Multiscale Regulation of Leaf Traits in Woody Plants as an Adaptation to a Post-Earthquake Environment in Broadleaved Forests of Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Measurement
2.2.1. Sample Selection
2.2.2. Functional Types of Woody Plants
2.2.3. Collection and Measurement of Traits and Environmental Indicators
2.3. Data Analysis and Visualization
3. Results
3.1. Woody Plant Functional Trait Characteristics of Broadleaved Deciduous Forests in a Seismic Belt
3.2. Functional Traits in Different WFTs
3.3. Functional Traits in Landslides and Nonlandslides Linked with WFTs
3.4. Differences in Bivariate Functional Trait Correlations
3.5. Response of Functional Traits to Factors
4. Discussion
4.1. Basic Characteristics of Woody Plants
4.2. Differences in Functional Traits between Landslides and WFTs
4.3. Factors Affecting Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, R.B.; Bellingham, P.J.; Wiser, S.K. Immediate damage by an earthquake to a temperate montane forest. Ecology 1999, 80, 708–714. [Google Scholar] [CrossRef]
- Wells, A.; Duncan, R.P.; Stewart, G.H. Forest dynamics in Westland, New Zealand: The importance of large, infrequent earthquakeinduced disturbance. J. Ecol. 2001, 89, 1006–1018. [Google Scholar] [CrossRef]
- Kang, D.; Yin, C.J.; Zhu, D.H.; Zou, S.Z. Altitude and landslide scale regulated the assembly of grassland communities on landslides during the recovery process after the magnitude 8.0 Wenchuan earthquake, China. Ecol. Eng. 2021, 172, 106413. [Google Scholar] [CrossRef]
- Bailey, W. World Earthquake Belts. Sci. Am. 1928, 4, 306–309. [Google Scholar]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta–analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Fyllas, N.M.; Michelaki, C.; Galanidis, A.; Evangelou, E.; Zaragoza-Castells, J.; Dimitrakopoulos, P.G.; Tsadilas, C.; Arianoutsou, M.; Lloyd, J. Functional Trait Variation Among and Within Species and Plant Functional Types in Mountainous Mediterranean Forests. Front. Plant Sci. 2020, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Pierick, K.; Leuschner, C.; Homeier, J. Topography as a factor driving small-scale variation in tree fine root traits and root functional diversity in a species-rich tropical montane forest. New Phytol. 2021, 230, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Zou, S.; Ma, L.; Yin, C.; Zhu, D.H. Abiotic Regulation: Landslide Scale and Altitude Regulate Functional Traits of Regenerating Plant Communities After Earthquakes. Front. Ecol. Evol. 2022, 10, 846642. [Google Scholar] [CrossRef]
- Poorter, H.; Evans, J.R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 1998, 116, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender–Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economicsspectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Kong, D.; Ma, C.; Zhang, Q.; Li, L.; Chen, X.; Zeng, H.; Guo, D. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 2014, 203, 863–872. [Google Scholar] [CrossRef]
- Akram, M.A.; Zhang, Y.H.; Wang, X.T.; Shrestha, N.; Malik, K.; Khan, I.; Ma, W.J.; Sun, Y.; Li, F.; Ran, J.Z.; et al. Phylogenetic independence in the variations in leaf functional traits among different plant life forms in an arid environment. J. Plant Physiol. 2022, 272, 153671. [Google Scholar] [CrossRef]
- Akram, M.A.; Wang, X.; Hu, W.; Xiong, J.; Zhang, Y.; Deng, Y.; Ran, J.; Deng, J.M. Convergent Variations in the Leaf Traits of Desert Plants. Plants 2020, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.M.; Hobbs, R.J.; Mayfield, M.M. Specific leaf area responses to environmental gradients through space and time. Ecology 2014, 95, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Henn, J.J.; Damschen, E.I. Plant age affects intraspecific variation in functional traits. Plant Ecol. 2021, 222, 669–680. [Google Scholar] [CrossRef]
- Westoby, W.M. Leaves at Low versus High Rainfall: Coordination of Structure, Lifespan and Physiology. New Phytol. 2002, 155, 403–416. [Google Scholar]
- Bellingham, P.J.; Sparrow, A.D. Resprouting as a Life History Strategy in Woody Plant Communities. Oikos 2000, 89, 409–416. [Google Scholar] [CrossRef]
- Box, E.O.; Fujiwara, K. Warm–Temperate Deciduous Forests around the Northern Hemisphere; Springer: Berlin, Germany, 2015. [Google Scholar]
- Yao, S.; Akram, M.A.; Hu, W.; Sun, Y.; Sun, Y.; Deng, Y.; Ran, J.; Deng, J. Effects of Water and Energy on Plant Diversity along the Aridity Gradient across Dryland in China. Plants 2021, 10, 636. [Google Scholar] [CrossRef]
- Hu, W.; Ran, J.; Dong, L.; Du, Q.; Ji, M.; Yao, S.; Sun, Y.; Gong, C.; Hou, Q.; Gong, H.; et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 2021, 12, 5350. [Google Scholar] [CrossRef]
- Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurementof plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Kjeldahl, J.Z. New method for the determination of nitrogen in organic substances. Z. Anal. Chem. 1883, 22, 366. [Google Scholar] [CrossRef]
- Zanne, A.E.; Tank, D.C.; Cornwell, W.K.; Eastman, J.M.; Smith, S.A.; FitzJohn, R.G.; McGlinn, D.J.; O’Meara, B.C.; Moles, A.T.; Reich, P.B.; et al. Three keys to the radiation of angiosperms into freezing environments. Nature 2014, 506, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Bruelheide, H.; Dengler, J.; Purschke, O.; Lenoir, J.; Jiménez-Alfaro, B.; Hennekens, S.M.; Botta-Dukát, Z.; Chytrý, M.; Field, R.; Jansen, F.; et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2018, 2, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Guo, D.; Xu, X.; Lu, M.; Bardgett, R.D.; Eissenstat, D.M.; McCormack, M.L.; Hedin, L.O. Evolutionary history resolves global organization of root functional traits. Nature 2018, 555, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Li, Z.J.; Yang, Z.P.; Bai, G. The structural traits of Populus euphratica heteromorphic leaves and their correlations. Acta Ecol. Sin. 2010, 30, 4636–4642. [Google Scholar]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. Leaf life–span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 1992, 62, 365–392. [Google Scholar] [CrossRef]
- Su, P.X.; Zhang, L.X.; Du, M.W.; Bi, Y.R.; Zhao, A.F.; Liu, X.M. Photosynthetic character and water use efficiency of different leaf shapes of populus euphratica and their response to co2 enrichment. Acta Phytoecol. Sin. 2003, 27, 34–40. [Google Scholar]
- Qi, L.Y.; Chen, H.N.; Kulihong, S.; Ji, T.-Y.; Meng, G.-D.; Qin, H.-Y.; Wang, N.; Song, Y.-X.; Liu, C.-Y.; Du, N.; et al. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits. Acta Phytoecol. Sin. 2022, 46, 1–12. [Google Scholar]
- Kelly, R.; Healy, K.; Anand, M.; Baudraz, M.E.A.; Bahn, M.; Cerabolini, B.E.L.; Cornelissen, J.H.C.; Dwyer, J.M.; Jackson, A.L.; Kattge, J.; et al. Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecol. Lett. 2021, 24, 970–983. [Google Scholar] [CrossRef]
- Griffith, D.M.; Osborne, C.P.; Edwards, E.J.; Bachle, S.; Beerling, D.J.; Bond, W.J.; Gallaher, T.J.; Helliker, B.R.; Lehmann, C.E.; Leatherman, L.; et al. Lineage-based functional types: Characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. New Phytol. 2020, 228, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Wright, I.J.; Cavender-Bares, J.; Craine, J.M.; Oleksyn, J.; Westoby, M.; Walters, M.B. The evolution of plant functional variation: Traits, spectra, and strategies. Int. J. Plant Sci. 2003, 164, 143–164. [Google Scholar] [CrossRef]
- Niu, K.; Zhang, S.; Lechowicz, M.J. Harsh environmental regimes increase the functional significance of intraspecific variation in plant communities. Funct. Ecol. 2020, 34, 1666–1677. [Google Scholar] [CrossRef]
- Wang, F.; Guo, S.J.; Fan, B.L.; Han, F.G.; Wang, F.L.; Zhang, W.X.; Zhang, Y.N. Plant Leaf Traits in Minqin Oasis–desert Transition Zone. Bull. Bot. Res. 2022, 42, 71–80. [Google Scholar]
- Peter, A.W. Functional trait shifts after disturbance reveal broad-scale variability in temperate forest regional recruitment processes. J. Veg. Sci. 2018, 29, 491–500. [Google Scholar]
- Mason, C.M.; McGaughey, S.E.; Donovan, L.A. Ontogeny strongly and differentially alters leaf economic and other key traits in three diverse Helianthus species. J. Exp. Bot. 2013, 64, 4089–4099. [Google Scholar] [CrossRef]
- Fort, F.; Freschet, G.T. Plant ecological indicator values as predictors of fine–root trait variations. J. Ecol. 2020, 108, 1565–1577. [Google Scholar] [CrossRef]
- Tang, Y.R.; Zhao, C.Z.; Zhao, H.; Hou, G.; Ma, M.; Zhao, T.T.; Wang, Y.F.; Zeng, H.X. The relationship between leaf dry mass and leaf area, leaf thickness of Hippophae rhamnoides under different light conditions in Taohe River riparian forest. Chin. J. Ecol. 2021, 40, 2745–2753. [Google Scholar]
- Terashima, I.; Hanba, Y.T.; Tazoe, Y.; Vyas, P.; Yano, S. Irradiance and phenotype: Comparative eco–development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 2006, 57, 343–354. [Google Scholar] [CrossRef]
- Botha, M.; Siebert, S.J.; Van den Berg, J.; Ellis, S.M.; Dreber, N. Plant functional types differ between the grassland and savanna biomes along an agro–ecosystem disturbance gradient in South Africa. S. Afr. J. Bot. 2017, 113, 308–317. [Google Scholar] [CrossRef]
- Garnier, E.; Cortez, J.; Billès, G.; Navas, M.-L.; Roumet, C.; Debussche, M.; Laurent, G.; Blanchard, A.; Aubry, D.; Bellmann, A.; et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 2004, 85, 2630–2637. [Google Scholar] [CrossRef]
- Huston, M.A.; Smith, T. Plant succession: Life history and competition. Am. Nat. 1987, 130, 168–198. [Google Scholar] [CrossRef]
- Bazzaz, F.A. Plants in Changing Environments: Linking Physiological, Population, and Community Ecology; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Velikova, V.; Arena, C.; Izzo, L.G.; Tsonev, T.; Koleva, D.; Tattini, M.; Roeva, O.; De Maio, A.; Loreto, F. Functional and Structural Leaf Plasticity Determine Photosynthetic Performances during Drought Stress and Recovery in Two Platanus orientalis Populations from Contrasting Habitats. Int. J. Mol. Sci. 2020, 21, 3912. [Google Scholar] [CrossRef] [PubMed]
- Rawat, J.E.; Cawson, J.G.; Filkov, A.I.; Penman, T.D. Leaf traits predict global patterns in the structure and flammability of forest litter beds. J. Ecol. 2021, 109, 1344–1355. [Google Scholar]
- Rawat, M.; Arunachalam, K.; Arunachalam, A.; Alatalo, J.M.; Pandey, R. Predicting litter decomposition rate for temperate forest tree species by the relative contribution of green leaf and litter traits in the Indian Himalayas region. Ecol. Indic. 2020, 119, 106827. [Google Scholar] [CrossRef]
- Rosenfield, M.V.; Keller, J.K.; Clausen, C.; Cyphers, K.; Funk, J.L. Leaf traits can be used to predict rates of litter decomposition. Oikos 2020, 129, 1589–1596. [Google Scholar] [CrossRef]
- Beall, C.M. Two routes to functional adaptation: Tibetan and Andean high–altitude natives. Proc. Natl. Acad. Sci. USA 2007, 104, 8655–8660. [Google Scholar] [CrossRef] [PubMed]
Landslide Sites | Sympatric Sites Unaffected by the Earthquake | ||
---|---|---|---|
Species | Mean Importance Value of Plots | Species | Mean Importance Value of Plots |
Populus lasiocarpa | 0.207 | Acer laxiflorum | 0.239 |
Hypericum monogynum | 0.157 | Lindera obtusiloba | 0.135 |
Rubus setchuenensis | 0.133 | Corylus heterophylla | 0.105 |
Buddleja lindleyana | 0.107 | Cornus kousa subsp. chinensis | 0.103 |
Rubus gyamdaensis | 0.103 | Rubus setchuenensis | 0.078 |
Debregeasia orientalis | 0.091 | Hydrangea strigosa | 0.075 |
Hydrangea strigosa | 0.077 | Rubus sumatranus | 0.063 |
Rubus lambertianus | 0.073 | Euptelea pleiosperma | 0.055 |
Clematoclethra lasioclada | 0.064 | ||
Rubus sumatranus | 0.053 | ||
Rubus rosifolius | 0.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Yin, C.; Liu, S.; Chen, L.; Zou, S.; Zhu, D. Multiscale Regulation of Leaf Traits in Woody Plants as an Adaptation to a Post-Earthquake Environment in Broadleaved Forests of Southwestern China. Forests 2022, 13, 1323. https://doi.org/10.3390/f13081323
Kang D, Yin C, Liu S, Chen L, Zou S, Zhu D. Multiscale Regulation of Leaf Traits in Woody Plants as an Adaptation to a Post-Earthquake Environment in Broadleaved Forests of Southwestern China. Forests. 2022; 13(8):1323. https://doi.org/10.3390/f13081323
Chicago/Turabian StyleKang, Di, Caijia Yin, Shiqi Liu, Li Chen, Shuzhen Zou, and Dahai Zhu. 2022. "Multiscale Regulation of Leaf Traits in Woody Plants as an Adaptation to a Post-Earthquake Environment in Broadleaved Forests of Southwestern China" Forests 13, no. 8: 1323. https://doi.org/10.3390/f13081323
APA StyleKang, D., Yin, C., Liu, S., Chen, L., Zou, S., & Zhu, D. (2022). Multiscale Regulation of Leaf Traits in Woody Plants as an Adaptation to a Post-Earthquake Environment in Broadleaved Forests of Southwestern China. Forests, 13(8), 1323. https://doi.org/10.3390/f13081323