
Ager et al., 2017 [16] | x | |||||
Ager et al., 2021 [31] | x | |||||
Alcasena et al., 2022 [32] | x | |||||
Belavenutti et al., 2021 [33] | x | |||||
Buckley et al., 2014 [34] | x | |||||
Campbell & Anderson 2019 [35] | x | |||||
Shreshtha et al., 2021 [36] | x | |||||
Taylor et al., 2013 [37] | x | |||||
Zhou and Hemstrom 2014 [38] | x | |||||
Carbon Offset Revenue | ||||||
Alcasena et al., 2021 [12] | x | x | ||||
Buckley et al., 2014 [34] | x | x | ||||
Huang et al., 2013 [39] | x | x | ||||
Pacheco & Claro 2021 [40] | x | x | ||||
Penman et al., 2020 [41] | x |
Studies | Net Benefits | Averted Losses | ||||
---|---|---|---|---|---|---|
Yes | No | Both | Yes | No | Both | |
Suppression costs | ||||||
Belval et al., 2019 [42] | x | |||||
Buckley et al., 2014 [34] | x | |||||
Fitch et al., 2018 [14] | x | |||||
Florec et al., 2019 [43] | x | |||||
Huang et al., 2013 [39] | x | |||||
Jones et al., 2022 [44] | x | |||||
Loomis et al., 2019 [45] | x | |||||
Penman and Cirulis 2020 [46] | x | |||||
Sanchez et al., 2019 [47] | x | |||||
Taylor et al., 2013 [37] | x | |||||
Taylor et al., 2015 [48] | x | |||||
Thompson et al., 2017 [49] | x | |||||
Forest products | ||||||
Buckley et al., 2014 [34] | x | |||||
Huang et al., 2013 [39] | x | x |
Studies | Net Benefits | Averted Losses | ||||
---|---|---|---|---|---|---|
Yes | No | Both | Yes | No | Both | |
Infrastructure | ||||||
Buckley et al., 2014 [34] | x | x | ||||
Cirulis et al., 2020 [19] | x | |||||
Penman et al., 2020 [41] | x | |||||
Life | ||||||
Cirulis et al., 2020 [19] | x | |||||
Huang et al., 2013 [39] | x | x | ||||
Penman & Cirulis 2020 [46] | x | |||||
Penman et al., 2020 [41] | x | |||||
Structures | ||||||
Ager et al., 2017 [16] | x | |||||
Alcasena et al., 2022 [32] | x | |||||
Belavenutti et al., 2014 [33] | x | |||||
Buckley et al., 2014 [34] | x | x | ||||
Cirulis et al., 2020 [19] | x | |||||
Elia et al., 2016 [13] | x | |||||
Florec et al., 2019 [43] | x | x | ||||
Huang et al., 2013 [39] | x | x | ||||
Jones et al., 2022 [44] | x | |||||
Loomis et al., 2019 [45] | x | |||||
Penman & Cirulis 2020 [46] | x | |||||
Penman et al., 2014 [20] | x | |||||
Penman et al., 2020 [41] | x | |||||
Sanchez et al., 2019 [47] | x | |||||
Watershed | ||||||
Buckley et al., 2014 [34] | x | x | ||||
Gannon et al., 2020 [50] | x | x | ||||
Huang et al., 2013 [39] | x | x | ||||
Jones et al., 2017 [22] | x | x | ||||
Jones et al., 2022 [44] | x | x | ||||
Penman & Cirulis 2020 [46] | x | |||||
Multiple values | ||||||
Buckley et al., 2014 [34] | x | x | ||||
Campbell and Anderson [19] | x | |||||
Florec et al., 2019 [43] | x | x | ||||
Huang et al., 2013 [39] | x | x | ||||
Jones et al., 2022 [44] | x | x | ||||
Penman et al., 2020 [41] | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunter, M.E.; Taylor, M.H. The Economic Value of Fuel Treatments: A Review of the Recent Literature for Fuel Treatment Planning. Forests 2022, 13, 2042. https://doi.org/10.3390/f13122042
Hunter ME, Taylor MH. The Economic Value of Fuel Treatments: A Review of the Recent Literature for Fuel Treatment Planning. Forests. 2022; 13(12):2042. https://doi.org/10.3390/f13122042
Chicago/Turabian StyleHunter, Molly E., and Michael H. Taylor. 2022. "The Economic Value of Fuel Treatments: A Review of the Recent Literature for Fuel Treatment Planning" Forests 13, no. 12: 2042. https://doi.org/10.3390/f13122042
APA StyleHunter, M. E., & Taylor, M. H. (2022). The Economic Value of Fuel Treatments: A Review of the Recent Literature for Fuel Treatment Planning. Forests, 13(12), 2042. https://doi.org/10.3390/f13122042