Development and Structural Organization of Mexico’s Mangrove Monitoring System (SMMM) as a Foundation for Conservation and Restoration Initiatives: A Hierarchical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Description
2.2. Hierarchical Conceptual Framework and CONABIO Coordination
2.3. Remote Sensing and Field Data Collection and Cartography
2.4. Data Processing
3. Results and Discussion
3.1. Program Development (2005–2020)
3.2. Selected Case Studies Based on SMMM Research and Management Priorities
3.2.1. Spatiotemporal Changes (2015–2020) in Unimpacted and Disturbed Mangrove Extension and Uncertainty in the Assessment of Scrub Mangrove Ecotype Area
3.2.2. Assessing Mangrove Species Distribution and the Impacts of Invasive Species
3.2.3. Hydrometeorological Disturbances Impacting Mangrove Structure and Function
3.2.4. Evaluation of the Forest Crown Structure
3.3. Selected Case Studies Associated to Long-Term Assessments and Adaptive Management
3.3.1. Coastline Dynamics
3.3.2. Connectivity
3.3.3. SMMM Contribution to Implementation of R/R Projects: Social Dimension
3.4. Opportunities and Challenges to Advance and Consolidate the SMMM
3.5. SMMM Development and Implementation: An Estimated Monetary Cost
4. Final Remarks and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Angarita, J.; Roberts, C.M.; Tilley, A.; Hawkins, J.P.; Cooke, R.G. Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. For. Ecol. Manag. 2016, 368, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Himes-Cornell, A.; Pendleton, L.; Atiyah, P. Valuing ecosystem services from blue forests: A systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosyst. Serv. 2018, 30, 36–48. [Google Scholar] [CrossRef]
- Worthington, T.A.; Andradi-Brown, D.A.; Bhargava, R.; Buelow, C.; Bunting, P.; Duncan, C.; Fatoyinbo, L.; Friess, D.A.; Goldberg, L.; Hilarides, L.; et al. Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth 2020, 2, 429–443. [Google Scholar] [CrossRef]
- Spurgeon, J. The Socio-Economic Costs and Benefits of Coastal Habitat Rehabilitation and Creation. Mar. Pollut. Bull. 1999, 37, 373–382. [Google Scholar] [CrossRef]
- Jerath, M.; Bhat, M.; Rivera-Monroy, V.H.; Castaneda-Moya, E.; Simard, M.; Twilley, R.R. The role of economic, policy, and ecological factors in estimating the value of carbon stocks in Everglades mangrove forests, South Florida, USA. Environ. Sci. Policy 2016, 66, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.Y.; Marchand, C.; Middelburg, J.J.; et al. Mangrove production and carbon sinks: A revision of global budget estimates. Glob. Biogeochem. Cycles 2008, 22, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Bunting, P.; Lucas, R.; Hardy, A.; Rosenqvist, A.; Fatoyinbo, T. Mapping Mangrove Extent and Change: A Globally Applicable Approach. Remote Sens. 2018, 10, 1466. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Friess, D.A.; Webb, E.L. Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. Glob. Ecol. Biogeogr. 2014, 23, 715–725. [Google Scholar] [CrossRef]
- Field, C.D. Rehabilitation of Mangrove Ecosystems: An Overview. Mar. Pollut. Bull. 1999, 37, 383–392. [Google Scholar] [CrossRef]
- Lewis, R.R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- López-Portillo, J.; Lewis, R.R.; Saenger, P.; Rovai, A.; Koedam, N.; Dahdouh-Guebas, F.; Agraz-Hernández, C.; Rivera-Monroy, V.H. Mangrove Forest Restoration and Rehabilitation; Springer International Publishing: Cham, Switzerland, 2017; pp. 301–345. [Google Scholar] [CrossRef]
- Twilley, R.R.; Rivera-Monroy, V.H. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J. Coast. Res. 2005, 40, 79–93. [Google Scholar]
- Barbier, E.B. Natural barriers to natural disasters: Replanting mangroves after the tsunami. Front. Ecol. Environ. 2006, 4, 124–131. [Google Scholar] [CrossRef]
- Ellison, A.M.; Felson, A.J.; Friess, D.A. Mangrove Rehabilitation and Restoration as Experimental Adaptive Management. Front. Mar. Sci. 2020, 7, 327. [Google Scholar] [CrossRef]
- Twilley, R.R.; Rivera-Monroy, V.H.; Chen, R.H.; Botero, L. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Mar. Pollut. Bull. 1998, 37, 404–419. [Google Scholar] [CrossRef]
- Andradi-Brown, D.A.; Howe, C.; Mace, G.M.; Knight, A.T. Do mangrove forest restoration or rehabilitation activities return biodiversity to pre-impact levels? Environ. Evid. 2013, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Gijsman, R.; Horstman, E.M.; van der Wal, D.; Friess, D.A.; Swales, A.; Wijnberg, K.M. Nature-Based Engineering: A Review on Reducing Coastal Flood Risk With Mangroves. Front. Mar. Sci. 2021, 8, 825. [Google Scholar] [CrossRef]
- Lugo, A.E. Mangrove forests: A tough system to invade but an easy one to rehabilitate. Mar. Pollut. Bull. 1998, 37, 427–430. [Google Scholar] [CrossRef]
- Bosire, J.O.; Dahdouh-Guebas, F.; Walton, M.; Crona, B.I.; Lewis, R.R.; Field, C.; Kairo, J.G.; Koedam, N. Functionality of restored mangroves: A review. Aquat. Bot. 2008, 89, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Rastetter, E.B.; Ohman, M.D.; Elliott, K.J.; Rehage, J.S.; Rivera-Monroy, V.H.; Boucek, R.E.; Castañeda-Moya, E.; Danielson, T.M.; Gough, L.; Groffman, P.M.; et al. Time lags: Insights from the U.S. Long Term Ecological Research Network. Ecosphere 2021, 12, e03431. [Google Scholar] [CrossRef]
- Danielson, T.M.; Rivera-Monroy, V.H.; Castaneda-Moya, E.; Briceno, H.; Travieso, R.; Marx, B.D.; Gaiser, E.; Farfan, L.M. Assessment of Everglades mangrove forest resilience: Implications for above-ground net primary productivity and carbon dynamics. For. Ecol. Manag. 2017, 404, 115–125. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2015; p. 736. [Google Scholar]
- Rivera-Monroy, V.H.; Lee, S.Y.; Kristensen, E.; Twilley, R.R. Mangrove Ecosystems: A Global Biogeographic Perspective; Springer: New York, NY, USA, 2017; p. 397. [Google Scholar]
- Kristensen, E.; Connolly, R.M.; Otero, X.L.; Marchand, M.; Ferreira, T.O.; Rivera-Monroy, V.H. Chapter 11. Biogeochemical cycles: Global approaches and perspectives. In Mangrove Ecosystems: A Global Biogeographic Perspective Structure, Function and Ecosystem Services; Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E., Twilley, R.R., Eds.; Springer: New York, NY, USA, 2017; pp. 163–219. [Google Scholar]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef]
- Duke, N.C. Mangrove Floristics and Biogeography Revisited: Further Deductions from Biodiversity Hot Spots, Ancestral Discontinuities, and Common Evolutionary Processes. In Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services; Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E., Twilley, R.R., Eds.; Springer: Cham, Switzerland, 2017; pp. 17–53. [Google Scholar] [CrossRef]
- Pérez-Ceballos, R.; Zaldívar-Jiménez, A.; Canales-Delgadillo, J.; López-Adame, H.; López-Portillo, J.; Merino-Ibarra, M. Determining hydrological flow paths to enhance restoration in impaired mangrove wetlands. PLoS ONE 2020, 15, e0227665. [Google Scholar] [CrossRef] [Green Version]
- Twilley, R.R.; Rivera-Monroy, V.H.; Rovai, A.S.; Castañeda-Moya, E.; Davis, S. Chapter 21—Mangrove Biogeochemistry at Local to Global Scales Using Ecogeomorphic Approaches. In Coastal Wetlands; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 717–785. [Google Scholar] [CrossRef]
- Medina-Calderón, J.H.; Mancera-Pineda, J.E.; Castañeda-Moya, E.; Rivera-Monroy, V.H. Hydroperiod and Salinity Interactions Control Mangrove Root Dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia). Front. Mar. Sci. 2021, 7, 1194. [Google Scholar] [CrossRef]
- Lucas, R.; Lule, A.V.; Rodríguez, M.T.; Kamal, M.; Thomas, N.; Asbridge, E.; Kuenzer, C. Spatial Ecology of Mangrove Forests: A Remote Sensing Perspective; Springer International Publishing: Cham, Switzerland, 2017; pp. 87–112. [Google Scholar] [CrossRef]
- Lugo, A.E.; Medina, E.; McGinley, K. Issues and challenges of Mangrove conservation in the Anthropocene. Madera Y Bosques 2014, 20, 11–38. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Monroy, V.H.; Twiley, R.R.; Mancera-Pineda, J.E.; Madden, C.J.; Alcantara-Eguren, A.; Moser, E.B.; Jonsson, B.R.; Castañeda-Moya, E.; Casas-Monroy, O.; Reyes-Forero, P.; et al. Salinity and Chlorophyll a as Performance Measures to Rehabilitate a Mangrove-Dominated Deltaic Coastal Region: The Ciénaga Grande de Santa Marta-Pajarales Lagoon Complex, Colombia. Estuar. Coasts 2011, 34, 1–19. [Google Scholar] [CrossRef]
- Torres-Guevara, L.E.; Schlüter, A.; Claudia Lopez, C.M. Collective action in a tropical estuarine lagoon: Adapting Ostrom’s SES framework to Ciénaga Grande de Santa Marta, Colombia. Int. J. Commons 2016, 10, 334–362. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, F.; Brown, I.; Castellazzi, P.; Espinosa, L.; Guittard, A.; Hong, S.H.; Rivera-Monroy, V.H.; Wdowinski, S. Assessment of hydrologic connectivity in an ungauged wetland with InSAR observations. Environ. Res. Lett. 2018, 13, 024003. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.H.; López-Portillo, J.; Velázquez-Salazar, S.; Alcántara-Maya, J.A.; Troche-Souza, C.; Rodríguez-Zúñiga, M.T.; Vázquez-Balderas, B.; Villeda-Chávez, E.; Cruz-López, M.I.; Ressl, R. Regional Distribution and Change Dynamics of Mangroves in México between 1970/80 and 2015. Wetlands 2020, 40, 1295–1305. [Google Scholar] [CrossRef]
- Duke, N.C.; Kovacs, J.M.; Griffiths, A.D.; Preece, L.; Hill, D.J.E.; Van Oosterzee, P.; Mackenzie, J.; Morning, H.S.; Burrows, D. Large-scale dieback of mangroves in Australia. Mar. Freshw. Res. 2017, 68, 1816. [Google Scholar] [CrossRef]
- Sklar, F.H.; Chimney, M.J.; Newman, S.; McCormick, P.; Gawlik, D.; Miao, S.L.; McVoy, C.; Said, W.; Newman, J.; Coronado, C.; et al. The ecological-societal underpinnings of Everglades restoration. Front. Ecol. Environ. 2005, 3, 161–169. [Google Scholar]
- Rivera-Monroy, V.H.; Twilley, R.R.; Davis, S.E.; Childers, D.L.; Simard, M.; Chambers, R.; Jaffe, R.; Boyer, J.N.; Rudnick, D.T.; Zhang, K.; et al. The Role of the Everglades Mangrove Ecotone Region (EMER) in Regulating Nutrient Cycling and Wetland Productivity in South Florida. Crit. Rev. Environ. Sci. Technol. 2011, 41, 633–669. [Google Scholar] [CrossRef]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castaneda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Simard, M.; Rivera-Monroy, V.H.; Mancera-Pineda, J.E.; Castaneda-Moya, E.; Twilley, R.R. A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: Application to Cienaga Grande de Santa Marta, Colombia. Remote Sens. Environ. 2008, 112, 2131–2144. [Google Scholar] [CrossRef]
- Simard, M.; Zhang, K.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castañeda-Moya, E.; Twilley, R.R.; Rodriguez, E. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [Google Scholar] [CrossRef]
- Berger, U.; Rivera-Monroy, V.H.; Doyle, T.W.; Dahdouh-Guebas, F.; Duke, N.C.; Fontalvo-Herazo, M.L.; Hildenbrandt, H.; Koedam, N.; Mehlig, U.; Piou, C. Advances and limitations of individual-based models to analyze and predict dynamics of mangrove forests: A review. Aquat. Bot. 2008, 89, 260–274. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.C.; Rivera-Monroy, V.H.; Wang, H.Q.; Xue, Z.G.; Tsai, C.F.; Willson, C.S.; Castaneda-Moya, E.; Twilley, R.R. Modeling soil porewater salinity in mangrove forests (Everglades, Florida, USA) impacted by hydrological restoration and a warming climate. Ecol. Model. 2020, 436, 109292. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Main report; FAO: Rome, Italy, 2020. [Google Scholar]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of emergent and submerged wetlands: An overview. Int. J. Remote Sens. 2013, 34, 6286–6320. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 2008, 35, 519–528. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Tang, W.; Zheng, M.; Zhao, X.; Shi, J.; Yang, J.; Trettin, C. Big Geospatial Data Analytics for Global Mangrove Biomass and Carbon Estimation. Sustainability 2018, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F. Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote Sens. Environ. 2020, 237, 111543. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Andrefouet, S.; Cohen, W.B.; Gomez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; et al. Bringing an ecological view of change to Landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar] [CrossRef]
- Djenontin, I.N.S.; Meadow, A.M. The art of co-production of knowledge in environmental sciences and management: Lessons from international practice. Environ. Manag. 2018, 61, 885–903. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-T.; Zhou, Y.-X.; Tian, B. Coastal wetlands facing climate change and anthropogenic activities: A remote sensing analysis and modelling application. Ocean. Coast. Manag. 2017, 138, 1–10. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of wetlands: Case studies comparing practical techniques. J. Coast. Res. 2011, 27, 418–427. [Google Scholar] [CrossRef]
- Moffett, K.; Nardin, W.; Silvestri, S.; Wang, C.; Temmerman, S. Multiple Stable States and Catastrophic Shifts in Coastal Wetlands: Progress, Challenges, and Opportunities in Validating Theory Using Remote Sensing and Other Methods. Remote Sens. 2015, 7, 10184–10226. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yang, Z.; Chen, C.; Tian, B. Tracking the environmental impacts of ecological engineering on coastal wetlands with numerical modeling and remote sensing. J. Environ. Manag. 2022, 302, 113957. [Google Scholar] [CrossRef] [PubMed]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Wang, H.Q.; Steyer, G.D.; Couvillion, B.R.; Beck, H.J.; Rybczyk, J.M.; Rivera-Monroy, V.H.; Krauss, K.W.; Visser, J.M. Predicting landscape effects of Mississippi River diversions on soil organic carbon sequestration. Ecosphere 2017, 8, e01984. [Google Scholar] [CrossRef] [Green Version]
- Velázquez-Salazar, S.; Rodríguez-Zúñiga, M.T.; Alcántara-Maya, J.A.; Villeda-Chávez, E.; Valderrama-Landeros, L.; Troche-Souza, C.; Vázquez-Balderas, B.; Pérez-Espinosa, I.; Cruz-López, M.I.; Ressl, R.; et al. Manglares de México. Actualización y Análisis de los datos 2020; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad México City: México City, Mexico, 2021; p. 168.
- CONABIO. Sitios de Manglar Con Relevancia Biológica Y Con Necesidades de Rehabilitación Ecológica (Escala: 1:50000); Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Sistema de Monitoreo de los Manglares de México (SMMM): Mexico City, Mexico, 2009; p. 50.
- Rodríguez-Zúñiga, M.T.; Troche-Souza, C.; Vázquez-Lule, A.D.; Márquez-Mendoza, J.D.; Vázquez-Balderas, B.; Valderrama-Landeros, L.; Velázquez-Salazar, S.; Cruz-López, M.I.; Ressl, R.; Uribe-Martínez, A.; et al. Manglares de México/Extensión, Distribución y Monitoreo; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2013; p. 128.
- Valderrama-Landeros, L.H.; Rodríguez-Zúñiga, M.T.; Troche-Souza, C.; Velázquez-Salazar, S.; Villeda-Chávez, E.; Alcántara-Maya, J.A.; Vázquez-Balderas, B.; Cruz-López, M.I.; Ressl, R. Manglares de México: Actualización y Exploración de los datos del Sistema de Monitoreo 1970/1980–2015; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2017; p. 128.
- Eisenhauer, E.; Williams, K.C.; Margeson, K.; Paczuski, S.; Hano, M.C.; Mulvaney, K. Advancing translational research in environmental science: The role and impact of social sciences. Environ. Sci. Policy 2021, 120, 165–172. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Translational Ecology. Science 2010, 329, 609. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, C.J.; Carmen Lemos, M.; Dessai, S. Actionable Knowledge for Environmental Decision Making: Broadening the Usability of Climate Science. Annu. Rev. Environ. Resour. 2013, 38, 393–414. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Kellner, J.R.; Forde, A.J.; Gruner, D.S.; Parker, J.D.; Rodriguez, W.; Feller, I.C. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 2014, 111, 723–727. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Monroy, V.H.; Osland, M.J.; Day, J.W.; Ray, S.; Rovai, A.S.; Day, R.H.; Mukherjee, J. Advancing Mangrove Macroecology. In Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function and Ecosystem Services; Rivera-Monroy, V.H., Kristensen, E., Lee, S.Y., Twilley, R.R., Eds.; Springer: New York, NY, USA, 2017; pp. 347–371. [Google Scholar]
- Godoy, M.D.P.; Lacerda, L.D.D. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution. Acad Bras Cienc 2015, 87, 651–667. [Google Scholar] [CrossRef] [Green Version]
- Watson, E.; Hinojosa Corona, A. Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts. Sensors 2017, 18, 32. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, F.V.L. Mangrove Concessions: An Innovative Strategy for Community Mangrove Conservation in Ecuador; Springer: Cham, Switzerland, 2018; pp. 557–578. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, J.A.; Mancera-Pineda, J.E.; Tavera, H. Mangrove restoration in Colombia: Trends and lessons learned. For. Ecol. Manag. 2021, 496, 119414. [Google Scholar] [CrossRef]
- Lizano, O.G.; Amador, J.; Soto, R. Mangrove characterization of Central America with remote sensors. Rev. Biol. Trop. 2001, 49 (Suppl. S2), 331–340. [Google Scholar] [PubMed]
- Ferreira, A.C.; Lacerda, L.D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean. Coast. Manag. 2016, 125, 38–46. [Google Scholar] [CrossRef]
- Sales, E.; Rodas, O.; Valenzuela, O.; Hillbrand, A.; Sabogal, C. On the way to restore Guatemala’s degraded lands: Creating governance conditions. World Dev. Perspect. 2016, 4, 16–18. [Google Scholar] [CrossRef]
- Sherman, R.E.; Timothy, F.; Martinez, P. Spatial Patterns of Biomass and Aboveground Net Primary Productivity in a Mangrove Ecosystem in the Dominican Republic. Ecosystems 2003, 6, 384–398. [Google Scholar] [CrossRef]
- Lacerda, L.D.; Borges, R.; Ferreira, A.C. Neotropical mangroves: Conservation and sustainable use in a scenario of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 1347–1364. [Google Scholar] [CrossRef]
- Simenstad, C.A.; Reed, D.J.; Ford, M.A. When is restoration not?: Incorporating landscape-scale processes to restore self-sustaining ecosystems in coastal wetland restoration. Ecol. Eng. 2006, 26, 27–39. [Google Scholar] [CrossRef]
- Calderon-Aguilera, L.E.; Rivera-Monroy, V.H.; Porter-Bolland, L.; Martínez-Yrízar, A.; Ladah, L.B.; Martínez-Ramos, M.; Alcocer, J.; Santiago-Pérez, A.L.; Hernandez-Arana, H.A.; Reyes-Gómez, V.M. An assessment of natural and human disturbance effects on Mexican ecosystems: Current trends and research gaps. Biodivers. Conserv. 2012, 21, 589–617. [Google Scholar] [CrossRef]
- Fuller, T.; Sánchez-Cordero, V.; Illoldi-Rangel, P.; Linaje, M.; Sarkar, S. The cost of postponing biodiversity conservation in Mexico. Biol. Conserv. 2007, 134, 593–600. [Google Scholar] [CrossRef]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef]
- Pontifes, P.A.; García-Meneses, P.M.; Gómez-Aíza, L.; Monterroso-Rivas, A.I.; Caso Chávez, M. Land use/land cover change and extreme climatic events in the arid and semi-arid ecoregions of Mexico. Atmósfera 2018, 31, 355–372. [Google Scholar] [CrossRef] [Green Version]
- Cuervo-Robayo, A.P.; Ureta, C.; Gómez-Albores, M.A.; Meneses-Mosquera, A.K.; Téllez-Valdés, O.; Martínez-Meyer, E. One hundred years of climate change in Mexico. PLoS ONE 2020, 15, e0209808. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Rodríguez, S.; Barba-Macías, E.; Infante Mata, D.; Nava-López, M.; Neri-Flores, I.; Domínguez Varela, R.; González Mora, I. What Do Environmental Flows Mean for Long-term Freshwater Ecosystems’ Protection? Assessment of the Mexican Water Reserves for the Environment Program. Sustainability 2021, 13, 1240. [Google Scholar] [CrossRef]
- Gochis, D.J.; Brito-Castillo, L.; Shuttleworth, W.J. Hydroclimatology of the North American Monsoon region in northwest Mexico. J. Hydrol. 2006, 316, 53–70. [Google Scholar] [CrossRef]
- González-Ramírez, J.; Parés-Sierra, A. Streamflow modeling of five major rivers that flow into the Gulf of Mexico using SWAT. Atmósfera 2019, 32, 261–272. [Google Scholar] [CrossRef]
- Rivera-Monroy, V.H.; Farfan, L.M.; Brito-Castillo, L.; Cortes-Ramos, J.; Gonzalez-Rodriguez, E.; D’Sa, E.J.; Euan-Avila, J.I. Tropical Cyclone Landfall Frequency and Large-Scale Environmental Impacts along Karstic Coastal Regions (Yucatan Peninsula, Mexico). Appl. Sci.-Basel 2020, 10, 5815. [Google Scholar] [CrossRef]
- Camacho-Ibar, V.F.; Rivera-Monroy, V.H. Coastal Lagoons and Estuaries in Mexico: Processes and Vulnerability. Estuaries Coasts 2014, 37, 1313–1318. [Google Scholar] [CrossRef] [Green Version]
- Farfan, L.M.; D’Sa, E.J.; Liu, K.-B.; Rivera-Monroy, V.H. Tropical Cyclone Impacts on Coastal Regions: The Case of the Yucatan and the Baja California Peninsulas, Mexico. Estuaries Coasts 2014, 37, 1388–1402. [Google Scholar] [CrossRef]
- Castañeda-Moya, E.; Rivera-Monroy, V.H.; Chambers, R.M.; Zhao, X.C.; Lamb-Wotton, L.; Gorsky, A.; Gaiser, E.E.; Troxler, T.G.; Kominoski, J.S.; Hiatt, M. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. USA 2020, 117, 4831–4841. [Google Scholar] [CrossRef]
- Zhao, X.; Rivera-Monroy, V.H.; Farfán, L.M.; Briceño, H.; Castañeda-Moya, E.; Travieso, R.; Gaiser, E.E. Tropical cyclones cumulatively control regional carbon fluxes in Everglades mangrove wetlands (Florida, USA). Sci. Rep. 2021, 11, 13927. [Google Scholar] [CrossRef]
- CONABIO. Distribución de los manglares en México en 2020, escala: 1:50000; CONABIO: Ciudad de México, México, 2020.
- INEGI. Localidades de la República Mexicana 2020; INEGI: Aguascalientes, México, 2020.
- CONABIO. ’Curvas de nivel para la República Mexicana’. Escala 1:250,000. Extraído del Modelo Digital del Terreno; CONABIO: Ciudad de México, México, 1998.
- García, E. ’Climas’ (clasificación de Köppen, modificado por García). Escala 1:1,000,000; CONABIO: Ciudad de México, México, 1998.
- INEGI, CONABIO, INE. Ecorregiones Terrestres de México. Escala 1:1000000; INEGI, CONABIO, INE: Ciudad de México, México, 2007. [Google Scholar]
- Rodríguez-Zúñiga, M.T.; Troche-Souza, C.; Vázquez-Lule, A.D.; Márquez-Mendoza, J.D.; Vázquez- Balderas, B.; Valderrama-Landeros, L.; Velázquez-Salazar, S.; Uribe-Martínez, A.; Acosta-Velázquez, J.; Díaz-Gallegos, J.; et al. Los Manglares de México: Estado Actual Y Establecimiento de un Programa de Monitoreo A Largo Plazo: 2ª y 3era Etapas. Informe Final SNIB-CONABIO Proyecto No. GQ004; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2012.
- CONANP. Areas Naturales Protegidas Federales de México; CONANP: Morelia, México, 2008.
- CONANP. Sitios Ramsar en México; CONANP: Michoacán, México, 2008. [Google Scholar]
- CONABIO. Modelo Digital del Terreno de México. Extraido de los datos del CEM-INEGI, Escala 1:50,000; CONABIO: Ciudad de México, México, 2005.
- INEGI. Datos Vectoriales de la Carta de Uso de Suelo y Vegetación, Serie I, Escala 1:250,000; INE, INEGI: Mexico City, Mexico, 1999.
- Valderrama, L.; Troche, C.; Rodriguez, M.T.; Marquez, D.; Vázquez, B.; Velázquez, S.; Vázquez, A.; Cruz, M.I.; Ressl, R. Evaluation of Mangrove Cover Changes in Mexico During the 1970–2005 Period. Wetlands 2014, 34, 747–758. [Google Scholar] [CrossRef]
- Osland, M.J.; Feher, L.C.; Lopez-Portillo, J.; Day, R.H.; Suman, D.O.; Menendez, J.M.G.; Rivera-Monroy, V.H. Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci. 2018, 214, 120–140. [Google Scholar] [CrossRef]
- Hernandez, C.T.; de la Lanza Espino, G. Ecologia, Produccion y Aprovechamiento del Mangle Conocarpus erectus L., en Barra de Tecoanapa Guerrero, Mexico. Biotropica 1999, 31, 121. [Google Scholar] [CrossRef]
- Santamaría-Damián, S.; Romero-Berny, E.I.; Tovilla-Hernández, C.; Gallegos-Martínez, M.E. Recent records of Avicennia bicolor (Acanthaceae) on the Mexican Pacific coast with notes on its distribution and conservation status. Hidrobiológica 2019, 29, 197–202. [Google Scholar] [CrossRef]
- Nettel, A.; Dodd, R.S.; Cid-Becerra, J.A.; De La Rosa-Velez, J. Ten new microsatellite markers for the buttonwood mangrove (Conocarpus erectus L., Combretaceae). Mol. Ecol. Resour. 2008, 8, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Gray, V.R. Rhizophora harrisonii. (Rhizophoraceae), un nuevo registro para las costas de Mexico. B Soc. Bot. Mex. 1981, 41, 163–165. [Google Scholar] [CrossRef] [Green Version]
- Yarrow, M.M.; Salthe, S.N. Ecological boundaries in the context of hierarchy theory. Biosystems 2008, 92, 233–244. [Google Scholar] [CrossRef]
- Wu, J. From balance of nature to hierarchical patch dynamics: A paradigma shift in ecology. Q. Rev. Biol. 1995, 70, 439–466. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Hierarchy Theory: An Overview; Springer: Dordrecht, The Netherlands, 2013; pp. 281–301. [Google Scholar] [CrossRef]
- Lugo, A.; Snedaker, S.C. The Ecology of Mangroves. Annu. Rev. Ecol. Syst. 1974, 5, 39–64. [Google Scholar] [CrossRef]
- Twilley, R.R.; Rivera-Monroy, V.H. Ecogeomorphic Models of Nutrient Biogeochemistry for Mangrove Wetlands In Coastal Wetlands: An Integrated Ecosystem Approach; Perillo, G.M., Wolanski, E., Cahoon, D.R., Brinson, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 641–683. [Google Scholar]
- Sharma, R.; Hara, K. Characterization of Vegetation Physiognomic Types Using Bidirectional Reflectance Data. Geosciences 2018, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.B.; Crews, K.A. Mapping vegetation morphology types in a dry savanna ecosystem: Integrating hierarchical object-based image analysis with Random Forest. Int. J. Remote Sens. 2014, 35, 1175–1198. [Google Scholar] [CrossRef]
- Muchoney, D.; Strahler, A. Regional vegetation mapping and direct land surface parameterization from remotely sensed and site data. Int. J. Remote Sens. 2002, 23, 1125–1142. [Google Scholar] [CrossRef]
- eoPortal Directory. SPOT-5. Available online: https://earth.esa.int/web/eoportal/satellite-missions/s/spot-5 (accessed on 5 February 2022).
- Wikipedia. Sentinel-2. Available online: https://en.wikipedia.org/wiki/Sentinel-2 (accessed on 5 February 2022).
- GIS Lounge. Landsat 8. Available online: https://www.gislounge.com/landsat-8/ (accessed on 5 February 2022).
- Geoimag. Available online: https://www.geoimage.com.au/satellites-sensors/worldview-2/ (accessed on 5 February 2022).
- López-Portillo, J.; Ezcurra, E.; Mass, J.M. Los petenes de Sian Ka’an, Quintana Roo y su relación con gradientes de presión hídrica. Acta Bot. Mex. 1989, 5, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.; D’Odorico, P.; Engel, V.; Redwine, J. Tree island pattern formation in the Florida Everglades. Ecol. Complex. 2016, 26, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Duran-Garcia, R. Diversidad floristica de los Petenes de Campeche. Acta Bot. Mex. 1995, 31, 73–84. [Google Scholar] [CrossRef]
- Lugo, A.E. The inland mangroves of Inagua. J. Nat. Hist. 1981, 15, 845–852. [Google Scholar] [CrossRef]
- Woodroffe, C.D. Coasts: Form, Process and Evolution, 1st ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Fatoyinbo, T.; Feliciano, E.A.; Lagomasino, D.; Lee, S.K.; Trettin, C. Estimating mangrove aboveground biomass from airborne LiDAR data: A case study from the Zambezi River delta. Environ. Res. Lett. 2018, 13, 025012. [Google Scholar] [CrossRef] [Green Version]
- Fatoyinbo, T.E.; Simard, M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. Int. J. Remote Sens. 2013, 34, 668–681. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Lee, S.; Feliciano, E.; Trettin, C.; Simard, M. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space. Remote Sens. 2016, 8, 372. [Google Scholar] [CrossRef] [Green Version]
- Quoc Vo, T.; Kuenzer, C.; Oppelt, N. How remote sensing supports mangrove ecosystem service valuation: A case study in Ca Mau province, Vietnam. Ecosyst. Serv. 2015, 14, 67–75. [Google Scholar] [CrossRef]
- Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Tekeuchi, W. A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. Isprs. J. Photogramm. 2018, 146, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Wang, Z.; Wang, C.; Mao, D.; Zhang, Y. A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery. Remote Sens. 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
- Purwanto, A.D.; Asriningrum, W. Identification of magnrove forests using multispectral satellite imageries. Int. J. Remote Sens. Earth Sci. 2019, 16, 63. [Google Scholar] [CrossRef]
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sens. 2020, 12, 3120. [Google Scholar] [CrossRef]
- Zhao, C.P.; Qin, C.Z. A detailed mangrove map of China for 2019 derived from Sentinel-1 and -2 images and Google Earth images. Geosci. Data J. 2021. [Google Scholar] [CrossRef]
- Manna, S.; Raychaudhuri, B. Mapping distribution of Sundarban mangroves using Sentinel-2 data and new spectral metric for detecting their health condition. Geocarto Int. 2020, 35, 434–452. [Google Scholar] [CrossRef]
- FAO. Forest Resources Assessment 1990: Survey of Tropical Forest Cover and Study of Change Processes; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996. [Google Scholar]
- Leyca-Geosystems. ERDAS Imagine Tour Guides-GIS & Mapping; Leyca Geosystems Geospatial Imaging, LLC: Atlanta, GA, USA, 2003; p. 730. [Google Scholar]
- Brodu, N. Super-Resolving Multiresolution Images With Band-Independent Geometry of Multispectral Pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610–4617. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Ruiz-Luna, A.; Escobar, A.C.; Berlanga-Robles, C. Assessing Distribution Patterns, Extent, and Current Condition of Northwest Mexico Mangroves. Wetlands 2010, 30, 717–723. [Google Scholar] [CrossRef]
- Ruiz-Ramirez, J.D.; Euan-Avila, J.I.; Rivera-Monroy, V.H. Vulnerability of Coastal Resort Cities to Mean Sea Level Rise in the Mexican Caribbean. Coast. Manag. 2019, 47, 23–43. [Google Scholar] [CrossRef]
- Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C.; et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [Google Scholar] [CrossRef]
- Manez, K.S.; Krause, G.; Ring, I.; Glaser, M. The Gordian knot of mangrove conservation: Disentangling the role of scale, services and benefits. Glob. Environ. Change-Hum. Policy Dimens. 2014, 28, 120–128. [Google Scholar] [CrossRef]
- Sarukhán, J.; Urquiza-Haas, T.; Koleff, P.; Carabias, J.; Dirzo, R.; Ezcurra, E.; Cerdeira-Estrada, S.; Soberón, J. Strategic Actions to Value, Conserve, and Restore the Natural Capital of Megadiversity Countries: The Case of Mexico. BioScience 2015, 65, 164–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarukhán, J.; Jiménez, R. Generating intelligence for decision making and sustainable use of natural capital in Mexico. Curr. Opin. Environ. Sustain. 2016, 19, 153–159. [Google Scholar] [CrossRef]
- Soberon, J.M.; Sarukhan, J.K. A new mechanism for science-policy transfer and biodiversity governance? Environ. Conserv. 2009, 36, 265–267. [Google Scholar] [CrossRef] [Green Version]
- CONABIO. Biodiversidad Mexicana. Available online: https://www.biodiversidad.gob.mx/ (accessed on 20 December 2021).
- Sarukhán, J.; Koleff, P.; Carabias, J.; Soberon, J.; Dirzo, R.; Llorente-Bousquets, J.; Halfter, G.; Gonzales, R.; March, I.; Mohar, A.; et al. Capital Natural de México-Síntesis: Conocimiento Actual, Evaluación y Perspectivas de Sustentabilidad; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2009; p. 100.
- Rodríguez-Zúñiga, M.T.; Villeda-Chávez, E.; Vázquez-Lule, A.D.; Bejarano, M.; Cruz-López, M.I.; Olguín, M.; Villela Gaytán, S.A.; Flores, R. Métodos Para la Caracterización de los Manglares Mexicanos: Un Enfoque Espacial Multiescala; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Ciudad de México, México, 2018; p. 272.
- Velázquez-Salazar, S.; Valderrama-Landeros, L.H.; Rodríguez-Zúñiga, M.T.; Cruz-López, M.I. Anthropization in the coastal zone associated with Mexican mangroves (2005–2015). Environ. Monit. Assess. 2019, 191, 521. [Google Scholar] [CrossRef]
- Rivera-Arriaga, E.; Villalobos, G. The coast of Mexico: Approaches for its management. Ocean. Coast. Manag. 2001, 44, 729–756. [Google Scholar] [CrossRef]
- Castañeda-Moya, E.; Twilley, R.R.; Rivera-Monroy, V.H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For. Ecol. Manag. 2013, 307, 226–241. [Google Scholar] [CrossRef]
- Lara-Domínguez, A.L.; Day, J.W.; Zapata, G.V.; Twilley, R.R.; Guillén, H.A.; Yáñez-Arancibia, A. Structure of a unique inland mangrove forest assemblage in fossil lagoons on the Caribbean Coast of Mexico. Wetl. Ecol. Manag. 2005, 13, 111–122. [Google Scholar] [CrossRef]
- Castañeda-Moya, E.; Rivera-Monroy, V.H.; Twilley, R.R. Mangrove zonation in the dry life zone of the Gulf of Fonseca, Honduras. Estuaries Coasts 2006, 29, 751–764. [Google Scholar] [CrossRef]
- Ochoa-Gomez, J.G.; Lluch-Cota, S.E.; Rivera-Monroy, V.H.; Lluch-Cota, D.B.; Troyo-Dieguez, E.; Oechel, W.; Serviere-Zaragoza, E. Mangrove wetland productivity and carbon stocks in an arid zone of the Gulf of California (La Paz Bay, Mexico). For. Ecol. Manag. 2019, 442, 135–147. [Google Scholar] [CrossRef]
- Clinton, N.; Stuhlmacher, M.; Miles, A.; Uludere Aragon, N.; Wagner, M.; Georgescu, M.; Herwig, C.; Gong, P. A Global Geospatial Ecosystem Services Estimate of Urban Agriculture. Earth’s Future 2018, 6, 40–60. [Google Scholar] [CrossRef]
- Fawcett, D.; Bennie, J.; Anderson, K. Monitoring spring phenology of individual tree crowns using drone-acquired NDVI data. Remote Sens. Ecol. Conserv. 2021, 7, 227–244. [Google Scholar] [CrossRef]
- Fawcett, D.; Panigada, C.; Tagliabue, G.; Boschetti, M.; Celesti, M.; Evdokimov, A.; Biriukova, K.; Colombo, R.; Miglietta, F.; Rascher, U.; et al. Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sens. 2020, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Shumway, R.H.; Stoffer, D. Time Series Analysis and Its Applications: With R Examples; Springer: New York, NY, USA, 2017. [Google Scholar]
- Yancho, J.; Jones, T.; Gandhi, S.; Ferster, C.; Lin, A.; Glass, L. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sens. 2020, 12, 3758. [Google Scholar] [CrossRef]
- Quintero-Morales, M.A.; Plata-Rocha, W.; Monjardín-Armenta, S.A.; Olimón-Andalón, V.; Torres-Montoya, E.H. Geospatial Simulation Model of Sustainable Mangrove Development Scenarios for the Years 2030 and 2050 in Marismas Nacionales, Mexico. Sustainability 2021, 13, 9551. [Google Scholar] [CrossRef]
- Flores-Verdugo, F.; Amezcua, F.; Kovacs, J.M.; Serrano, D.; Blanco-Correa, M. Changes in the Hydrological Regime of Coastal Lagoons Affect Mangroves and Small Scale Fisheries: The Case of the Mangrove-Estuarine Complex of Marismas Nacionales (Pacific Coast of Mexico); Springer: Dordrecht, The Netherlands, 2014; pp. 81–91. [Google Scholar] [CrossRef]
- Adame, M.F.; Zaldívar-Jimenez, A.; Teutli, C.; Caamal, J.P.; Andueza, M.T.; López-Adame, H.; Cano, R.; Hernández-Arana, H.A.; Torres-Lara, R.; Herrera-Silveira, J.A. Drivers of Mangrove Litterfall within a Karstic Region Affected by Frequent Hurricanes. Biotropica 2013, 45, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nat. Commun. 2021, 12, 7027. [Google Scholar] [CrossRef]
- Goni, G.; Demaria, M.; Knaff, J.; Sampson, C.; Ginis, I.; Bringas, F.; Mavume, A.; Lauer, C.; Lin, I.I.; Ali, M.M.; et al. Applications of Satellite-Derived Ocean Measurements to Tropical Cyclone Intensity Forecasting. Oceanography 2009, 22, 190–197. [Google Scholar] [CrossRef]
- Svejkovsky, J.; Ogurcak, D.E.; Ross, M.S.; Arkowitz, A. Satellite Image-Based Time Series Observations of Vegetation Response to Hurricane Irma in the Lower Florida Keys. Estuaries Coasts 2020, 43, 1058–1069. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Dash, J.; Atkinson, P.M. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens. Environ. 2018, 205, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Valderrama-Landeros, L.; Flores-De-Santiago, F.; Kovacs, J.M.; Flores-Verdugo, F. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme. Environ. Monit. Assess. 2018, 190, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Valderrama-Landeros, L.; Blanco Y Correa, M.; Flores-Verdugo, F.; Álvarez-Sánchez, L.F.; Flores-De-Santiago, F. Spatiotemporal shoreline dynamics of Marismas Nacionales, Pacific coast of Mexico, based on a remote sensing and GIS mapping approach. Environ. Monit. Assess. 2020, 192, 23. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.H.; Martell-Dubois, R.; Ressl, R.; Silva-Casarín, R.; Cruz-Ramírez, C.J.; Muñoz-Pérez, J.J. Dynamics of coastline changes in Mexico. J. Geogr. Sci. 2019, 29, 1637–1654. [Google Scholar] [CrossRef] [Green Version]
- Krauss, K.W.; McKee, K.L.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2014, 202, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Saintilan, N.; Khan, N.S.; Ashe, E.; Kelleway, J.J.; Rogers, K.; Woodroffe, C.D.; Horton, B.P. Thresholds of mangrove survival under rapid sea level rise. Science 2020, 368, 1118–1121. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Rogers, K.; McKee, K.L.; Lovelock, C.E.; Mendelssohn, I.A.; Saintilan, N. Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annu. Rev. Mar. Sci. 2016, 8, 243–266. [Google Scholar] [CrossRef] [Green Version]
- Thinh, N.A.; Hens, L. A Digital Shoreline Analysis System (DSAS) applied on mangrove shoreline changes along the Giao Thuy coastal area (Nam Dinh, Vietnam) during 2005-2014. Vietnam. J. Earth Sci. 2017, 39, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; U.S. Geological Survey: Reston, VA, USA, 2009.
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [Green Version]
- Uroy, L.; Ernoult, A.; Mony, C. Effect of landscape connectivity on plant communities: A review of response patterns. Landsc. Ecol. 2019, 34, 203–225. [Google Scholar] [CrossRef]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; de Snoo, G.R.; Eden, P. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Rovai, A.S.; Riul, P.; Twilley, R.R.; Castaneda-Moya, E.; Rivera-Monroy, V.H.; Williams, A.A.; Simard, M.; Cifuentes-Jara, M.; Lewis, R.R.; Crooks, S.; et al. Scaling mangrove aboveground biomass from site-level to continental-scale. Glob. Ecol. Biogeogr. 2016, 25, 286–298. [Google Scholar] [CrossRef]
- Moreno-Casasola, P.; Cejudo-Espinosa, E.; Capistrán-Barradas, A.; Infante-Mata, D.; López-Rosas, H.; Castillo-Campos, G.; Pale-Pale, J.; Campos-Cascaredo, A. Floristic composition, diversity and ecology of freshwater marshes in the central coastal plain of Veracruz, Mexico. Bot. Sci. 2010, 87, 29. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Casasola, P.; Rosas, H.L.; Mata, D.I.; Peralta, L.A.; Travieso-Bello, A.C.; Warner, B.G. Environmental and anthropogenic factors associated with coastal wetland differentiation in La Mancha, Veracruz, Mexico. Plant Ecol. 2009, 200, 37–52. [Google Scholar] [CrossRef]
- Agraz-Hernández, C.M.; Chan-Keb, C.A.; Muñiz-Salazar, R.; Pérez-Balan, R.A.; Osti-Sáenz, J.; Gutiérrez-Alcántara, E.J.; Reyes-Castellano, J.E.; May-Colli, L.O.; Conde-Medina, K.P.; Ruiz-Hernández, J. Relationship between blue carbon and methane and the hydrochemistry of mangroves in South East Mexico. Appl. Ecol. Environ. Res. 2020, 18, 1091–1106. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Saura, S.; Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 2010, 33, 523–537. [Google Scholar] [CrossRef]
- Zamora-Crescencio, P.; Mas, J.-F.; Rico-Gray, V.; Domínguez-Carrasco, M.R.; Villegas, P.; Gutiérrez-Báez, C.; Barrientos-Medina, R.C. Arboreal compostition and structure of the Petenes of the Petenes Biosphere Reserve, Campeche, Mexico. Polibotanica 2015, 39, 1–19. [Google Scholar]
- Chan-Keb, C.; Agraz-Hernández, C.; Muñiz-Salazar, R.; Posada-Vanegas, G.; Osti-Sáenz, J.; Reyes Castellano, J.; Conde-Medina, K.; Vega-Serratos, B. Ecophysiological Response of Rhizophora mangle to the Variation in Hydrochemistry during Five Years along the Coast of Campeche, México. Diversity 2018, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- INEGI. CENSO SCINCE. 2020. Available online: https://censo2020.mx/ (accessed on 18 December 2021).
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- López-Portillo, J.; Zaldívar-Jiménez, A.; Lara-Domínguez, A.L.; Pérez-Ceballos, R.; Bravo-Mendoza, M.; Núñez Álvarez, N.; Aguirre-Franco, L. Hydrological Rehabilitation and Sediment Elevation as Strategies to Restore Mangroves in Terrigenous and Calcareous Environments in Mexico. In Wetland Carbon and Environmental Management; Krauss, K.W., Zhu, Z., Stagg, C.L., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 173–190. [Google Scholar]
- Wilson, M.H.; Ryan, D.G. Conservation of Mexican wetlands: Role of the North American Wetlands Conservation Act. Wildl. Soc. Bull. 1997, 25, 57–64. [Google Scholar]
- Pérez-Arteaga, A.; Gaston, K.J.; Kershaw, M. Undesignated sites in Mexico qualifying as wetlands of international importance. Biol. Conserv. 2002, 107, 47–57. [Google Scholar] [CrossRef]
- CONABIO. Manglares de México. Available online: https://www.youtube.com/watch?v=PQNYItdkiV0 (accessed on 18 December 2021).
- AMEXID. Informe Final del Proyecto “Intercambios de Conocimientos en el Uso de Datos de Satélite de Radar Y Ópticos en Los Ambientes Terrestres Y Marinos; CONABIO: Ciudad de México, México, 2020.
- DOF. Protección Ambiental-Especies Nativas de México de Flora y Fauna Silvestres-Categorías de Riesgo y especificaciones para su Inclusión, Exclusión o Cambio-Lista de Especies en Riesgo; NOM-059-SEMARNAT; Diario Oficial de la Federación de México: Ciudad de México, Mexico, 2010. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5424575&fecha=05/02/2016 (accessed on 17 March 2022).
- DOF. Ley General de Vida Silvestre. Federación; Diario Oficial de la Federación de México: Ciudad de México, Mexico, 2000; p. 72. Available online: https://www.gob.mx/cms/uploads/attachment/file/131763/29._LEY_GENERAL_DE_VIDA_SILVESTRE.pdf (accessed on 17 March 2022).
- Justicia, S.C.d. Reseñas Argumentativas del Pleno y de las Salas. Reseña del Amparo en revisión 307/2016. Primera Sala de la Suprema Corte de Justicia de la Nación. “Derecho Humano a un ambiente sano y digno”. 2018. Available online: https://www.scjn.gob.mx/sites/default/files/resenias_argumentativas/documento/2019-08/res-NLPH-0307-16.pdf (accessed on 17 March 2022).
- HRO. Human Rights Office-Extract of the Amparo-307/2016. Supreme Court of Justice HRO. 2016. Available online: https://www.scjn.gob.mx/derechos-humanos/sites/default/files/sentencias-emblematicas/summary/2020-12/Summary%20AR307-2016%20HRO.pdf (accessed on 17 March 2022).
- Romañach, S.S.; Deangelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Raja Barizan, R.S.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean. Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Mondal, P.; Liu, X.; Fatoyinbo, T.E.; Lagomasino, D. Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sens. 2019, 11, 2928. [Google Scholar] [CrossRef] [Green Version]
- Adame, M.F.; Najera, E.; Lovelock, C.E.; Brown, C.J. Avoided emissions and conservation of scrub mangroves: Potential for a Blue Carbon project in the Gulf of California, Mexico. Biol Lett. 2018, 14, 20180400. [Google Scholar] [CrossRef]
- Herrera-Silveira, J.A.; Pech-Cardenas, M.A.; Morales-Ojeda, S.M.; Cinco-Castro, S.; Camacho-Rico, A.; Caamal Sosa, J.P.; Mendoza-Martinez, J.E.; Pech-Poot, E.Y.; Montero, J.; Teutli-Hernandez, C. Blue carbon of Mexico, carbon stocks and fluxes: A systematic review. PeerJ 2020, 8, e8790. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon Cycling in the World’s Mangrove Ecosystems Revisited: Significance of Non-Steady State Diagenesis and Subsurface Linkages between the Forest Floor and the Coastal Ocean. Forests 2020, 11, 977. [Google Scholar] [CrossRef]
- Twilley, R.R.; Rovai, A.S.; Riul, P. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 2018, 16, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci 2020, 2, 67. [Google Scholar] [CrossRef]
- Ouyang, X.; Lee, S.Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. 2020, 11, 317. [Google Scholar] [CrossRef] [Green Version]
- Rovai, A.S.; Twilley, R.R.; Castañeda-Moya, E.; Riul, P.; Cifuentes-Jara, M.; Manrow-Villalobos, M.; Horta, P.A.; Simonassi, J.C.; Fonseca, A.L.; Pagliosa, P.R. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 2018, 8, 534–538. [Google Scholar] [CrossRef]
- Vázquez-Lule, A.; Colditz, R.; Herrera-Silveira, J.; Guevara, M.; Rodríguez-Zúñiga, M.T.; Cruz, I.; Ressl, R.; Vargas, R. Greenness trends and carbon stocks of mangroves across Mexico. Environ. Res. Lett. 2019, 14, 075010. [Google Scholar] [CrossRef]
- Ezcurra, P.; Ezcurra, E.; Garcillán, P.P.; Costa, M.T.; Aburto-Oropeza, O. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. Proc. Natl. Acad. Sci. USA 2016, 113, 4404–4409. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, J.A.; Costa, M.T.; Ezcurra, E.; Aburto-Oropeza, O. Prioritizing mangrove conservation across Mexico to facilitate 2020 NDC ambition. Ambio 2020, 49, 1992–2002. [Google Scholar] [CrossRef]
- Aburto-Oropeza, O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 2008, 105, 10456–10459. [Google Scholar] [CrossRef] [Green Version]
- Thom, B.G. Mangrove Ecology and Deltaic Geomorphology: Tabasco, Mexico. J. Ecol. 1967, 55, 301–343. [Google Scholar] [CrossRef]
- Rico-Gray, V.; Palacios-Rios, M. Leaf Area Variation in Rhizophora mangle L. (Rhizophoraceae) Along a Latitudinal Gradient in Mexico. Glob. Ecol. Biogeogr. Lett. 1996, 5, 30. [Google Scholar] [CrossRef]
- Day, J.W.; Conner, W.H.; Ley-Lou, F.; Day, R.H.; Navarro, A.M. The productivity and composition of mangrove forests, Laguna de Términos, Mexico. Aquat. Bot. 1987, 27, 267–284. [Google Scholar] [CrossRef]
- Lopez-Portillo, J.; Ezcurra, E. Los manglares de Mexico. Madera y Bosques 2002, 8, 27–51. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Monroy, V.H.; Twilley, R.R.; Mancera, E.; Alcantara-Eguren, A.; Castañeda-Moya, E.; Casas-Monroy, O.; Reyes, F.; Restrepo, J.; Perdomo, L.; Campos, E.; et al. Adventures and misfortunes in Macondo: Rehabilitation of the Cienaga Grande de Santa Marta Lagoon Complex, Colombia. Ecotropicos 2006, 19, 72–93. [Google Scholar]
- Gittman, R.K.; Baillie, C.J.; Arkema, K.K.; Bennett, R.O.; Benoit, J.; Blitch, S.; Brun, J.; Chatwin, A.; Colden, A.; Dausman, A.; et al. Voluntary Restoration: Mitigation’s Silent Partner in the Quest to Reverse Coastal Wetland Loss in the USA. Front. Mar. Sci. 2019, 6, 511. [Google Scholar] [CrossRef]
- Peyronnin, N.; Green, M.; Parsons Richards, C.; Owens, A.; Reed, D.; Chamberlain, J.; Groves, D.G.; Rhinehart, W.K.; Belhadjali, K. Louisiana’s 2012 Coastal Master Plan: Overview of a science-based and publicly Informed decision-making process. J. Coast. Res. 2013, 67, 1–15. [Google Scholar] [CrossRef]
- Merino, J.; Aust, C.; Caffey, R. Cost-Efficacy in Wetland Restoration Projects in Coastal Louisiana. Wetlands 2011, 31, 367–375. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Saunders, M.I.; Abdullah, S.; Mills, M.; Beher, J.; Possingham, H.P.; Mumby, P.J.; Lovelock, C.E. The cost and feasibility of marine coastal restoration. Ecol. Appl. 2016, 26, 1055–1074. [Google Scholar] [CrossRef]
- Abelson, A.; Reed, D.C.; Edgar, G.J.; Smith, C.S.; Kendrick, G.A.; Orth, R.J.; Airoldi, L.; Silliman, B.; Beck, M.W.; Krause, G.; et al. Challenges for Restoration of Coastal Marine Ecosystems in the Anthropocene. Front. Mar. Sci. 2020, 7, 544105. [Google Scholar] [CrossRef]
Year | Data Availability (N*)/Type | Remote Sensing Band ID Combination | Band Resolution (m) | Data Acquisition Date | Sampling Frequency (days) | Data Source | Data Availability | Data Source | Classification Methods | Validation Materials | Cartographic Accuracy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Advantages | Disadvantages | |||||||||||
1970/1980 | Historical aerial photographs archive (1505); Landsat TM and MSS (46); 17% study area coverage | D/A | D/A | 1970–1985 (most area coverage is for 1981) | D/A | INEGI | D/A | Best historical data sets availabile | Photopgraphs spatial coverage is limited | Retrospective Comparative Interdependent method ([139]) | Validation was not perfomed | Not performed due to lack of data |
2005 | SPOT 5 (134); Landsat ETM (2) | B3/4/2 | 10 | 2005 & 2006 (82% area coverage) 2003, 2004 & 2007 (18% area coverage) | 26 | SPOT 5: CNES 2003, 2004, 2005, 2006, 2007 Produced by SIAP under “SPOT IMAGE” licensing | Licensing required (use/acqusition) | Infrared shortwave band (SWIR) highlights soil and vegeation humidity | Difficulty in including all study area for one single year analysis due to image quality | No supervised classification; “Isodata” iterative algorithm ([140]) | 69,000 aerial vertical photographs from helicopter; altitude, 150–200 m; Secretary of the Navy | Accuracy 92.8% ([39]) |
2010 | SPOT 5 (174) | B3/4/2 | 10 | 2010 (80% area coverage) 2009 & 2011 (20% area coverage) | 26 | SPOT 5: CNES 2009, 2010; Produced by SIAP under “SPOT IMAGE” licensing | Licensing required (use/acqusition) | Infrared shortwave band (SWIR) highlights soil and vegetation humidity content | SPOT 5 ancillary information have spectral and spatial resolution differences | Retrospective Comparative Interdependent method ([139]) | 5300 aerial vertical photographs from helicopter; altitude, 150–200 m; Secretary of the Navy | Accuracy: 92.4% ([39]) |
2015 | SPOT 5 (182; 93% study area coverage); SPOT 6 (4); SPOT 7 (2); RapidEye (10) | B3/4/2 | 10 | 2014 (last 3 months) 2015 (63% area coverage) | 26 | SPOT 5: CNES 2014 & 2015; Produced by SIAP, under “SPOT IMAGE” licensing; | Licensing required (use/acqusition) | Infrared shortwave band (SWIR) highlights soil and vegeation humidity | Infrared shortwave band (SWIR) is absent | Retrospective Comparative Interdependent method ([139]) | 62,000 aerial vertical photographs from helicopter; altitude, 150–200 m); Surveillance V2; Secretary of the Navy | Accuracy: 93.4% ([39]) |
2020 | Sentinel-2 (102) | B8/11/4 RGB combination | 10 [Bands 11 & 12 were reprocessed using “super-resolution” to obtain a 10 × 10 m pixel size] | 2020 (January–May) | 5 | Europe Space Agency (ESA) | Free distribution and direct downloading from ESA website | The total study area coverage occurs in 5 months; satellite passage resampling period is short; improves boundaries definition | Need to adjust differences in the classification of “other vegeation” and “agriculture/livestock” classes | Retrospective Comparative Interdependent method ([139]) | Aerial vertical photographs taken with a fix-wing drone; altitude, 100–200 m; UASMEXICO Survelliance V2 | Accuracy: 94.86% ([unpublished] |
Class | Description |
---|---|
Mangrove | •Arboreal and scrub mangrove vegetation composed of one or mix-species including Rhizophora mangle (red mangrove), Avicennia germinans (black mangrove), Laguncularia racemosa (white mangrove); Avicennia bicolor; Rhizophora harrisoni; Conocarpus erectus (mangrove associated). |
Disturbed mangroves | •Dead arboreal and scrub/shrubby mangrove vegetation or areas undergoing regeneration; includes mangrove impacted by tropical storms and hurricanes and antrophic infrastruture (hydraulic structures; highways, roads). |
Other wetlands | •Hydrophitic vegetaton (Popal-Tular-Carrizal; [143]), grasslands subjected to flooding, other hydrophitic or halophitic vegetation types that include dispersed individuals or isolated mangrove patches/grooves; coastal saline terrains with sparse non-mangrove vegetation. |
Anthropic development | •Settlements, aquaculture ponds; shrip farms; salt flats; roads and highways; and hydraulic infrastructure including channels. |
Crops/Cattle Grazing | •Land used for agriculture (rainfed and irrigation); grasslands used for animal husbandry activities; land used for food production; regional perennial tree monocultures and other agroecosystems including nomadic agriculture. |
Unvegetated | •Apparent unvegetated and eroded areas; coastal sand dunes; beaches. |
Other vegetation types | •Perennial/subperennial flooded low/mid elevation tropical forests; shrubby and arboreal secondary vegetation; herbaceous secondary vegetation. |
Water bodies | •Ocean, bay, estuaries, lagoons, rivers, reservoirs, sink-holes (i.e., Cenotes), water holes. |
Others | •Surfaces covered by clouds/cloud shadow. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Zúñiga, M.T.; Troche-Souza, C.; Cruz-López, M.I.; Rivera-Monroy, V.H. Development and Structural Organization of Mexico’s Mangrove Monitoring System (SMMM) as a Foundation for Conservation and Restoration Initiatives: A Hierarchical Approach. Forests 2022, 13, 621. https://doi.org/10.3390/f13040621
Rodríguez-Zúñiga MT, Troche-Souza C, Cruz-López MI, Rivera-Monroy VH. Development and Structural Organization of Mexico’s Mangrove Monitoring System (SMMM) as a Foundation for Conservation and Restoration Initiatives: A Hierarchical Approach. Forests. 2022; 13(4):621. https://doi.org/10.3390/f13040621
Chicago/Turabian StyleRodríguez-Zúñiga, María Teresa, Carlos Troche-Souza, María Isabel Cruz-López, and Victor H. Rivera-Monroy. 2022. "Development and Structural Organization of Mexico’s Mangrove Monitoring System (SMMM) as a Foundation for Conservation and Restoration Initiatives: A Hierarchical Approach" Forests 13, no. 4: 621. https://doi.org/10.3390/f13040621
APA StyleRodríguez-Zúñiga, M. T., Troche-Souza, C., Cruz-López, M. I., & Rivera-Monroy, V. H. (2022). Development and Structural Organization of Mexico’s Mangrove Monitoring System (SMMM) as a Foundation for Conservation and Restoration Initiatives: A Hierarchical Approach. Forests, 13(4), 621. https://doi.org/10.3390/f13040621