Rapidly Quantifying Interior Greenery Using 360° Panoramic Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Interior Spaces
2.2. Panoramic Imagery Captured within Interior Spaces
2.3. Automated Greenery Extraction from Panoramic Images
- Assign the pixels to each cluster that restrict the partition between the pixel and the cluster center;
- Calculate the color border of the cluster by the average value of its pixels.
Calculating the Amount of Interior Greenery from 360° Panoramic Images
2.4. Evaluation of the Interior Green View Index
3. Results
3.1. Interior Greenery Estimates
3.2. Differences between Observed and Predicted Greenery for Interior Spaces
4. Discussion
4.1. The Accuracy of Extraction Results
4.2. Strengths and Limitations
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Van den Berg, A.E.; Maas, J.; Verheij, R.A.; Groenewegen, P.P. Green space as a buffer between stressful life events and health. Soc. Sci. Med. 2010, 70, 1203–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, S. Estimating the effect of being indoors on total personal exposure to outdoor air pollution. JAPCA 1989, 39, 1453–1461. [Google Scholar] [CrossRef]
- Anand, A.; Phuleria, H.C. Assessment of indoor air quality and housing, household and health characteristics in densely populated urban slums. Environ. Dev. Sustain. 2021. Available online: https://link.springer.com/article/10.1007/s10668-021-01923-x (accessed on 10 February 2022).
- Soga, M.; Evans, M.J.; Cox, D.T.; Gaston, K.J. Impacts of the COVID-19 pandemic on human–nature interactions: Pathways, evidence and implications. People Nat. 2021, 3, 518–527. [Google Scholar] [CrossRef]
- Nordin, S.; McKee, K.; Wallinder, M.; von Koch, L.; Wijk, H.; Elf, M. The physical environment, activity and interaction in residential care facilities for older people: A comparative case study. Scand. J. Caring Sci. 2017, 31, 727–738. [Google Scholar] [CrossRef]
- Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Sia, A.; Wong, N.C. Perception studies of vertical greenery systems in Singapore. J. Urban Plan. Dev. 2010, 136, 330–338. [Google Scholar] [CrossRef]
- Moya, T.A.; van den Dobbelsteen, A.; Ottele, M.; Bluyssen, P.M. A review of green systems within the indoor environment. Indoor Built Environ. 2019, 28, 298–309. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Park, S.-A.; Jung, S.-J.; Lee, J.-Y.; Son, K.-C.; An, Y.-J.; Lee, S.-W. Physiological and psychological responses of humans to the index of greenness of an interior space. Complementary Ther. Med. 2016, 28, 37–43. [Google Scholar] [CrossRef]
- Ikei, H.; Song, C.; Igarashi, M.; Namekawa, T.; Miyazaki, Y. Physiological and psychological relaxing effects of visual stimulation with foliage plants in high school students. In Advances in Horticultural Science; Torrossa Digital Library: Fiesole, Italy, 2014; pp. 111–116. [Google Scholar]
- Shibata, S.; Suzuki, N. Effects of an indoor plant on creative task performance and mood. Scand. J. Psychol. 2004, 45, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Raanaas, R.K.; Evensen, K.H.; Rich, D.; Sjøstrøm, G.; Patil, G. Benefits of indoor plants on attention capacity in an office setting. J. Environ. Psychol. 2011, 31, 99–105. [Google Scholar] [CrossRef]
- Pegas, P.N.; Alves, C.; Nunes, T.; Bate-Epey, E.; Evtyugina, M.; Pio, C.A. Could houseplants improve indoor air quality in schools? J. Toxicol. Environ. Health Part A 2012, 75, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Torpy, F.; Zavattaro, M.; Irga, P. Green wall technology for the phytoremediation of indoor air: A system for the reduction of high CO2 concentrations. Air Qual. Atmos. Health 2017, 10, 575–585. [Google Scholar] [CrossRef]
- Yoo, M.; Lee, E.-H. The Impact of Modulized Interior Landscape on Office Workers’ Psychological Wellbeing-A Pilot Study of Focused on the Office Wall. Korean Inst. Inter. Des. J. 2014, 23, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Tucker, M.; Pitt, M. Healthy, productive workplaces: Towards a case for interior plantscaping. Facilities 2011, 29, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Zhou, W.; Yu, W.; Pickett, S.T. Quantifying spatiotemporal pattern of urban greenspace: New insights from high resolution data. Landsc. Ecol. 2015, 30, 1165–1173. [Google Scholar] [CrossRef]
- Li, S.; Dai, L.; Wang, H.; Wang, Y.; He, Z.; Lin, S. Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model. Remote Sens. 2017, 9, 1202. [Google Scholar] [CrossRef] [Green Version]
- Béland, M.; Widlowski, J.-L.; Fournier, R.A. A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR. Environ. Model. Softw. 2014, 51, 184–189. [Google Scholar] [CrossRef]
- Béland, M.; Widlowski, J.-L.; Fournier, R.A.; Côté, J.-F.; Verstraete, M.M. Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements. Agric. For. Meteorol. 2011, 151, 1252–1266. [Google Scholar] [CrossRef]
- Moudrý, V.; Gdulová, K.; Fogl, M.; Klápště, P.; Urban, R.; Komárek, J.; Moudrá, L.; Štroner, M.; Barták, V.; Solský, M. Comparison of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation structure: Prospects for monitoring hazards and restoration success. Appl. Geogr. 2019, 104, 32–41. [Google Scholar] [CrossRef]
- Wang, Y.; Weinacker, H.; Koch, B. A lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest. Sensors 2008, 8, 3938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremer, M.; Rutzinger, M.; Wichmann, V. Derivation of tree skeletons and error assessment using LiDAR point cloud data of varying quality. ISPRS J. Photogramm. Remote Sens. 2013, 80, 39–50. [Google Scholar] [CrossRef]
- Meitner, M.J. Scenic beauty of river views in the Grand Canyon: Relating perceptual judgments to locations. Landsc. Urban Plan. 2004, 68, 3–13. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Yu, X.; Qi, W. Measuring vegetation greenery in park using iPhone panoramic image and a new green vegetation extraction index. Urban For. Urban Green. 2021, 65, 127310. [Google Scholar] [CrossRef]
- Abbass, O.A.; Sailor, D.J.; Gall, E.T. Effectiveness of indoor plants for passive removal of indoor ozone. Build. Environ. 2017, 119, 62–70. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Steemers, K. Living wall influence on microclimates: An indoor case study. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; p. 012188. [Google Scholar]
- Mousavi Samimi, P.; Shahhosseini, H. Evaluation of resident’s indoor green space preferences in residential complexes based on plants’ characteristics. Indoor Built Environ. 2020, 30, 859–868. [Google Scholar] [CrossRef]
- Salamone, F.; Barozzi, B.; Danza, L.; Ghellere, M.; Meroni, I. Correlation between Indoor Environmental Data and Biometric Parameters for the Impact Assessment of a Living Wall in a ZEB Lab. Sensors 2020, 20, 2523. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, W.; Ren, Z.; Fu, Y.; Lv, H.; He, X. Two-city street-view greenery variations and association with forest attributes and landscape metrics in NE China. Landsc. Ecol. 2021, 36, 1261–1280. [Google Scholar] [CrossRef]
- Rzotkiewicz, A.; Pearson, A.L.; Dougherty, B.V.; Shortridge, A.; Wilson, N. Systematic review of the use of Google Street View in health research: Major themes, strengths, weaknesses and possibilities for future research. Health Place 2018, 52, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Berenguel-Baeta, B.; Bermudez-Cameo, J.; Guerrero, J.J. OmniSCV: An omnidirectional synthetic image generator for computer vision. Sensors 2020, 20, 2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, V.J.; Chang, C.-T. Three-dimensional positioning from Google street view panoramas. IET Image Process. 2013, 7, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Wang, Z. Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Appl. Geogr. 2016, 76, 147–153. [Google Scholar] [CrossRef]
- Ki, D.; Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, M. Image Color Summarizer: RBG, HSV, LCH & Lab Image Color Statistics and Clustering—Simple and Easy. 2018. Available online: http://mkweb.bcgsc.ca/colorsummarizer/?analyze (accessed on 16 June 2021).
- Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Zheng, X.; Lei, Q.; Yao, R.; Gong, Y.; Yin, Q. Image segmentation based on adaptive K-means algorithm. EURASIP J. Image Video Process. 2018, 2018, 68. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, Y.; Zhao, J. How green are the streets within the sixth ring road of Beijing? An analysis based on tencent street view pictures and the green view index. Int. J. Environ. Res. Public Health 2018, 15, 1367. [Google Scholar] [CrossRef] [Green Version]
- Lux Meter (Light Meter). Available online: https://play.google.com/store/apps/details?id=com.tsang.alan.lightmeter&hl=en_US&gl=US (accessed on 10 June 2021).
- Wada, Y.; Kashiwagi, N. Selecting statistical models with information statistics. J. Dairy Sci. 1990, 73, 3575–3582. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing, Version 4.2.0; GBIF: Copenhagen, Denmark, 2013. [Google Scholar]
- Ding, Y.; Fukuda, T.; Yabuki, N.; Michikawa, T.; Motamedi, A. Automatic Measurement System of Visible Greenery Ratio Using Augmented Reality; CumInCAD: Vienna, Austria, 2016. [Google Scholar]
- Bascle, B.; Bernier, O.; Lemaire, V. Learning invariants to illumination changes typical of indoor environments: Application to image color correction. Int. J. Imaging Syst. Technol. 2007, 17, 132–142. [Google Scholar] [CrossRef]
- Valero, E.M.; Nieves, J.L.; Plata, C.; Romero, J. Unsupervised classification algorithms applied to rgb data as a preprocessing step for reflectance estimation in natural scenes. In Proceedings of the Conference on Colour in Graphics, Imaging, and Vision, Terrassa, Spain, 9–13 June 2008; Society for Imaging Science and Technology: Springfield, Virginia, 2008; pp. 523–526. [Google Scholar]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Han, K.-T. Effects of indoor plants on the physical environment with respect to distance and green coverage ratio. Sustainability 2019, 11, 3679. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.S.; Son, K.-C.; Kays, S.J. Volatile organic compounds emanating from indoor ornamental plants. HortScience 2009, 44, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Irga, P.; Torpy, F.; Burchett, M. Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants? Atmos. Environ. 2013, 77, 267–271. [Google Scholar] [CrossRef]
- Xiong, Y.; Pulli, K. Fast panorama stitching for high-quality panoramic images on mobile phones. IEEE Trans. Consum. Electron. 2010, 56, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Stubbings, P.; Peskett, J.; Rowe, F.; Arribas-Bel, D. A hierarchical urban forest index using street-level imagery and deep learning. Remote Sens. 2019, 11, 1395. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-J.; Mu, Y.-J.; Zhu, Y.-G.; Ding, H.; Arens, N.C. Which ornamental plant species effectively remove benzene from indoor air? Atmos. Environ. 2007, 41, 650–654. [Google Scholar] [CrossRef]
- Erickson, S.J.; Godavarty, A. Hand-held based near-infrared optical imaging devices: A review. Med. Eng. Phys. 2009, 31, 495–509. [Google Scholar] [CrossRef]
- Thatcher, A.; Adamson, K.; Bloch, L.; Kalantzis, A. Do indoor plants improve performance and well-being in offices? Divergent results from laboratory and field studies. J. Environ. Psychol. 2020, 71, 101487. [Google Scholar] [CrossRef]
- Persiani, S.G. Benefits of Using Plants in Indoor Environments: Exploring Common Research Gaps. Architecture 2021, 1, 8. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
length | length of interior space |
width | width of interior space |
height | height of interior space |
area | total floor area of interior space calculated from its interior surfaces |
volume | measurement of a three-dimensional shape that is enclosed by a closed area |
illuminance | total luminous flux incident on a surface |
type | several specific areas or design settings related to social behavior |
Model | Variable |
---|---|
1 | illuminance |
2 | width |
3 | length |
4 | Area |
5 | volume |
6 | Type |
7 | Illuminance + width |
8 | Illuminance + width + length |
9 | Illuminance + width + length + height |
10 | Illuminance + area |
11 | illuminance + volume |
12 | Illuminance + type |
13 | Illuminance + type + width |
14 | Illuminance + type + width + length |
Model | Width | Length | Area | Volume | Illuminance | ∆AICc |
---|---|---|---|---|---|---|
11 | + | + | 0 | |||
5 | + | 0.3976 | ||||
4 | + | 0.7893 | ||||
10 | + | + | 1.0351 | |||
8 | + | + | + | 1.7755 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Brack, C.; Coe, R.; Gibbons, P. Rapidly Quantifying Interior Greenery Using 360° Panoramic Images. Forests 2022, 13, 602. https://doi.org/10.3390/f13040602
Jiang J, Brack C, Coe R, Gibbons P. Rapidly Quantifying Interior Greenery Using 360° Panoramic Images. Forests. 2022; 13(4):602. https://doi.org/10.3390/f13040602
Chicago/Turabian StyleJiang, Junzhiwei, Cris Brack, Robert Coe, and Philip Gibbons. 2022. "Rapidly Quantifying Interior Greenery Using 360° Panoramic Images" Forests 13, no. 4: 602. https://doi.org/10.3390/f13040602
APA StyleJiang, J., Brack, C., Coe, R., & Gibbons, P. (2022). Rapidly Quantifying Interior Greenery Using 360° Panoramic Images. Forests, 13(4), 602. https://doi.org/10.3390/f13040602