A Cork Cell Wall Approach to Swelling and Boiling with ESEM Technology
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites
2.2. Sampling
2.3. Cell Walls—Raw Sample Measurements
2.4. Cell Walls—24 h Water Immersion and 98% Humidity Measurements
2.5. Cell Walls—After Boiling Measurements—1 h at 100 °C
2.6. Radial Macrosamples—Boiling Procedure
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Castro, A.; Avillez, F.; Rodrigues, V.; da Silva, F.G.; Santos, F.; Rebelo, F.; Jorge, M.N.; Aires, N. The Cork Sector: From the Forest to the Consumer; APCOR: Santa Maria de Lamas, Portugal, 2020. [Google Scholar]
- Leite, C.; Oliveira, V.; Miranda, I.; Pereira, H. Cork oak and climate change: Disentangling drought effects on cork chemical composition. Sci. Rep. 2020, 10, 7800. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.; Anderson, D.B.R. Introdução à Fisiologia Vegetal; Fundação Calouste Gulbenkian: Lisboa, Portugal, 1970. [Google Scholar]
- Natividade, J. Cortiças—Contributo Para o Estudo do Melhoramento da Qualidade; Direção Geral dos Serviços Florestais e Agrícolas: Lisboa, Portugal, 1934; Volume 1. [Google Scholar]
- Pereira, H. The rationale behind cork properties: A review of structure and chemistry. BioResources 2015, 10, 6207–6229. [Google Scholar] [CrossRef]
- Fortes, M.A.; Rosa, M.E.; Pereira, H. A Cortiça; ITS Press: Lisboa, Portugal, 2004. [Google Scholar]
- Pereira, H. Variability of the chemical composition of cork. BioResources 2013, 8, 2246–2256. [Google Scholar] [CrossRef]
- Sen, A.U.; Zhianski, M.; Glushkova, M.; Petkova, K.; Ferreira, J.; Pereira, H. Chemical composition and cellular structure of corks from Quercus suber trees planted in Bulgaria and Turkey. Wood Sci. Technol. 2016, 5, 1261–1276. [Google Scholar] [CrossRef]
- Silva, M.E. Contributo Para o Estudo da Qualidade da Cortiça: Avaliação das Relações Exixtentes Entre Parâmetros Definidores da Sua qualidade; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 1996. [Google Scholar]
- Fránková, M.; Poulíčková, A.; Neděla, V.; Tihlaříková, E.; Šumberová, K.; Letáková, M. The low temperature method for environmental scanning electron microscopy—A new method for observation of diatom assemblages in vivo. Diatom Res. 2018, 33, 397–403. [Google Scholar] [CrossRef]
- Turkulin, H.; Holzer, L.; Richter, K.; Sell, J. Application of the ESEM technique in wood research: Part I. Optimization of imaging parameters and working conditions. Wood Fiber Sci. 2005, 37, 552–564. [Google Scholar]
- Zajączkowska, U. Cork. eLS 2016, 1–8. [Google Scholar] [CrossRef]
- Rosa, M.; Fortes, M. Water absorption by cork. Wood Fiber Sci. 1993, 25, 339–348. [Google Scholar]
- Poeiras, A.P.; Silva, M.E.; Günther, B.; Vogel, C.; Surový, P.; de Almeida Ribeiro, N. Cork influenced by a specific water regime—Macro and microstructure characterization: The first approach. Wood Sci. Technol. 2021, 55, 1653–1672. [Google Scholar] [CrossRef]
- Ribeiro, N.A. Modelação do Crescimento da Árvore em Povoamentos de Sobreiro. Ph.D. Thesis, Universidade de Évora, Évora, Portugal, 2006. [Google Scholar]
- Teixeira, R.T.; Pereira, H. Ultrastructural observations reveal the presence of channels between cork cells. Microsc. Microanal. 2009, 15, 539–544. [Google Scholar] [CrossRef]
Source | DF | Raw Conditions | Hydrated Conditions | After the Boiling Stage | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p-Value | EV (%) | F | p-Value | EV (%) | F | p-Value | EV (%) | ||
Treatment | 1 | 59.334 | 0.002 | 86.7 | 0.040 | 0.851 | 0 | 2.583 | 0.183 | 36.9 |
Sample/Treatment | 4 | 3.741 | 0.005 | 9.7 | 39.087 | 0.0001 | 92.7 | 6.478 | 0.0001 | 40.7 |
Repetition/Sample/Treatment (Residual) | 1194 | 3.6 | 7.3 | 22.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poeiras, A.P.; Vogel, C.; Günther, B.; Camilo-Alves, C.; Surový, P.; Silva, M.E.; de Almeida Ribeiro, N. A Cork Cell Wall Approach to Swelling and Boiling with ESEM Technology. Forests 2022, 13, 623. https://doi.org/10.3390/f13040623
Poeiras AP, Vogel C, Günther B, Camilo-Alves C, Surový P, Silva ME, de Almeida Ribeiro N. A Cork Cell Wall Approach to Swelling and Boiling with ESEM Technology. Forests. 2022; 13(4):623. https://doi.org/10.3390/f13040623
Chicago/Turabian StylePoeiras, Ana Patrícia, Cordula Vogel, Björn Günther, Constança Camilo-Alves, Peter Surový, Maria Emília Silva, and Nuno de Almeida Ribeiro. 2022. "A Cork Cell Wall Approach to Swelling and Boiling with ESEM Technology" Forests 13, no. 4: 623. https://doi.org/10.3390/f13040623
APA StylePoeiras, A. P., Vogel, C., Günther, B., Camilo-Alves, C., Surový, P., Silva, M. E., & de Almeida Ribeiro, N. (2022). A Cork Cell Wall Approach to Swelling and Boiling with ESEM Technology. Forests, 13(4), 623. https://doi.org/10.3390/f13040623