Application of Remote Sensing Data for Assessment of Bark Beetle Attacks in Pine Plantations in Kirkovo Region, the Eastern Rhodopes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data from Information System of Executive Forest Agency in Bulgaria
2.3. UAV Images
2.4. Processing of Remote Sensing Data
2.5. Detecting of Bark Beetle Infestation Spots
2.6. Mapping of Bark Beetle Spots
2.7. Field Verification
2.8. Statistical Analysis
3. Results
3.1. Damage Caused by Abiotic Factors and Bark Beetles in the Region of SF Kirkovo
3.2. Remote Data Analysis and Mapping of Bark Beetle Spots
3.3. NDVI Values of Studied Categories in the Bark Beetle Spots
3.4. Field Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McNichol, B.H.; Clarke, S.R.; Faccoli, M.; Montes, C.R.; Nowak, J.T.; Reeve, J.D.; Gandhi, K.J.K. Relationships between drought, coniferous tree physiology, and Ips bark beetles under climatic changes. In Bark Beetle Management, Ecology, and Climate Change; Gandhi, K.J.K., Hofstetter, R.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 153–194. [Google Scholar]
- Yangyozov, B. Results of anti-erosion afforestation in Kardzhali Region. Ecol. Eng. Environ. Prot. 2011, 1, 40–44, (In Bulgarian, English Summary). [Google Scholar]
- Mirchev, P.; Georgiev, G.; Bencheva, S.; Georgieva, M.; Doychev, D.; Zafirof, N. Forest protection problems in coniferous plantations in Bulgaria. In Proceedings of the National Conference with International Participation on ‘Prospects and Guidelines for the Management of Artificial Coniferous Forests’, Kyustendil, Bulgaria, 28–29 January 2016; pp. 89–112, (In Bulgarian, English Summary). [Google Scholar]
- Yangyozov, B. Forest plantation and climatic conditions in the region of Kardzhali in the period 1998–2009. For. Sci. 2010, 2, 21–30, (In Bulgarian, English Summary). [Google Scholar]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 59, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, M. Forest health assessment and monitoring—Issues for consideration. Environ. Monit. Assess. 1997, 48, 45–72. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosyst. Eng. 2011, 108, 104–113. [Google Scholar] [CrossRef]
- Dimitrov, S.; Georgiev, G.; Georgieva, M.; Gluschkova, M.; Chepisheva, V.; Mirchev, P.; Zhiyanski, M. Integrated assessment of urban green infrastructure condition in Karlovo urban area by in-situ observations and remote sensing. One Ecosyst. 2018, 3, e21610. [Google Scholar] [CrossRef] [Green Version]
- Safonova, A.; Hamad, Y.; Dmitriev, E.; Georgiev, G.; Trenkin, V.; Georgieva, M.; Dimitrov, S.; Iliev, M. Individual Tree Crown Delineation for the Species Classification and Assessment of Vital Status of Forest Stands from UAV Images. Drones 2021, 5, 77. [Google Scholar] [CrossRef]
- Dimitrov, S.; Georgiev, G.; Mirchev, P.; Georgieva, M.; Iliev, M.; Doychev, D.; Bencheva, S.; Zaemdzhikova, G.; Zaphirov, N. Integrated model of application of remote sensing and field investigations for sanitary status assessment of forest stands in two reserves in West Balkan Range, Bulgaria. In Proceedings of the SPIE 11174, Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), Paphos, Cyprus, 18–21 March 2019; Volume 11174. [Google Scholar] [CrossRef]
- Georgiev, G.; Georgieva, M.; Dimitrov, S.; Iliev, M.; Trenkin, V.; Mirchev, P.; Belilov, S. Remote Sensing Assessment of the Expansion of Ips typographus Attacks in the Chuprene Reserve, Western Balkan Range. Forests 2022, 13, 39. [Google Scholar] [CrossRef]
- Panayotov, M.; Kulakowski, D.; Laranjeiro Dos Santos, L.; Bebi, P. Wind disturbances shape old Norway spruce-dominated forest in Bulgaria. For. Ecol. Manag. 2011, 262, 470–481. [Google Scholar] [CrossRef]
- Rossnev, B.; Georgiev, G.; Mirchev, P.; Tsankov, G.; Petkov, P. Influence of the wind throw in Biosphere reserve Bistrishko Branishte on the number of Ips typographus (L.) (Coleoptera: Scolytidae) and the condition of Picea abies L. (Karst.) plantations on Vitosha. Agric. Univ. Plovdiv Sci. Work. 2005, 50, 239–244, (In Bulgarian, English Summary). [Google Scholar]
- Tsvetanov, N.A.; Panayotov, M.P. Age Structure and Historical Development of Forests in “Bistrishko branishte” Biosphere Reserve in Vitosha Mountain (Bulgaria). Ecol. Balk. 2013, 5, 129–136. [Google Scholar]
- Sabev, L.; Stanev, S. The Climate Regions in Bulgaria and Their Climate. In Works of the Institute of Hydrology and Meteorology; Nauka i Izkustvo: Sofia, Bulgaria, 1959; Volume V, p. 176. (In Bulgarian) [Google Scholar]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indices IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Eichhorn, J.; Roskams, P.; Potočić, N.; Timmermann, V.; Ferretti, M.; Mues, V.; Szepesi, A.; Durrant, D.; Seletković, I.; Schröck, H.-W.; et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. In UNECE ICP Forests Programme Coordinating Centre: Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016; p. 54. [Google Scholar]
- Karaman, Z. Faune de Macedoine; Prosfetno Delo: Skopje, North Macedonia, 1971; 178p. (In Macedonian) [Google Scholar]
- Doychev, D. Bark Beetles (Coleoptera, Curculionidae, Scolytinae) in Plantations of Scots Pine (Pinus sylvestris L.)—In Southwestern Bulgaria—Species Composition, Distribution and Impact. Ph.D. Thesis, University of Forestry, Sofia, Bulgaria, 2014; p. 192.
- EPPO Global Database. Lecanosticta acicola (SCIRAC) PM 7/46 (3). Lecanosticta acicola (formerly Mycosphaerella dearnessii), Dothistroma septosporum (formerly Mycosphaerella pini) and Dothistroma pini. 2015. Bulletin 45, 163–182. Available online: https://gd.eppo.int/taxon/SCIRAC/documents (accessed on 30 March 2021).
- Barnes, I.; Crous, P.W.; Wingfield, B.D.; Wingfield, M.J. Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud. Mycol. 2004, 50, 551–565. [Google Scholar]
- Georgieva, M. Invasive pathogens causing damages on economically significant tree species under climate changes in Bulgaria. For. Sci. 2020, 56, 103–114, (In Bulgarian, English Summary). [Google Scholar]
- Weed, A.S.; Ayres, M.P.; Bentz, B.J. Chapter 4. Population Dynamics of Bark Beetles. In Bark Beetles. Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Elsevier: London, UK, 2015; pp. 157–176. ISBN 978-0-12-417156-5. [Google Scholar]
- Wermelinger, B. Ecology and management of the spruce bark beetle Ips typographus—A review of recent research. For. Ecol. Manag. 2004, 202, 67–82. [Google Scholar] [CrossRef]
- de Groot, M.; Diaci, J.; Ogris, N. Forest management history is an important factor in bark beetle outbreaks: Lessons for the future. For. Ecol. Manag. 2019, 433, 467–474. [Google Scholar] [CrossRef]
- Cognato, A.I. Chapter 9. Biology, Systematics, and Evolution of Ips. In Bark Beetles. Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Elsevier: London, UK, 2015; pp. 351–370. ISBN 978-0-12-417156-5. [Google Scholar]
- Lieutier, F.; Långström, B.; Faccoli, M. Chapter 10. The Genus Tomicus. In Bark Beetles. Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Elsevier: London, UK, 2015; pp. 371–426. ISBN 978-0-12-417156-5. [Google Scholar]
- Yu, L.; Zhan, Z.; Ren, L.; Zong, S.; Luo, Y.; Huang, H. Evaluating the Potential of WorldView-3 Data to Classify Different Shoot Damage Ratios of Pinus yunnanensis. Forests 2020, 11, 417. [Google Scholar] [CrossRef] [Green Version]
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Ebata, T.; Safranyik, L. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452, 987–990. [Google Scholar] [CrossRef]
- Verbesselt, J.; Robinson, A.; Stone, C.; Culvenor, D. Forecasting tree mortality using change metrics derived from MODIS satellite data. For. Ecol. Manag. 2009, 258, 1166–1173. [Google Scholar] [CrossRef]
- Fettig, C.J.; Klepzig, K.D.; Billings, R.F.; Munson, A.S.; Nebeker, T.E.; Negrón, J.F.; Nowak, J.T. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For. Ecol. Manag. 2007, 238, 24–53. [Google Scholar] [CrossRef]
- Lieutier, F.; Mendel, Z.; Faccoli, M. Chapter 6. Bark Beetles of Mediterranean Conifers. In Insects and Diseases of Mediterranean Forest System; Paine, T.D., Lieutier, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 105–197. [Google Scholar] [CrossRef]
- Georgiev, G.; Mirchev, P.; Doychev, D.; Georgieva, M.; Topalov, P. Control of Ips typographus (L.) (Coleoptera: Curculionidae) in Vitosha mountain using trap trees. For. Sci. 2013, 1/2, 99–116, (In Bulgarian, English Summary). [Google Scholar]
- Resnerová, K.; Holuša, J.; Surový, P.; Trombik, J.; Kula, E. Comparison of Ips cembrae (Coleoptera: Curculionidae) Capture Methods: Small Trap Trees Caught the Most Beetles. Forests 2020, 11, 1275. [Google Scholar] [CrossRef]
- Mirchev, P.; Georgiev, G.; Georgieva, M.; Matova, M.; Zaemdzhikova, G. Enlargement of pine processionary moth (Thaumetopoea pityocampa) range in Bulgaria. For. Rev. 2018, 48, 4–7. [Google Scholar]
- Zaemdzhikova, G.; Markoff, I.; Mirchev, P.; Georgiev, G.; Georgieva, M.; Nachev, R.; Zaiakova, M.; Dobreva, M. Zone and rate of pine processionary moth (Thaumetopoea pityocampa) expansion in Bulgaria. Silva Balc. 2018, 19, 13–20. [Google Scholar]
- Bryk, M.; Kołodziej, B.; Pliszka, R. Changes of Norway Spruce Health in the Białowieza˙Forest (CE Europe) in 2013–2019 during a Bark Beetle Infestation, Studied with Landsat Imagery. Forests 2021, 12, 34. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Wallenius, T.H.; Kauhanen, H.; Aakala, T.; Mikkola, K.; Demidova, N.; Ogibin, B. Episodic, patchy disturbances characterize an old-growth Picea abies dominated forest landscape in northeastern Europe. For. Ecol. Manag. 2014, 320, 96–103. [Google Scholar] [CrossRef]
- Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manag. 2017, 391, 349–361. [Google Scholar] [CrossRef]
- Kaminska, A.; Lisiewicz, M.; Kraszewski, B.; Sterenczak, K. Mass outbreaks and factors related to the spatial dynamics of spruce bark beetle (Ips typographus) dieback considering diverse management regimes in the Białowieża forest. For. Ecol. Manag. 2021, 498, 119530. [Google Scholar] [CrossRef]
- Machado Nunes Romeiro, J.; Eid, T.; Antón-Fernández, C.; Kangas, A.; Trømborg, E. Natural disturbances risks in European Boreal and Temperate forests and their links to climate change—A review of modelling approaches. For. Ecol. Manag. 2022, 509, 120071. [Google Scholar] [CrossRef]
- Caduff, M.E.; Brožová, N.; Kupferschmid, A.D.; Krumm, F.; Bebi, P. How large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps. For. Ecol. Manag. 2022, 514, 120201. [Google Scholar] [CrossRef]
Locality | Altitude, m | Latitude | Longitude | Tree Species | Density Index | Age, Years | Mean Height, m | Mean Diameter, cm |
---|---|---|---|---|---|---|---|---|
Fotinovo | 460 | 41°22′31″ | 25°19′25″ | P. nigra, P. sylvestris | 0.9 | 67 | 19.0 | 32.0 |
Kirkovo | 430 | 41°20′15″ | 25°22′22″ | P. sylvestris, P. nigra | 0.8 | 62 | 12.0 | 16.0 |
Kremen | 420 | 41°18′14″ | 25°20′22″ | P. sylvestris, P. nigra | 0.9 | 42 | 16.0 | 18.0 |
Locality | Captured Area, ha | Studied Area, ha | Bark Beetle Spots, N | Affected Area, ha (%) | Average Area of a Bark Beetle Spot, ha |
---|---|---|---|---|---|
Fotinovo | 137.38 | 74.35 | 148 | 1.68 (2.3) | 0.011 ± 0.004 |
Kirkovo | 50.17 | 28.59 | 145 | 6.57 (23.0) | 0.045 ± 0.027 |
Kremen | 39.32 | 19.28 | 115 | 2.96 (15.4) | 0.026 ± 0.009 |
Total | 226.87 | 122.22 | 408 | 11.21 (9.2) | 0.027 ± 0.012 |
N | Category | N (px) | Mean | Min | Max | St. Dev. | St. Error |
---|---|---|---|---|---|---|---|
1 | Living trees (central part of the crown projection) | 159 | 0.748 | 0.700 | 0.788 | 0.024 | 0.002 |
2 | Living trees (peripheral part of the crown projection) | 254 | 0.645 | 0.601 | 0.699 | 0.027 | 0.002 |
3 | Living trees (spaces between crowns) | 444 | 0.554 | 0.500 | 0.600 | 0.028 | 0.001 |
4 | Dead lying trees | 186 | 0.273 | 0.195 | 0.300 | 0.024 | 0.002 |
5 | Dead standing trees (central part of the crown projection) | 98 | 0.275 | 0.239 | 0.300 | 0.017 | 0.002 |
6 | Dead standing trees (peripheral part of the crown projection) | 399 | 0.344 | 0.300 | 0.399 | 0.025 | 0.001 |
7 | Dead standing trees (spaces between crowns) | 238 | 0.424 | 0.400 | 0.495 | 0.018 | 0.001 |
8 | Grass and shrub vegetation | 57 | 0.436 | 0.401 | 0.500 | 0.027 | 0.004 |
9 | Stones and rocks (without mosses) | 22 | 0.193 | 0.183 | 0.200 | 0.005 | 0.001 |
10 | Stones and rocks (with mosses) | 187 | 0.345 | 0.300 | 0.397 | 0.029 | 0.002 |
Species | Locality | Host Tree | Damaged Parts | Importance * |
---|---|---|---|---|
Ips acuminatus | Fotinovo, Kirkovo; Kremen | P. sylvestris | stems and branches | + + + |
Ips sexdentatus | Fotinovo, Kirkovo; Kremen | P. sylvestris, P. nigra | stems | + + |
Tomicus piniperda | Fotinovo, Kirkovo | P. sylvestris, P. nigra | stems | + + |
Tomicus minor | Fotinovo, Kirkovo | P. sylvestris, P. nigra | stems | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgieva, M.; Belilov, S.; Dimitrov, S.; Iliev, M.; Trenkin, V.; Mirchev, P.; Georgiev, G. Application of Remote Sensing Data for Assessment of Bark Beetle Attacks in Pine Plantations in Kirkovo Region, the Eastern Rhodopes. Forests 2022, 13, 620. https://doi.org/10.3390/f13040620
Georgieva M, Belilov S, Dimitrov S, Iliev M, Trenkin V, Mirchev P, Georgiev G. Application of Remote Sensing Data for Assessment of Bark Beetle Attacks in Pine Plantations in Kirkovo Region, the Eastern Rhodopes. Forests. 2022; 13(4):620. https://doi.org/10.3390/f13040620
Chicago/Turabian StyleGeorgieva, Margarita, Sevdalin Belilov, Stelian Dimitrov, Martin Iliev, Vladislav Trenkin, Plamen Mirchev, and Georgi Georgiev. 2022. "Application of Remote Sensing Data for Assessment of Bark Beetle Attacks in Pine Plantations in Kirkovo Region, the Eastern Rhodopes" Forests 13, no. 4: 620. https://doi.org/10.3390/f13040620
APA StyleGeorgieva, M., Belilov, S., Dimitrov, S., Iliev, M., Trenkin, V., Mirchev, P., & Georgiev, G. (2022). Application of Remote Sensing Data for Assessment of Bark Beetle Attacks in Pine Plantations in Kirkovo Region, the Eastern Rhodopes. Forests, 13(4), 620. https://doi.org/10.3390/f13040620