Bio-Based Phase Change Materials for Wooden Building Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Impregnation of Wood Samples with BPCMs
2.3. Biological Test Methods
2.3.1. Termite Test
2.3.2. Insect Test
2.3.3. Mold Test
3. Results
3.1. Termite Test
3.2. Insect Test
3.3. Mold Discoloration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bal, B.C. The effect of span-to-depth ratio on the impact bending strength of poplar LVL. Constr. Build. Mater. 2016, 112, 355–359. [Google Scholar] [CrossRef]
- Takano, A.; Hughes, M.; Winter, S.A. multidisciplinary approach to sustainable building material selection: A case study in a Finnish context. Build. Environ. 2014, 82, 526–535. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.J.; et al. The wood from the trees: The use of timber in construction. Renew. Sust. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Mathis, D.; Blanchet, P.; Landry, V.; Lagière, P. Impregnation of wood with microencapsulated bio-based phase change materials for high thermal mass engineered wood flooring. App. Sci. 2018, 8, 2696. [Google Scholar] [CrossRef] [Green Version]
- Nazari, M.; Jebrane, M.; Terziev, N. Bio-Based Phase Change Materials Incorporated in Lignocellulose Matrix for Energy Storage in Buildings—A Review. Energies 2020, 13, 3065. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.-J. A review on PCM integrated in building walls. Renew. Sust. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Benson, O.K.; Christensen, C.B.; Burrows, R.W.; Shinton, Y.D. New phase-change thermal energy storage materials for buildings. In Proceedings of the III International Conference on Energy Storage for Building Heating and Cooling, Toronto, ON, Canada, 22–26 September 1985. [Google Scholar]
- Khudhair, A.M.; Farid, M.M. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 2004, 45, 263–275. [Google Scholar] [CrossRef]
- Hadjieva, M.; Stoykov, R.; Filipova, T. Composite salt-hydrate concrete system for building energy storage. Renew. Energy 2000, 19, 111–115. [Google Scholar] [CrossRef]
- Koschenz, M.; Lehmann, B. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 2004, 36, 567–578. [Google Scholar] [CrossRef]
- Shilei, L.; Guohui, F.; Neng, Z.; Li, D. Experimental study and evaluation of latent heat storage in phase change materials wallboards. Energy Build. 2007, 39, 1088–1091. [Google Scholar] [CrossRef]
- Schossig, P.; Henninga, H.-M.; Gschwandera, S.; Haussmann, H. Micro-encapsulated PCM integrated into construction materials. Sol. Energy Mater. Sol. Cells 2005, 89, 297–306. [Google Scholar] [CrossRef]
- Yi, Q.; Sukhorokov, G.B.; Ma, J.; Yang, X.; Gu, Z. Encapsulation of Phase Change Materials Using Layer-by-Layer Assembled Polyelectrolytes. Int. J. Polym. Sci. 2015, 756237. [Google Scholar] [CrossRef]
- Mehlig, H.; Cabeza, L.F. Heat and Cold Storage with PCM: An Up-To Date Introduction into Basics and Applications; Springer edt.: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-68556-2. [Google Scholar]
- EN 335:2013—Durability of Wood and Wood-Based Products—Use Classes: Definitions, Application to Solid Wood and Wood-Based Products. Available online: https://standards.iteh.ai/catalog/standards/cen/e5d368b1-2232-47e2-8349-ee85cb6c895b/en-335-2013 (accessed on 5 April 2022).
- CEN EN 599-1 2014 Durability of Wood and Wood-Based Products—Efficacy of Preventive Wood Preservatives as Determined by Biological Tests—Part 1: Specification According to Use Class. Available online: https://standards.iteh.ai/catalog/tc/cen/01247748-a098-4d6e-a498-e43c8143f192/cen-tc-38 (accessed on 3 March 2022).
- Hunter, C.; Grant, C.; Flannigan, B.; Bravery, A. Mould in buildings: The air spora of domestic dwellings. Int. Biodeterior. 1988, 24, 81–101. [Google Scholar] [CrossRef]
- Shelton, B.G.; Kirkland, K.H.; Flanders, D.W.; Morris, G.K. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl. Environ. Microbiol. 2002, 68, 1743–1753. [Google Scholar] [CrossRef] [Green Version]
- Kamperidou, V. The Biological Durability of Thermally- and Chemically-Modified Black Pine and Poplar Wood Against Basidiomycetes and Mold Action. Forests 2019, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Bjurman, J. Ergosterol as an indicator of mould growth on wood in relation to culture age, humidity stress and nutrient level. Int. Biodeterior. Biodegrad. 1994, 33, 355–368. [Google Scholar] [CrossRef]
- Vereecken, E.; Roels, S. Review of mould prediction models and their influence on mould risk evaluation. Build. Environ. 2012, 51, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Ekstrand-Tobin, A.; Johansson, P.; Bok, G. Method for Determining the Critical Moisture Level for Mould Growth on Building Materials. In Proceedings of the 44th IRG The International Research Group on Wood Protection, Stockholm, Sweden, 18 June 2013; p. 7. [Google Scholar]
- Eaton, R.A.; Hale, M.D.C. Decay, Pests and Protection; Chapman and Hall: London, UK, 1993. [Google Scholar]
- CEN EN 117 2012 Wood Preservatives. Determination of Toxic Values Against Reticulitermes Species (European Termites) (Laboratory Method). Available online: https://standards.iteh.ai/catalog/standards/cen/275e8dea-9fd6-4a40-9ed4-3180e9920b18/en-117-2012 (accessed on 3 March 2022).
- CEN EN 350: 2016 Durability of Wood and Wood-Based Products. Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials. Available online: https://standards.iteh.ai/catalog/standards/cen/b02d18a7-87ce-4a20-84c7-c0de641a2780/en-350-2016 (accessed on 3 March 2022).
- CEN EN 47 2016 Wood Preservatives. Determination of the Toxic Values against Larvae of Hylotrupes Bajulus (Linnaeus). (Laboratory Method). Available online: https://standards.iteh.ai/catalog/standards/cen/f92ec8dd-de13-4217-a351-62bae5863ac9/en-47-2016 (accessed on 3 March 2022).
- American Wood Protection Association Standard E24-212021 Laboratory Method for Evaluating the Mold Resistance of Wood-based Materials: Mold Chamber Test. Available online: http://herculesebooks.com/index/AWPA.pdf (accessed on 3 March 2022).
- Abbott, S.P. Mycotoxins and Indoor Molds. Indoor Environ. Connect. 1988, 3, 14–24. [Google Scholar]
- Nazari, M.; Jebrane, M.; Terziev, N. Multicomponent bio-based fatty acids system as phase change material for low temperature energy storage. J. Energy Storage 2021, 39, 102645. [Google Scholar] [CrossRef]
- Saranpää, P.; Höll, W. Soluble carbohydrates of Pinus sylvestris L. sapwood and heartwood. Trees 1989, 3, 138–143. [Google Scholar] [CrossRef]
- Terziev, N.; Boutelje, J.; Larsson, K. Seasonal fluctuations of low-molecular weight sugars, starch and nitrogen in sapwood of Pinus sylvestris L. Scandinavian. J. For. Res. 1996, 12, 216–224. [Google Scholar] [CrossRef]
- Lie, S.K.; Vestøl, G.I.; Høibø, O.; Gobakken, L.R. Surface mould growth on wood: A comparison of laboratory screening tests and outdoor performance. Eur. J. Wood Wood Prod. 2019, 77, 1137–1150. [Google Scholar] [CrossRef]
BPCM | Replicates (n) | Evaluation EN 117 | Survival (%) |
---|---|---|---|
CA | 6 | 0 | 0.0 |
MP | 6 | 1 | 0.2 |
LA | 6 | 1 | 13.9 |
CoFA-LA | 6 | 0 | 0.0 |
CS | 9 | 4 | 67.3 |
BPCM | Newborn Larvae | |
---|---|---|
Tested | Survived | |
CA | 30 | 0 |
MP | 30 | 0 |
LA | 30 | 0 |
CoFA-LA | 30 | 0 |
CS | 12 | 6 |
Wood and Treatment | 2 Weeks | 4 Weeks | 6 Weeks | 8 Weeks |
---|---|---|---|---|
Untreated Scots pine sapwood | 2 | 2 | 3 | 4 |
Scots pine CoFA-LA at WPG 95% | 1 | 2 | 3 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palanti, S.; Temiz, A.; Köse Demirel, G.; Hekimoğlu, G.; Sarı, A.; Nazari, M.; Jebrane, M.; Schnabel, T.; Terziev, N. Bio-Based Phase Change Materials for Wooden Building Applications. Forests 2022, 13, 603. https://doi.org/10.3390/f13040603
Palanti S, Temiz A, Köse Demirel G, Hekimoğlu G, Sarı A, Nazari M, Jebrane M, Schnabel T, Terziev N. Bio-Based Phase Change Materials for Wooden Building Applications. Forests. 2022; 13(4):603. https://doi.org/10.3390/f13040603
Chicago/Turabian StylePalanti, Sabrina, Ali Temiz, Gaye Köse Demirel, Gökhan Hekimoğlu, Ahmet Sarı, Meysam Nazari, Mohamed Jebrane, Thomas Schnabel, and Nasko Terziev. 2022. "Bio-Based Phase Change Materials for Wooden Building Applications" Forests 13, no. 4: 603. https://doi.org/10.3390/f13040603
APA StylePalanti, S., Temiz, A., Köse Demirel, G., Hekimoğlu, G., Sarı, A., Nazari, M., Jebrane, M., Schnabel, T., & Terziev, N. (2022). Bio-Based Phase Change Materials for Wooden Building Applications. Forests, 13(4), 603. https://doi.org/10.3390/f13040603