Nonlinear Mixed-Effects Height to Crown Base Model for Moso Bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) in Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Selection of Predictor Variables
2.3. HCB Model Development
2.3.1. Base Model
2.3.2. Mixed-Effects HCB Model
2.4. Parameter Estimation
2.5. Prediction with NLME Models
2.6. Response Calibration or Localization of NLME HCB Model
- (i).
- The 1–3 randomly selected bamboo plants per sample plot (random);
- (ii).
- The 1–3 bamboo plants with an average DBH per sample plot (medium);
- (iii).
- The 1–3 bamboo plants with the largest DBH per sample plot (largest);
- (iv).
- The 1–3 bamboo plants with the smallest DBH per sample plot (smallest).
2.7. Evaluation of Prediction Performance of NLME HCB Model
3. Results
3.1. Selection of Predictor Variables
3.2. Base Model
3.3. NLME HCB Models
3.4. Model Evaluation
3.5. Model Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yen, T.M.; Lee, J.S. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. For. Ecol. Manag. 2011, 261, 995–1002. [Google Scholar] [CrossRef]
- Wang, B.; Wei, W.J.; Liu, C.J.; You, W.Z.; Niu, X.; Man, R.Z. Biomass and carbon stock in moso bamboo forests in subtropical China: Characteristics and implications. J. Trop. For. Sci. 2013, 25, 137–148. [Google Scholar] [CrossRef]
- Yen, T.M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 2016, 57, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekadu, G.; Teshome, G.; Teshome, S.; Kelbessa, E. Allometric Equations to Estimate the Biomass of Oxytenanthera Abyssinica (A Rich) Munro (Ethiopian Lowland Bamboo) in Dicho Forest, Oromia Region, Western Ethiopia. Int. J. Res. Stud. Biosci. (IJRSB) 2016, 4, 34–48. [Google Scholar]
- Yen, T.M.; Ji, Y.J.; Lee, J.S. Estimating biomass production and carbon storage for a fast growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 2010, 260, 339–344. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2010: Main Report; FAO Forestry Paper; FAO: Rome, Italy, 2010; Volume 163. [Google Scholar]
- Morataya, R.; Galloway, G.; Berninger, F.; Kanninen, M. Foliage biomass-sapwood (area and volume) relationships of Tectona grandis L.F. and Gmelina arborea Roxb.: Silvicultural implications. For. Ecol. Manag. 1999, 113, 231–239. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Zhang, Y.; Booth, T.; He, X. Changes of carbon stocks in bamboo stands in China during 100 years. For. Ecol. Manag. 2009, 258, 1489–1496. [Google Scholar] [CrossRef]
- Hu, L.Y.; Wen, G.S.; Yi, L.T.; Zhou, Y.F.; Zhang, R.M.; Li, H.J.; Yuan, J. Evaluation on Phyllostachys pubescens forest ecosystem services value in Suichang county. Adv. J. Food Sci. Technol. 2013, 5, 1163–1167. [Google Scholar] [CrossRef]
- Wykoff, W.R.; Crookston, N.L.; Stage, A.R. User’s Guide to the Stand Prognosis Model; USDA Forest Service General Technical Report INT-133; USDA: Washington, DC, USA, 1982. [Google Scholar]
- Fu, L.; Zhang, H.; Sharma, R.P.; Pang, L.; Wang, G. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China. For. Ecol. Manag. 2017, 384, 34–43. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Parresol, B.R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd). For. Ecol. Manag. 2003, 179, 269–276. [Google Scholar] [CrossRef]
- Hasenauer, H.; Monserud, R.A. A crown ratio model for Austrian forests. For. Ecol. Manag. 1996, 84, 49–60. [Google Scholar] [CrossRef]
- Temesgen, H.; Lemay, V.; Mitchell, S.J. Tree crown ratio models for multi-species and multi-layered stands of southeastern. Br. Columbia For. Chron. 2005, 81, 133–141. [Google Scholar] [CrossRef]
- Zhou, F.C. Bamboo Cultivation of Science; Beijing, China Forestry Publishing House: Beijing, China, 1998; pp. 11–47. [Google Scholar]
- Sun, H.Y. Effects of the Factors on under Branch Height and DBH of Phyllostachys pubescens Mazel; Nanjing Forestry University: Nanjing, China, 2010. (In Chinese) [Google Scholar]
- Sun, H.Y.; Song, D.Q.; Wang, F.S. Effects of different site conditions on under branch height of Phyllostachys pubescens Mazel. J. JinLing Inst. Technol. 2009, 25, 61–65. (In Chinese) [Google Scholar]
- Li, Z.; Song, D.Q.; Wang, F.S. Effects of different site conditions on under-branch height of Phyllostachys pubescens Mazel. World Bamboo Ratt. 2010, 8, 16–19. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-JNZ200904015.htm (accessed on 1 November 2021).
- Sharma, R.P.; Vacek, Z.; Vacek, S.; Podrazsky, V.; Jansa, V. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica L.). PLoS ONE 2017, 12, e0186394. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.H.; Peng, L.A.; Liu, Q.; Luo, P.; Ye, Q.; Sharma, R.P.; Duan, G.; Zhang, H.; Fu, L. Nonlinear mixed-effects height to crown base model based on both airborne LiDAR and field datasets for Picea crassifolia Kom trees in northwest China-ScienceDirect. For. Ecol. Manag. 2020, 474, 118323. [Google Scholar] [CrossRef]
- Pan, L.; Mei, G.Y.; Wang, Y.F.; Saeed, S.; Chen, L.; Cao, Y.; Sun, Y. Generalized Nonlinear Mixed-Effect Model of Individual TREE Height to Crown Base for Larix Olgensis Henry in Northeast China. J. Sustain. For. 2020, 39, 827–840. [Google Scholar] [CrossRef]
- Lindstrom, M.J.; Bates, D.M. Nonlinear mixed effects models for repeated measures data. Biometrics 1990, 46, 673–687. [Google Scholar] [CrossRef]
- Fu, L.; Sun, W.; Wang, G. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees 2017, 31, 557–573. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q.; Sharma, R.P.; Wang, Y.; He, P.; Guo, J.; Lei, Y.; Fu, L. A climate sensitive mixed-effects diameter class mortality model for Prince Rupprecht larch (Larix gmelinii var. principis-rupprechtii) in northern China. For. Ecol. Manag. 2021, 491, 119091. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, L.; Sharma, R.P.; He, P.; Lei, Y.; Guo, J. Generalized or general mixed-effect modelling of tree morality of Larix gmelinii subsp principis-rupprechtii in Northern China. J. For. Res. 2021, 32, 2447–2458. [Google Scholar] [CrossRef]
- Scurlock, J.; Dayton, D.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.X.; Zhuang, S.; Sun, B.; Ji, H.; Li, C.; Zhou, S. Estimation of biomass and carbon storage of moso bamboo (Phyllostachys pubescens Mazel ex Houz) in southern China using a diameter-age bivariate distribution model. Forestry 2014, 87, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Van Deusen, P.C.; Biging, G.S. STAG, a STAnd Generator for Mixed Species Stands; Research Note; Northern California Forest Yield Cooperative, Department of Forestry and Resource Management, University of California: Berkeley, CA, USA, 1985; Volume 11, p. 25. [Google Scholar]
- Walters, D.K.; Hann, D.W. Taper Equations for Six Conifer Species in Southwest Oregon; Research Bulletin; Forest Research Laboratory, Oregon State University: Corvallis, OR, USA, 1986; Volume 56, p. 41. [Google Scholar]
- Meng, S.X.; Huang, S. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function. For. Sci. 2009, 55, 239–248. [Google Scholar] [CrossRef]
- Fang, Z.; Bailey, R.L. Nonlinear mixed-effect modeling for Slash pine dominant height growth following intensive silvicultural treatments. For. Sci. 2001, 47, 287–300. [Google Scholar]
- Sharma, R.P.; Brunner, A. Modeling individual tree height growth of Norway spruce and Scots pine from national forest inventory data in Norway. Scand. J. For. Res. 2016, 501–514. [Google Scholar] [CrossRef]
- Subedi, N.; Sharma, M. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Glob. Chang. Biol. 2013, 19, 505–516. [Google Scholar] [CrossRef]
- Sharma, R.P.; Breidenbach, J. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. For. Sci. Technol. 2015, 11, 44–53. [Google Scholar] [CrossRef]
- Russell, M.B.; Weiskittel, A.R. Maximum and largest crown width equations for 15 tree species in Maine. North. J. Appl. For. 2011, 28, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Saud, P.; Lynch, T.B.; Anup, K.C.; Guldin, J.M. Using quadratic mean diameter and relative spacing index to enhance height-diameter and crown ratio models fitted to longitudinal data. Forestry 2016, 2, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Cela, J. Count Data Models in SAS. Stat. Data Anal. 2008, 4, 371–2008. [Google Scholar]
- Calama, R.; Montero, G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Can. J. For. Res. 2004, 34, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Li, D.; Fu, L.; Zhang, Z.; Yang, W.; Yang, G. Non-Peaked Discriminant Analysis for Data Representation. IEEE Trans. Neural Netw. 2019, 30, 3818–3832. [Google Scholar] [CrossRef] [PubMed]
- Temesgen, H.; Monleon, V.J.; Hann, D.W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Can. J. For. Res. 2008, 38, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Detto, M.; Asner, G.; Muller-landau, H.; Sonnentag, O. Spatial variability in tropical forest leaf area density from multireturn lidar and modeling. J. Geophys. Res. 2015, 120, 294–309. [Google Scholar] [CrossRef]
Variable | Min | Max | Mean | SD |
---|---|---|---|---|
DBH (cm) | 5.30 | 13.30 | 10.00 | 1.42 |
QMD (cm) | 8.90 | 11.10 | 9.96 | 0.48 |
RD | 0.52 | 1.37 | 0.99 | 0.13 |
BA (m2 ha−1) | 20.75 | 72.56 | 46.38 | 16.31 |
HCB (m) | 2.10 | 9.90 | 8.10 | 1.47 |
H (m) | 6.70 | 15.90 | 14.14 | 1.55 |
CD | 73.00 | 87.00 | 78.71 | 5.42 |
BAL (m2 ha−1) | 0 | 70.58 | 23.44 | 17.32 |
N (culms ha−1) | 833.00 | 2333.00 | 1299.00 | 481.08 |
Designation | Mathematical Form | Name of Function | Value Range | Source |
---|---|---|---|---|
M1 | Exponential | [10] | ||
M2 | Exponential | [28] | ||
M3 | Logistic | [29] |
DBH | QMD | RD | CD | H | BAL | |
---|---|---|---|---|---|---|
VIF | 559.8993 | 66.1968 | 493.1091 | 1.3518 | 1.8514 | 2.5792 |
Model Forms | Designation |
---|---|
M4 | |
M5 | |
M6 |
Parameter | M4 | M5 | M6 |
---|---|---|---|
β1 | −0.2407 (0.1368) | 0.4326 (0.0048) | 0.8140 (0.2464) |
β2 | −0.0078 (0.0017) | −0.0011 (0.0010) | −0.0141 (0.0030) |
β3 | 0.0021 (0.0005) | 0.0081 (0.0015) | 0.0036 (0.0010) |
−0.0263 | −0.0293 | −0.0269 | |
0.7224 | 0.7001 | 0.7215 | |
0.7763 | 0.8068 | 0.7775 | |
0.9650 | 1.0433 | 0.9681 |
Model Forms | Designation |
---|---|
M7 | |
M8 |
Parameter | M7 | M8 | |
---|---|---|---|
β1 | −0.3212 (0.1031) | 0.7660 (0.3197) | |
β2 | −0.0066 (0.0013) | −0.0131 (0.0040) | |
β3 | 0.0010 (0.0004) | 0.0016 (0.0007) | |
Variance-covariance matrix of random effects | Sample plot | 2.21 × 10−09 2.48 × 10−11 3.39 × 10−11 | 0.0924 1.15 × 10−05 2.11 × 10−07 |
−0.1005 | −0.0883 | ||
0.7122 | 0.7744 | ||
0.7904 | 0.6997 | ||
0.9848 | 0.7723 |
Model Name | −2log Likelihood | AIC | BIC |
---|---|---|---|
M4 | −221 | 451 | 464 |
M6 | −222 | 452 | 465 |
M7 | −188 | 393 | 418 |
M8 | −166. | 340 | 366 |
Designation | ||||
---|---|---|---|---|
M7 | −0.0064 | 0.6602 | 0.5067 | 0.3849 |
M8 | −0.0064 | 0.6642 | 0.5037 | 0.3803 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zheng, Y.; Guan, F.; Sharma, R.P.; Zhang, X.; Zhou, Y. Nonlinear Mixed-Effects Height to Crown Base Model for Moso Bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) in Eastern China. Forests 2022, 13, 823. https://doi.org/10.3390/f13060823
Zhou X, Zheng Y, Guan F, Sharma RP, Zhang X, Zhou Y. Nonlinear Mixed-Effects Height to Crown Base Model for Moso Bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) in Eastern China. Forests. 2022; 13(6):823. https://doi.org/10.3390/f13060823
Chicago/Turabian StyleZhou, Xiao, Yaxiong Zheng, Fengying Guan, Ram P. Sharma, Xuan Zhang, and Yang Zhou. 2022. "Nonlinear Mixed-Effects Height to Crown Base Model for Moso Bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) in Eastern China" Forests 13, no. 6: 823. https://doi.org/10.3390/f13060823
APA StyleZhou, X., Zheng, Y., Guan, F., Sharma, R. P., Zhang, X., & Zhou, Y. (2022). Nonlinear Mixed-Effects Height to Crown Base Model for Moso Bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) in Eastern China. Forests, 13(6), 823. https://doi.org/10.3390/f13060823