Variation of Morphological Traits and Quality Indices of Micropropagated Melia volkensii Gürke Clones before Field Planting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initiation and Multiplication
2.2. Rooting
2.3. Acclimatization and Experimental Design
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Shoot Morphological Traits
3.2. Root Morphology
3.3. Quality Indexes
3.4. Correlation between Morphological Characteristics and Quality of In Vitro Raised Melia volkensii Plants
4. Discussion
4.1. Survival
4.2. Morphological Characteristics of the Shoots
4.3. Root Traits
4.4. Quality Indexes
4.5. Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, M.; Blomley, T. Use of Melia volkensii in a Semi-Arid Agroforestry System in Kenya. Commonw. For. Rev. 1994, 73, 128–131. [Google Scholar]
- Mulatya, J.M.; Wilson, J.; Ong, C.; Deans, J.D.; Sprent, J.I. Root Architecture of Provenances, Seedlings and Cuttings of Melia volkensii: Implications for Crop Yield in Dryland Agroforestry. Agrofor. Syst. 2002, 65, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Ongerep, S.; Kidia, J.; Masibo, M. Evaluating the Growth Performance of Melia volkensii in Kifu Forest, a Potential Timber Plantation Species in Uganda. Vegetos-Int. J. Plant Res. 2016, 29, 2. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0: Melia volkensii; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Kokwaro, O.; John, O. Medicinal Plants of East Africa, 3rd ed.; University of Nairobi Press: Nairobi, Kenya, 2009; p. 202. [Google Scholar]
- Cantrell, C.L.; Rajab, M.S.; Franzblau, S.G.; Fischer, N.H. Antimycobacterial Triterpenes from Melia volkensii. J. Nat. Prod. 1999, 62, 546–548. [Google Scholar] [CrossRef]
- Kamau, R.W.; Juma, B.F.; Baraza, L.D. Antimicrobial Compounds from Root, Stem Bark and Seeds of Melia volkensii. Nat. Prod. Res. 2016, 30, 1984–1987. [Google Scholar] [CrossRef]
- Jaoko, V.; Nji, C.; Taning, T.; Backx, S.; Mulatya, J.; Abeele, J.; Olubayo, F.; Mangelinckx, S.; Werbrouck, S.P.O. The Phytochemical Composition of Melia volkensii and Its Potential for Insect Pest Management. Plants 2020, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Jaoko, V.; Taning, C.N.T.; Backx, S.; Motti, P.; Mulatya, J.; Vandenabeele, J.; Magomere, T.; Olubayo, F.; Mangelinckx, S.; Werbrouck, S.P.O.; et al. Laboratory and Greenhouse Evaluation of Melia volkensii Extracts for Potency against African Sweet Potato Weevil, Cylas puncticollis, and Fall Armyworm, Spodoptera frugiperda. Agronomy 2021, 11, 1994. [Google Scholar] [CrossRef]
- Runo, M.S.; Muluvi, G.; Odee, D.W. Analysis of Genetic Structure in Melia volkensii (Gurke) Populations Using Random Amplified Polymorphic DNA. Afr. J. Biotechnol. 2004, 3, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Werbrouck, S.; Bhogar, N.; Magomere, T.; Omondi, S. In Vitro Biotechnology of Melia volkensii, a High Potential Forestry Tree from Eastern Africa. In Proceedings of the 4th International Union of Forest Research Organizations (IUFRO) Unit 2.09. 02 on Development and Application of Vegetative Propagation Technologies in Plantation Forestry to Cope with a Changing Climate and Environment, Buenos Aires, Argentina, 19–23 September 2016; Volume 4, pp. 249–256. [Google Scholar]
- Kenya Forest Service. Guidelines to Growing Melia Volkensii in the Dryland Areas of Kenya; Kenya Forest Service: Nairobi, Kenya, 2018; Volume 53. [Google Scholar]
- Luvanda, A.; Musyoki, J.; Takeda, Y. Melia volkensii Enterprises for Enhanced Livelihoods in Semi-Arid Areas in Kenya. In Proceedings of the International Conference on ‘Project on Development of Drought Tolerant Trees for Adaptation to Climate Change in Drylands of Kenya’, Muguga, Kenya, 13–16 February 2017; Ochieng, D., Kamondo, B., Muturi, G., Eds.; KEFRI: Nairobi, Kenya, 2018; pp. 117–128. [Google Scholar]
- Indieka, S.A.; Odee, D.W.; Muluvi, G.M.; Rao, K.N.; Machuka, J. Regeneration of Melia volkensii Gürke (Meliaceae) through Direct Somatic Embryogenesis. New For. 2007, 34, 73–81. [Google Scholar] [CrossRef]
- Mulanda, E.S.; Adero, M.O.; Amugune, N.O.; Akunda, E.; Kinyamario, J.I. High-Frequency Regeneration of the Drought-Tolerant Tree Melia volkensii Gurke Using Low-Cost Agrochemical Thidiazuron. Biotechnol. Res. Int. 2012, 2012, 818472. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-Feasible Micropropagation of Mountain Laurel, Kalmia latifolia, by Use of Shoot-Tip Culture. Int. Plant Prop. Soc. Proc. 1980, 30, 421–427. [Google Scholar]
- Jaenicke, H. Tree Nursery Practices Practical Guide; World Agroforestry Centre: Nairobi, Kenya, 1999. [Google Scholar]
- Haase, D.L. Morphological and Physiological Evaluations of Seedling Quality. In TD National Proceedings: Forest and Conservation Nursery Associations-2006. Proceedings RMRS-P-50. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station; Riley, L., Dumroese, R., Landis, Eds.; USDA: Washington, DC, USA, 2007. [Google Scholar]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality Appraisal of White Spruce and White Pine Seedling Stock in Nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Nyoka, B.I.; Kamanga, R.; Njoloma, J.; Jamnadass, R.; Mng’omba, S.; Muwanje, S. Quality of Tree Seedlings Produced in Nurseries in Malawi: An Assessment of Morphological Attributes. For. Trees Livelihoods 2018, 27, 103–117. [Google Scholar] [CrossRef]
- Yegizbayeva, T.K.; García-García, S.; Yausheva, T.V.; Kairova, M.; Apushev, A.K.; Oleichenko, S.N.; Licea-Moreno, R.J. Unraveling Factors Affecting Micropropagation of Four Persian Walnut Varieties. Agronomy 2021, 11, 1417. [Google Scholar] [CrossRef]
- Aracama, C.V.; Kane, M.E.; Wilson, S.B.; Philman, N.L. Comparative Growth, Morphology, and Anatomy of Easy- and Difficult-to-Acclimatize Sea Oats (Uniola paniculata) Genotypes during in Vitro Culture and Ex Vitro Acclimatization. J. Am. Soc. Hortic. Sci. 2008, 133, 830–843. [Google Scholar] [CrossRef]
- Vila, S.; Scocchi, A.; Mroginski, L. Plant Regeneration from Shoot Apical Meristems of Melia azedarach L. (Meliaceae). Acta Physiol. Plant. 2002, 24, 195–199. [Google Scholar] [CrossRef]
- Hung, C.D.; Trueman, S.J. In Vitro Propagation of the African Mahogany Khaya senegalensis. New For. 2011, 42, 117–130. [Google Scholar] [CrossRef]
- Li, P.; Shang, Y.; Zhou, W.; Hu, X.; Mao, W.; Li, J.; Li, J.; Chen, X. Development of an Efficient Regeneration System for the Precious and Fast-Growing Timber Tree Toona ciliata. Plant Biotechnol. 2018, 35, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Hanaoka, S.; Muturi, G.M.; Watanabe, A. Isolation and Characterization of Microsatellite Markers in Melia volkensii Gurke. Conserv. Genet. Resour. 2012, 4, 395–398. [Google Scholar] [CrossRef]
- Ndufa, J.K.; Miyashita, H. Preliminary Results on Melia volkensii Clonal Variation in Growth and Wood Properties in the Drylands of Kenya. In Project on Development of Drought Tolerant Trees for Adaptation to Climate Change in Drylands of Kenya; Ochieng, D., Kamondo, B., Muturi, G.M., Eds.; KEFRI: Nairobi, Kenya, 2018; pp. 90–95. [Google Scholar]
- Bayoudh, C.; Labidi, R.; Majdoub, A.; Mars, M. In Vitro Propagation of Caprifig and Female Fig Varieties (Ficus carica L.) from Shoot-Tips. J. Agric. Sci. Technol. 2015, 17, 1597–1608. [Google Scholar]
- Gavin, D.G.; Peart, D.R. Spatial Structure and Regeneration of Tetramerista glabra in Peat Swamp Rain Forest in Indonesian Borneo. Plant Ecol. 1997, 131, 223–231. [Google Scholar] [CrossRef]
- Rijkers, T.; Pons, T.L.; Bongers, F. The Effect of Tree Height and Light Availability on Photosyntheltic Leaf Traits of Four Neotropical Species Differing in Shade Tolerance. Funct. Ecol. 2000, 14, 77–86. [Google Scholar] [CrossRef]
- Haase, D.L. Understanding Forest Seedling Quality: Measurements and Interpretation. Tree Plant. Notes 2008, 52, 24–30. [Google Scholar]
- Grossnickle, S.C.; MacDonald, J.E. Why Seedlings Grow: Influence of Plant Attributes. New For. 2018, 49, 1–34. [Google Scholar] [CrossRef]
- Weraduwage, S.M.; Chen, J.; Anozie, F.C.; Morales, A.; Weise, S.E.; Sharkey, T.D. The Relationship between Leaf Area Growth and Biomass Accumulation in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 167. [Google Scholar] [CrossRef] [Green Version]
- Komakech, R.; Kim, Y.G.; Kim, W.J.; Omujal, F.; Yang, S.; Moon, B.C.; Okello, D.; Rahmat, E.; Kyeyune, G.N.; Matsabisa, M.G.; et al. A Micropropagation Protocol for the Endangered Medicinal Tree Prunus africana (Hook f.) Kalkman: Genetic Fidelity and Physiological Parameter Assessment. Front. Plant Sci. 2020, 11, 1871. [Google Scholar] [CrossRef]
- Carron, M.P.; Le Roux, Y.; Tison, J.; Dea, B.G.; Caussanel, V.; Clair, J.; Keli, J. Compared Root System Architectures in Seedlings and in Vitro Plantlets of Hevea brasiliensis, in the Initial Years of Growth in the Field. Plant Soil 2000, 223, 73–85. [Google Scholar] [CrossRef]
- Davis, A.S.; Jacobs, D.F. Quantifying Root System Quality of Nursery Seedlings and Relationship to Outplanting Performance. New For. 2005, 30, 295–311. [Google Scholar] [CrossRef]
- Albrecht, U.; Bodaghi, S.; Meyering, B.; Bowman, K.D. Influence of Rootstock Propagation Method on Traits of Grafted Sweet Orange Trees. HortScience 2020, 55, 729–737. [Google Scholar] [CrossRef]
- Högberg, K.A.; Bozhkov, P.V.; Von Arnold, S. Early Selection Improves Clonal Performance and Reduces Intraclonal Variation of Norway Spruce Plants Propagated by Somatic Embryogenesis. Tree Physiol. 2003, 23, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.S.; Klopfenstein, N.B.; Cregg, B.M. In Vitro and Ex Vitro Rooting of Micropropagated Shoots Using Three Green Ash (Fraxinus pennsylvanica) Clones. New For. 1998, 16, 43–57. [Google Scholar] [CrossRef]
- Batista, R.O.; Eduardo, A.; Neto, F.; Fernanda, S.; Deccetti, C.; Viana, C.S. Root Morphology and Nutrient Uptake Kinetics by Australian cedar Clones. Rev. Caatinga 2016, 29, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Lamhamedi, M.S.; Chamberland, H.; Bernier, P.Y.; Tremblay, F.M. Clonal Variation in Morphology, Growth, Physiology, Anatomy and Ultrastructure of Container-Grown White Spruce Somatic Plants. Tree Physiol. 2000, 20, 869–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsakaldimi, M.; Ganatsas, P.; Jacobs, D.F. Prediction of Planted Seedling Survival of Five Mediterranean Species Based on Initial Seedling Morphology. New For. 2013, 44, 327–339. [Google Scholar] [CrossRef]
- Takoutsing, B.; Tchoundjeu, Z.; Degrande, A.; Asaah, E.; Gyau, A.; Nkeumoe, F.; Tsobeng, A. Assessing the Quality of Seedlings in Small-Scale Nurseries in the Highlands of Cameroon: The Use of Growth Characteristics and Quality Thresholds as Indicators. Small-Scale For. 2014, 13, 65–77. [Google Scholar] [CrossRef]
- Dina, K.D.; Pande, T.; Vladimir, M.; Mare, T. Dynamic of Growth and Quality of Arizona Cypress (Cupressus arizonica Greene) Seedlings from Three Container Types. In Proceedings of the International Conference Reforestation Challenges, Belgrade, Serbia, 3–6 June 2015. [Google Scholar] [CrossRef]
- Amiri, S.; Mohammadi, R. Establishment of an Efficient in Vitro Propagation Protocol for Sumac (Rhus coriaria L.) and Confirmation of the Genetic Homogeneity. Sci. Rep. 2021, 11, 173. [Google Scholar] [CrossRef]
- Tumpa, K.; Vidaković, A.; Drvodelić, D.; Šango, M.; Idžojtić, M.; Perković, I.; Poljak, I. The Effect of Seed Size on Germination and Seedling Growth in Sweet Chestnut (Castanea sativa Mill.). Forests 2021, 12, 858. [Google Scholar] [CrossRef]
- Bernier, P.Y.; Lamhamedi, M.S.; Simpson, D.G. Shoot: Root Ratio Is of Limited Use in Evaluating the Quality of Container Conifer Stock. Tree Plant. Notes 1995, 46, 102–106. [Google Scholar]
- Bayala, J.; Dianda, M.; Wilson, J.; Ouédraogo, S.J.; Sanon, K. Predicting Field Performance of Five Irrigated Tree Species Using Seedling Quality Assessment in Burkina Faso, West Africa. New For. 2009, 38, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Budiman, B.; Sudrajat, D.J.; Lee, D.K.; Kim, Y.S. Effect of Initial Morphology on Field Performance in White Jabon Seedlings at Bogor, Indonesia. For. Sci. Technol. 2015, 11, 206–211. [Google Scholar] [CrossRef]
Clones Code | Survival Rate | PH (cm) | NL | NLL | INL (mm) | CHL |
19015 | 95.0 ± 0.64 a | 10.5 ± 0.55 cde | 9.8 ± 0.18 b | 5.9 ± 0.12 ef | 1.9 ± 0.09 d | 28.4 ± 0.71 a |
19011 | 93.3 ± 6.67 a | 12.2 ± 0.60 bc | 10.3 ± 0.29 bc | 6.4 ± 0.13 cde | 2.5 ± 0.15 abc | 26.2 ± 0.73 ab |
20/21 | 84.0 ± 8.74 a | 9.1 ± 0.42 de | 8.2 ± 0.18 f | 7.2 ± 0.14 a | 2.1 ± 0.10 cd | 26.4 ± 2.25 ab |
K.F1 | 95.9 ± 2.41 a | 10.6 ± 0.67 cd | 9.9 ± 0.23 bc | 7.0 ± 0.17 ab | 2.0 ± 0.19 bcd | 30.0 ± 0.99 a |
KAS5 | 98.0 ± 1.96 a | 9.1 ± 0.55 de | 9.6 ± 0.26 cd | 6.48 ± 0.16 bcd | 1.9 ± 0.13 de | 23.9 ± 0.71 b |
MAK1 | 97.6 ± 1.19 a | 12.0 ± 0.55 bc | 9.7 ± 0.20 bcd | 6.8 ± 0.09 abc | 2.2 ± 0.11 bcd | 29.1 ± 0.67 a |
19008 | 83.8 ± 10.11 a | 15.8 ± 0.85 a | 9.8 ± 0.29 bcd | 5.6 ± 0.18 fg | 3.0 ± 0.18 a | 27.9 ± 0.96 a |
E34 | 58.0 ± 20.44 b | 8.4 ± 0.82 e | 9.0 ± 0.32 de | 5.3 ± 0.13 g | 2.1 ± 0.24 bcd | 27.0 ± 0.87 ab |
MAK2 | 95.9 ± 3.23 a | 12.4 ± 0.87 bc | 9.8 ± 0.23 bcd | 6.5 ± 0.14 bcd | 2.6 ± 0.22 ab | 28.9 ± 0.83 a |
19003 | 34.0 ± 9.52 c | 5.9 ± 0.69 f | 7.5 ± 0.51 g | 5.6 ± 0.24 fg | 1.4 ± 0.19 e | 30.1 ± 1.14 a |
19007 | 85.9 ± 6.49 a | 13.6 ± 0.89 b | 10.5 ± 0.29 b | 6.2 ± 0.16 de | 2.3 ± 0.17 bcd | 26.6 ± 0.67 ab |
19016 | 99.0 ± 1.01 a | 14.1 ± 0.53 ab | 11.7 ± 0.16 a | 6.5 ± 0.09 cd | 2.6 ± 0.12 abc | 28.6 ± 0.53 a |
E7 | 91.7 ± 4.79 a | 10.7 ± 0.66 cd | 8.6 ± 0.25 ef | 7.0 ± 0.18 a | 2.3 ± 0.16 bcd | 29.2 ± 0.77 a |
Mean | 85.4 | 11.36 | 9.72 | 6.48 | 2.24 | 27.84 |
LSD 0.05 | 23.1 | 2.42 | 0.90 | 0.54 | 0.57 | 4.04 |
Clones Code | SD (mm) | LA (cm2) | SFW (g) | SDW (g) | ||
19015 | 2.4 ± 0.05 gh | 29.8 ± 2.73 bcd | 3.3 ± 0.25 cde | 0.6 ± 0.05 def | ||
19011 | 2.9 ± 0.06 def | 25.9 ± 2.56 bcde | 3.8 ± 0.38 cd | 0.6 ± 0.06 de | ||
20/21 | 2.3 ± 0.04 h | 19.3 ± 1.47 e | 2.1 ± 0.19 f | 0.3 ± 0.03 g | ||
K.F1 | 3.3 ± 0.06 bc | 32.9 ± 2.93 b | 4.1 ± 0.36 bcd | 0.7 ± 0.07 cd | ||
KAS5 | 3.1 ± 0.08 cd | 24.8 ± 2.53 bcde | 3.0 ± 0.31 def | 0.6 ± 0.06 def | ||
MAK1 | 3.6 ± 0.08 a | 31.2 ± 2.48 bc | 5.0 ± 0.35 ab | 1.0 ± 0.08 ab | ||
19008 | 2.9 ± 0.09 def | 29.0 ± 3.04 bcd | 3.8 ± 0.37 cd | 0.9 ± 0.08 bc | ||
E34 | 2.6 ± 0.08 fg | 20.7 ± 3.55 de | 2.5 ± 0.40 ef | 0.4 ± 0.07 efg | ||
MAK2 | 3.3 ± 0.10 bc | 23.0 ± 2.51 cde | 3.3 ± 0.31 cde | 0.6 ± 0.05 de | ||
19003 | 2.8 ± 0.16 ef | 17.0 ± 2.59 e | 1.9 ± 0.32 f | 0.4 ± 0.09 fg | ||
19007 | 3.4 ± 0.10 ab | 31.4 ± 3.69 bc | 4.3 ± 0.51 bc | 1.0 ± 0.13 ab | ||
19016 | 3.3 ± 0.10 bc | 41.9 ± 2.74 a | 5.7 ± 0.30 a | 1.1 ± 0.06 a | ||
E7 | 2.9 ± 0.08 de | 25.5 ± 2.68 bcde | 3.0 ± 0.28 def | 0.6 ± 0.05 de | ||
Mean | 3.01 | 27.74 | 3.62 | 0.71 | ||
LSD 0.05 | 0.30 | 9.87 | 1.22 | 0.25 |
Clones Code | NR | RL (cm) | RD (mm) | CD (mm) | RFW (g) | RDW (g) |
---|---|---|---|---|---|---|
19015 | 6.8 ± 0.66 abc | 10.8 ± 0.48 abc | 2.5 ± 0.14 d | 4.2 ± 0.13 e | 1.0 ± 0.08 e | 0.1 ± 0.01 de |
19011 | 4.1 ± 0.42 e | 11.6 ± 0.50 a | 4.8 ± 0.31 b | 6.3 ± 0.31 b | 1.9 ± 0.16 bc | 0.2 ± 0.02 b |
20/21 | 7.5 ± 0.60 ab | 9.4 ± 0.32 ef | 1.9 ± 0.11 d | 4.3 ± 0.17 e | 0.5 ± 0.04 f | 0.1 ± 0.01 e |
K.F1 | 7.2 ± 0.72 ab | 10.3 ± 0.48 bcd | 4.2 ± 0.19 bc | 6.4 ± 0.22 b | 1.7 ± 0.11 cd | 0.2 ± 0.01 bc |
KAS5 | 4.1 ± 0.47 e | 10.0 ± 0.46 bcde | 4.7 ± 0.26 b | 5.6 ± 0.16 bc | 1.5 ± 0.15 d | 0.2 ± 0.01 bc |
MAK1 | 4.7 ± 0.55 de | 11.1 ± 0.37 ab | 7.7 ± 0.43 a | 7.7 ± 0.43 a | 3.8 ± 0.17 a | 0.5 ± 0.03 a |
19008 | 5.9 ± 0.74 bcde | 8.6 ± 0.20 g | 3.7 ± 0.19 c | 5.1 ± 0.17 cd | 1.4 ± 0.10 d | 0.1 ± 0.01 cd |
E34 | 5.8 ± 0.64 bcde | 8.1 ± 0.32 g | 2.1 ± 0.15 d | 4.3 ± 0.19 e | 1.0 ± 0.12 e | 0.2 ± 0.01 e |
MAK2 | 5.0 ± 0.55 cde | 9.8 ± 0.31 cdef | 4.0 ± 0.29 bc | 6.1 ± 0.33 b | 1.6 ± 0.09 cd | 0.2 ± 0.01 bc |
19003 | 5.0 ± 0.81 cde | 9.0 ± 0.70 efg | 2.5 ± 0.27 d | 4.9 ± 0.28 de | 1.0 ± 0.17 e | 0.1 ± 0.01 e |
19007 | 6.6 ± 0.75 abcd | 9.8 ± 0.34 def | 4.2 ± 0.23 bc | 6.0 ± 0.19 b | 2.0 ± 0.17 bc | 0.2 ± 0.02 b |
19016 | 8.4 ± 0.66 a | 8.7 ± 0.21 efg | 4.4 ± 0.27 bc | 5.7 ± 0.16 bc | 2.2 ± 0.09 b | 0.2 ± 0.01 b |
E7 | 5.5 ± 0.55 bcde | 10.0 ± 0.44 bcde | 3.6 ± 0.23 c | 5.8 ± 0.21 bc | 1.5 ± 0.11 d | 0.2 ± 0.01 bcd |
Mean | 5.95 | 9.87 | 3.98 | 5.62 | 1.67 | 0.18 |
LSD 0.05 | 2.20 | 1.41 | 0.90 | 0.87 | 0.44 | 0.06 |
Clones Code | DQI | SQ | S:R | V |
---|---|---|---|---|
19015 | 0.07 ± 0.006 de | 2.50 ± 0.124 abc | 7.58 ± 0.600 a | 47.7 ± 3.68 d |
19011 | 0.18 ± 0.016 b | 1.97 ± 0.168 cd | 3.45 ± 0.291 ef | 108.8 ± 8.36 b |
20/21 | 0.05 ± 0.006 e | 2.14 ± 0.156 bcd | 6.15 ± 0.365 b | 41.6 ± 3.34 d |
K.F1 | 0.16 ± 0.010 bc | 1.90 ± 0.188 cde | 4.48 ± 0.567 cde | 113.1 ± 9.68 b |
KAS5 | 0.17± 0.020 bc | 1.72 ± 0.168 de | 3.82 ± 0.622 e | 73.9 ± 6.59 c |
MAK1 | 0.48 ± 0.051 a | 1.75 ± 0.160 de | 2.35 ± 0.234 f | 171.3 ± 13.43 a |
19008 | 0.12 ± 0.009 cd | 2.74 ± 0.219 a | 6.14 ± 0.457 b | 95.3 ± 8.31 bc |
E34 | 0.06 ± 0.008 de | 2.09 ± 0.222 bcd | 5.73 ± 0.401 bc | 42.8 ± 5.91 d |
MAK2 | 0.16 ± 0.016 bc | 1.95 ± 1.218 cd | 4.10 ± 0.380 de | 96.1 ± 7.91 bc |
19003 | 0.07 ± 0.013 de | 1.33 ± 0.145 e | 5.57 ± 0.975 bcd | 41.9 ± 6.35 d |
19007 | 0.17 ± 0.014 bc | 2.27 ± 0.239 abcd | 4.71 ± 0.378 bcde | 120.2 ± 10.80 b |
19016 | 0.17 ± 0.011 bc | 2.59 ± 0.161 ab | 5.76 ± 0.394 bc | 119.3 ± 7.90 b |
E7 | 0.14 ± 0.011 bc | 1.80 ± 0.193 de | 4.41 ± 0.405 cde | 76.3 ± 4.70 c |
Mean | 0.16 | 2.08 | 4.88 | 91.6 |
LSD 0.05 | 0.07 | 0.66 | 1.62 | 29.14 |
PH | 0.62 | ||||||||||||||||||
NL | 0.67 | 0.77 | |||||||||||||||||
NLL | 0.62 | 0.07 | 0.04 | ||||||||||||||||
INL | 0.52 | 0.92 | 0.62 | 0.05 | |||||||||||||||
CHL | −0.19 | −0.01 | −0.13 | 0.03 | −0.03 | ||||||||||||||
SD | 0.38 | 0.43 | 0.52 | 0.25 | 0.28 | 0.19 | |||||||||||||
LA | 0.63 | 0.70 | 0.87 | 0.19 | 0.47 | 0.17 | 0.54 | ||||||||||||
NR | 0.13 | 0.22 | 0.29 | 0.16 | 0.12 | 0.26 | −0.17 | 0.50 | |||||||||||
RL | 0.54 | 0.08 | 0.17 | 0.48 | −0.06 | −0.05 | 0.23 | 0.14 | −0.38 | ||||||||||
RD | 0.54 | 0.44 | 0.48 | 0.35 | 0.29 | 0.03 | 0.83 | 0.50 | −0.36 | 0.54 | |||||||||
CD | 0.48 | 0.39 | 0.40 | 0.46 | 0.28 | 0.19 | 0.89 | 0.43 | −0.33 | 0.55 | 0.93 | ||||||||
DQI | 0.44 | 0.34 | 0.34 | 0.36 | 0.19 | 0.12 | 0.77 | 0.41 | −0.32 | 0.51 | 0.96 | 0.89 | |||||||
SQ | 0.37 | 0.72 | 0.61 | −0.20 | 0.66 | −0.12 | −0.18 | 0.56 | 0.60 | −0.25 | −0.16 | −0.30 | −0.20 | ||||||
RDW | 0.48 | 0.39 | 0.41 | 0.34 | 0.22 | 0.08 | 0.77 | 0.48 | −0.28 | 0.52 | 0.97 | 0.87 | 0.99 | −0.13 | |||||
RFW | 0.44 | 0.46 | 0.50 | 0.26 | 0.29 | 0.18 | 0.83 | 0.57 | −0.21 | 0.44 | 0.96 | 0.89 | 0.97 | −0.08 | 0.98 | ||||
SDW | 0.51 | 0.79 | 0.79 | 0.11 | 0.57 | 0.14 | 0.75 | 0.87 | 0.23 | 0.11 | 0.71 | 0.63 | 0.65 | 0.42 | 0.69 | 0.78 | |||
SFW | 0.62 | 0.75 | 0.87 | 0.21 | 0.54 | 0.17 | 0.72 | 0.93 | 0.27 | 0.24 | 0.73 | 0.66 | 0.66 | 0.41 | 0.71 | 0.80 | 0.95 | ||
S:R | −0.31 | −0.10 | −0.13 | −0.43 | −0.11 | 0.09 | −0.73 | −0.05 | 0.62 | −0.51 | −0.81 | −0.88 | −0.77 | 0.56 | −0.74 | −0.72 | −0.30 | −0.33 | |
V | 0.56 | 0.66 | 0.64 | 0.34 | 0.49 | 0.16 | 0.87 | 0.67 | −0.07 | 0.49 | 0.92 | 0.91 | 0.88 | 0.08 | 0.89 | 0.94 | 0.86 | 0.87 | −0.68 |
SR | PH | NL | NLL | INL | CHL | SD | LA | NR | RL | RD | CD | DQI | SQ | RDW | RFW | SDW | SFW | S:R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dushimimana, C.; Magomere, T.; Mulatya, J.; Vandenabeele, J.; Olubayo, F.; Smagghe, G.; Werbrouck, S.P.O. Variation of Morphological Traits and Quality Indices of Micropropagated Melia volkensii Gürke Clones before Field Planting. Forests 2022, 13, 337. https://doi.org/10.3390/f13020337
Dushimimana C, Magomere T, Mulatya J, Vandenabeele J, Olubayo F, Smagghe G, Werbrouck SPO. Variation of Morphological Traits and Quality Indices of Micropropagated Melia volkensii Gürke Clones before Field Planting. Forests. 2022; 13(2):337. https://doi.org/10.3390/f13020337
Chicago/Turabian StyleDushimimana, Constantin, Titus Magomere, Jackson Mulatya, Jan Vandenabeele, Florence Olubayo, Guy Smagghe, and Stefaan P. O. Werbrouck. 2022. "Variation of Morphological Traits and Quality Indices of Micropropagated Melia volkensii Gürke Clones before Field Planting" Forests 13, no. 2: 337. https://doi.org/10.3390/f13020337
APA StyleDushimimana, C., Magomere, T., Mulatya, J., Vandenabeele, J., Olubayo, F., Smagghe, G., & Werbrouck, S. P. O. (2022). Variation of Morphological Traits and Quality Indices of Micropropagated Melia volkensii Gürke Clones before Field Planting. Forests, 13(2), 337. https://doi.org/10.3390/f13020337