Droughts Are Not the Likely Primary Cause for Abies sibirica and Pinus sibirica Forest Dieback in the South Siberian Mountains
Abstract
:1. Introduction
- Phytopathogen (Armillaria mellea, Heterobasidion annosum, etc.) [39,40,41] and invasive insect pests [42,43]. Foresters and ecologists are generally skeptical that disease and infestations are the primary cause of forest death and decline, rather these are considered post-effects on previously weakened trees; and
- Climate at mid-to-higher elevations across the South Siberia Mountains has been drying for the last half of the century;
- If the current climate is drying, then evaluate how much and whether the dryness was sufficient to result in dark-needled conifer forests decline and dieback at mid-to-higher elevations as referenced in recent literature [16]; and
- If the predicted climate changes (AR5 [53] result in increased dry conditions, would these be sufficient to force a severe decline and/or dieback of the climax dark-needled forests by the end of the 21st century.
2. Data and Methods
2.1. Geographic Study Area
2.2. Vegetation and Climate
2.3. Climate Data
2.4. Montane Climate Models
2.5. Climate Change Trends
- Stations Shira (458 m), Kommunar (842 m) and Nenastnaya (1186 m) in the Kuznetsky Alatau Mts;
- Stations Ermakovskoye (300 m) and Olenya Rechka (1404 m) in the Western Sayan Mts;
- Stations Krasnoyarsk (274 m) and Stolby (536 m) in the Eastern Sayan Mts; and
- Stations Babushkin (480 m) and Khamar-Daban (1442 m) in Transbaikalia Mts
2.6. Climate Change Scenarios
2.7. Standardized Precipitation Evapotranspiration Index (SPEI)
2.8. The Vitality/Health State of a Damaged Forest
3. Results
3.1. Dieback of the Dark-Needled Forests Observed for the 1961–2019 Period
3.2. Climate Change Time Series for 1961–2019
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polikarpov, N.P.; Tchebakova, N.M.; Nazimova, D.I. Climate and Montane Forests of Southern Siberia; Nauka: Novosibirsk, Russia, 1986; p. 226. [Google Scholar]
- Semechkin, I.V.; Polikarpov, N.P.; Iroshnikov, A.I.; Babintseva, R.M.; Vorob’ev, V.N.; Dashko, N.V.; Ivanov, V.V.; Kondakov Yu, P.; Korotkov, I.A.; Murina, T.K.; et al. Pinus Sibirica Forests of Siberia; Nauka: Novosibirsk, Russia, 1985; p. 258. [Google Scholar]
- Tchebakova, N.M.; Parfenova, E.I.; Korets, M.A.; Conard, S. Potential change in forest types and stand heights in central Siberia in a warming climate. Environ. Res. Lett. 2016, 11, 35016. [Google Scholar] [CrossRef]
- Groisman, P.; Bulygina, O.; Henebry, G.; Speranskaya, N.; Shiklomanov, A.; Chen, Y.; Tchebakova, N.; Parfenova, E.; Tilinina, N.; Zolina, O.; et al. Dryland belt of Northern Eurasia: Contemporary environmental changes and their consequences. Environ. Res. Lett. 2018, 13, 115008. [Google Scholar] [CrossRef]
- Alekseev, V.A. Diagnostics of tree vitality and stand condition. Lesovedenie 1989, 4, 51–57. [Google Scholar]
- Rehfuess, K. Review of forest decline research activities and results in the federal republic of Germany∗. J. Environ. Sci. Health Part A 1991, 26, 415–445. [Google Scholar] [CrossRef]
- Huettl, R.F.; Mueller-Dombois, D. (Eds.) Forest Decline in the Atlantic and Pacific Region; Springer: Berlin, Germany, 1995; p. 366. [Google Scholar] [CrossRef]
- Manko, Y.I.; Gladkova, G.A.; Butovets, G.N.; Kamibayashi, N. Monitoring of fir-spruce forests dieback in the Central Sikhote-Alin. Lesovedenie 1998, 1, 3–15. [Google Scholar]
- Manko, Y.I.; Gladkova, G.A. Spruce Decline in the Light of Global Deterioration of Dark Coniferous Forests; Dal’nauka: Vladivostok, Russia, 2001; p. 228. (In Russian) [Google Scholar]
- Contreras-Hermosilla, A. The Underlying Causes of Forest Decline. CIFOR. Oc. Paper No. 30. 2000; p. 29. Available online: https://www.cifor.org/publications/pdf_files/OccPapers/OP-030.pdf (accessed on 27 July 2022).
- Johnstone, J.F.; Chapin, F.S. Fire Interval Effects on Successional Trajectory in Boreal Forests of Northwest Canada. Ecosystems 2006, 9, 268–277. Available online: https://www.jstor.org/stable/25470335 (accessed on 27 July 2022). [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F.; Franklin, J.F. Global Decline in Large Old Trees. Science 2012, 338, 1305–1306. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Oskorbin, P.A.; Petrov, I.A.; Ranson, K.J. Siberian pine decline and mortality in Southern Siberian mountains. For. Ecol. Manag. 2013, 310, 312–320. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Petrov, I.A.; Golyukov, A.S.; Ranson, K.J.; Yagunov, M.N. Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. For. Ecol. Manag. 2017, 384, 191–199. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Petrov, I.A.; Dvinskaya, M.L.; Shushpanov, A.S.; Golyukov, A.S. Climate-driven conifer mortality in Siberia. Glob. Ecol. Biogeogr. 2020, 30, 543–556. [Google Scholar] [CrossRef]
- Saigin, I.A.; Bartalev, S.A.; Stytsenko, F.V. 2019 Detecting method of long-term dieback of dark-needled forests of Russia on the base of remote sensing data. In Proceedings of the 17th All-Russia Open Conference “Modern Problems of the Earth Remote Sensing”, Moscow, Russia, 11–15 November 2019; p. 445. Available online: http://conf.rse.geosmis.ru/files/pdf/17/7902_IKI_konf2019_3(2)(1)__1.pdf (accessed on 27 July 2022).
- DeSoto, L.; Cailleret, M.; Sterck, F.; Jansen, S.; Kramer, K.; Robert, E.M.R.; Aakala, T.; Amoroso, M.M.; Bigler, C.; Camarero, J.J.; et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Bazhina, E.V. Seed production and quality in Abies sibirica Ledeb. in zone exposed to influence of the Baikal Pulpaner Factory. Russ. J. For. Sci. 1998, 2, 10–15. [Google Scholar]
- Bazhina, E.V. Siberian fir (Abies sibirica) state and chemical element allocation in tree crown in forest ecosystems of Protected Areas in south of Krasnoyarsk Region (Russia). Nat. Conserv. Res. 2018, 3, 40–53. [Google Scholar] [CrossRef]
- Bazhina, E.V. Living status of Siberian fir (Abies sibirica Ledeb.) and element composition of its needle in the Middle Siberia Mountain forest ecosystems. Reg. Ecologia 2018, 2, 7–16. [Google Scholar] [CrossRef]
- Bazhina, E.V.; Tretyakova, I.N. Towards a problem of Fir decline. Uspekhi Sovrem. Biologii. 2001, 121, 626–631. [Google Scholar]
- Bazhina, E.V.; Aminev, P.I. Peculiarities of seed productivity and shoot morphology of fir trees affected by Melampsorella cerastii Wint. Lesn. Zhurnal 2007, 3, 7–13. (In Russian) [Google Scholar]
- Bazhina, E.V.; Storozhev, V.P.; Tretyakova, I.N. Dieback of Fir-Siberian Stone pine forests under technogenic pollution in the Kuznetsky Alatau Mountains. Lesovedenie 2013, 2, 15–21. [Google Scholar]
- Fedorov, N.I.; Sarnatsky, V.V. Features of Creation of Spruce Forests of Belarus in Connectionwith Their Periodic Mass Drying; Tekhnalogiya: Minsk, Belarus, 2001; 180p. [Google Scholar]
- Tretyakova, I.N.; Bazhina, E.V. Structure of crown as well as pollen and seed viability of fir (Abies sibiica Ledeb.) in disturbed forest ecosystems of the Khamar-Daban Mts. Ecology 2000, 19, 280–294. [Google Scholar]
- Tretyakova, I.N.; Bazhina, E.V.; Pakhar’kova, N.V.; Storozhev, V.N. The state of fir-pine stands on territory of Natural Park “Ergaki” and their fluorescent diagnostics. Conifers Boreal Area. 2008, XXV, 237–243. [Google Scholar]
- Voronin, V.I.; Morozova, T.I.; Stavnikov, D.Y.; Nechesov, I.A.; Oskolkov, V.A.; Buyantuyev, V.A.; Mikhaylov, Y.Z.; Govorin, Y.V.; Seredkin, A.D.; Shuvarkov, M.A. Bacterial Damage of Cedar Forests of the Baikal Region. Lesn. Khozaistvo 2013, 3, 39–41. [Google Scholar]
- Voronin VI, Sofronov AP, Morozova TI, Oskolkov VA, Sukhovol’skii VG, Kovalev AV 2019 The landscape-specific occurrence of bacterial diseases in dark-coniferous forests on Khamar-Daban range (Southern Cisbaikalia). Geogr. Nat. Resour. 2019, 4, 56–65. [CrossRef]
- Shiyatov, S.G.; Terent’ev, M.M.; Fomin, V.V.; Zimmermann, N.E. Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. Rus. J. Ecol. 2007, 38, 223–227. [Google Scholar] [CrossRef]
- Theurillat, J.P.; Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Change 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Belova, N.A.; Morozova, T.I. Dynamics of forest pathology condition of fir stands of the Baikal Nature Reserve (1983–2015). For. Bull. 2018, 22, 5–15. [Google Scholar]
- Donaubauer, E. On the Decline of Fir (Abies densa Griff.) in Bhutan. In Forest Decline in the Atlantic and Pacific Region; Huettl, R.F., Mueller-Dombois, D., Eds.; Springer: Berlin, Germany, 1993; pp. 332–339. [Google Scholar] [CrossRef]
- Pavlov, I.N. Biotic and abiotic factors as causes of coniferous forests dieback in Siberia. Far East Contemp. Probl. Ecol. 2015, 22, 537–554. [Google Scholar] [CrossRef]
- Forest Decline and Air Pollution: A Study of Spruce (Picea, Abies) on Acid Soils; Schulze, D.E.B. (Ed.) Springer: Berlin/Heidelberg, Germany; New York, NY, USA; London, UK; Paris, France, 1989; Volume 78, 475p. [Google Scholar]
- CARB 2021 New analysis shows spikes of metal contaminants, including lead. In 2018 Camp Fire Wildfire Smoke; California Air Resources Board: Sacramento, CA, USA. Available online: https://ww2.arb.ca.gov/news/new-analysis-shows-spikes-metal-contaminants-including-lead-2018-camp-fire-wildfire-smoke (accessed on 25 January 2022).
- Kristensen, L.J.; Taylor, M.P. Fields and Forests in Flames: Lead and Mercury Emissions from Wildfire Pyrogenic Activity. Environ. Health Perspect. 2012, 120, a56–a57. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Harden, J.W.; Friedli, H.R.; Flannigan, M.; Payne, N.; Crock, J.; Radke, L. Wildfires threaten mercury stocks in northern soils. Geophys. Res. Lett. 2006, 33, L16403. [Google Scholar] [CrossRef] [Green Version]
- Gaitnieks, T.; Klavina, D.; Muiznieks, I.; Pennanen, T.; Velmala, S.; Vasaitis, R.; Menkis, A. Impact of Heterobasidion root-rot on fine root morphology and associated fungi in Picea abies stands on peat soils. Mycorrhiza 2016, 26, 465–473. [Google Scholar] [CrossRef]
- Pavlov, I.N.; Barabanova, O.A.; Ageev, A.A. Resistance Reduction of Fir-Cedar Forests of Eastern Sayan Mountains to Root Pathogens. IVUZ Lesn. Zhurnal 2011, 4, 40–45. Available online: http://lesnoizhurnal.ru/apxiv/2011/%E2%84%964-2011.pdf (accessed on 27 July 2022).
- Pavlov, I.N.; Litovka, Y.A.; Golubev, D.V.; Astapenko, S.A.; Chromogin, P.V.; Usoltseva, Y.V.; Makolova, P.V.; Petrenko, S.M. Mass reproduction of Polygraphus proximus Blandford in fir forests of Siberia infected with root and stem pathogens: Monitoring, patterns, biological control. Contemp. Probl. Ecol. 2020, 13, 71–84. [Google Scholar] [CrossRef]
- Krivets, S.A.; Bisirova, E.M.; Kerchev, I.A.; Pats, E.N.; Chernova, N.A. Transformation of taiga ecosystems in the Western Siberian invasion focus of four-eyed fir bark beetle Polygraphus Proximus Blandford (Coleoptera: Curculionidae, Scolytinae) Russ. J. Biol. Invasions 2015, 6, 94–108. [Google Scholar] [CrossRef]
- Kerchev, I.A.; Mandelshtam, M.Y.; Krivets, S.A.; Ilinsky, Y.Y. Small spruce bark beetle Ips amitinus (Eichhoff, 1872) (Coleoptera, Curculionidae: Scolytinae): A new alien species in Western Siberia. Entomol. Rev. 2019, 99, 639–644. [Google Scholar] [CrossRef]
- Forest Decline and Ozone. A Comparison of Controlled Chamber and Field Experiments; Sandermann, H.; Wellburn, A.R.; Heath, R.L. (Eds.) Ecological Studies, Analysis and Synthesis; Springer: Berlin, Germany, 1997; Volume 127, p. 390. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res. Atmos. 2009, 114, D00D162009. [Google Scholar] [CrossRef]
- Sicard, P.; Anav, A.; De Marco, A.; Paoletti, E. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios Atmos. Chem. Phys. 2017, 17, 12177–12196. [Google Scholar] [CrossRef]
- Zuev, V.V.; Zueva, N.E.; Korotkova, E.M.; Pavlinsky, A.V. The impact of ozone depletion to degradation processes of coniferous forests in the southern regions of Siberia. Atmos. Ocean. Opt. J. 2017, 30, 342–348. [Google Scholar] [CrossRef]
- Matyushevskaya, E.V. Factors of Variability of Tree Radial Increment. 2017, p. 231. Available online: https://elib.bsu.by/handle/123456789/190614 (accessed on 27 July 2022). (In Russian).
- Mills, G.; Pleijel, H.; Malley, C.S.; Sinha, B.; Cooper, O.R.; Schultz, M.G.; Neufeld, H.S.; Simpson, D.; Sharps, K.; Feng, Z.; et al. Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa: Sci. Anthr. 2018, 6, 47. [Google Scholar] [CrossRef]
- Feng, Z.; De Marco, A.; Anav, A.; Gualtieri, M.; Sicard, P.; Tian, H.; Fornasier, F.; Tao, F.; Guo, A.; Paoletti, E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 2019, 131, 104966. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Krusic, P.J.; Shishov, V.V.; Vaganov, E.A.; Fertikov, A.I.; Myglan, V.S.; Barinov, V.V.; Browse, J.; Esper, J.; Ilyin, V.A.; et al. Ecological and conceptual consequences of Arctic pollution. Ecol. Lett. 2020, 23, 1827–1837. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Tchebakova, N.M.; Parfenova, E.I.; Soja, A.J. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ. Res. Lett. 2009, 4, 045013. [Google Scholar] [CrossRef]
- Smagin, V.N.; Il’inskaya, S.A.; Nazimova, D.I.; Novosel’tseva, I.F.; Cherednikova, Y.S. Forest Types of the Mountains in Southern Siberia; Nauka: Novosibirsk, Russia, 1980; p. 336. [Google Scholar]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S., III.; Stackhouse, P.W., Jr. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Change 2007, 56, 274–296. [Google Scholar] [CrossRef]
- Tchebakova, N.M.; Parfenova, E.I.; Soja, A.J. Climate change and climate-induced hot spots in forest shifts in central Siberia at the turn of the 21st century Reg. Environ. Change 2011, 11, 817–827. [Google Scholar] [CrossRef]
- Parfenova, E.; Tchebakova, N.; Soja, A. Assessing landscape potential for human sustainability and ‘attractiveness’ across Asian Russia in a warmer 21st century. Environ. Res. Lett. 2019, 14, 065004. [Google Scholar] [CrossRef]
- Tchebakova, N.M.; Parfenova, E.I.; Lysanova, G.I.; Soja, A.J. Agroclimatic potential across central Siberia in an altered twenty-first century. Environ. Res. Lett. 2011, 6, 045207. [Google Scholar] [CrossRef]
- Tchebakova, N.M.; Blyakharchuk, T.A.; Soja, A.J. Reconstruction and prediction of climate and vegetation change in the Holocene in the Altai–Sayan Mountains, Central Asia. Environ. Res. Lett. 2009, 4, 045025. [Google Scholar] [CrossRef]
- Samoylova, G.S. Landscape Map of the Altai-Sayan Mountains. 2001; WWF-IGEM. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Wang, Z.; Lyu, L.; Liu, W.; Liang, H.; Huang, J.; Zhang, Q.-B. Topographic patterns of forest decline as detected from tree rings and NDVI. CATENA 2020, 198, 105011. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974; p. 509. [Google Scholar]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; Lopez-Moreno, J.I.; Azorin-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Tchebakova, N.M.; Monserud, R.A.; Leemans, R.; Golovanov, S. A global vegetation model-based on the climatological approach of Budyko. J. Biogeogr. 1993, 20, 129–144. [Google Scholar] [CrossRef]
- Kramer, P.J.; Kozlowski, T.T. Physiology of Trees; McGraw-Hill Book Company: New York, NY, USA, 1960. [Google Scholar]
- Tchebakova, N.M.; Kolle, O.; Zolotoukhine, D.; Arneth, A.; Styles, J.M.; Vygodskaya, N.N.; Schluze, E.D.; Shibistova, O.; Lloyd, J. Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga Tellus Ser. B Chem. Phys. Meteorol. 2002, 54, 537–551. [Google Scholar] [CrossRef]
- Bortitz, S.; Dassler, H.-G. Einfluss von Luftverunreinigungen auf die Vegetation; VEB Gustav Fischer Verlag Jena: Jena, Germany, 1976; 189p. [Google Scholar]
- Rock, B.N.; Williams, D.L.; Kharuk, V.I.; Wessman, C.A.; Moss, D.M. Morphological, anatomical, and chemical characteristics of needle and branch samples of Siberian fir (Abies sibirica). In Proceeding of the IGARSS’92 International Geoscience and Remote Sensing Symposium; Houston, TX, USA, 26–29 May 1992, IEEE: Piscataway, NJ, USA, 1992; pp. 1289–1291. [Google Scholar] [CrossRef]
- Belozertseva, I.A.; Vorobyeva, I.B.; Vlasova, N.V.; Yanchuk, M.S.; Lopatina, D.N. Chemical composition of snow in the water area of lake Baikal and on the adjacent territory. Geogr. Nat. Resour. 2017, 1, 90–99. [Google Scholar] [CrossRef]
- Obolkin, V.A.; Netsvetaeva, O.G.; Golobokova, L.P.; Potemkin, V.L.; Zimnik, E.A.; Filippova, U.G.; Khodzher, T.V. The long-term results of acid fallout monitoring for the area of South Baikal. Geogr. Nat. Resour. 2013, 2, 66–73. [Google Scholar]
Region, Stations | Elevation, m a.s.l. | Slope Aspect | Vitality Index | Years of Damage | Years of SPEI < −1.5 Severe Droughts | Years of SPEI > 1.5 Wet Years |
---|---|---|---|---|---|---|
Khamar-Daban Transect (bottom-up): Babushkin –Khamar-Daban | H:1100–1190 | SW, NW | 55–64 Damaged | 1960–1961 1968 1971–1973 1976–1977 1980–1983 | 1964 1986 1997–1999 2002 2017 | 1966 1969 1971 1973 1985 1988 1991 2008 |
Eastern Sayan, Transect leeward (bottom-up): Krasnoyarsk –Stolby | M: 450–640 M: 680–820 | River valleys River and stream headwaters, watersheds | 70 Damaged 58–68 Damaged | 1973–1974 1978 1982–86 1991–93 1998–99 | 1962 1973 1997 | 1969 1972 1979 1987 1996 2013 2014 |
Western Sayan, Transect windward (bottom-up): Ermakovskoe– Olenya Rechka | M: 800 | Northern macroslope | 36 Severely damaged | 1978–82 1985–87 1989–90 1993–96 1999 | 1989 1999 2011 | 1972 1979 1980 1985 1987 1998 2006 2009 |
H: 1420–1450 | 55 Damaged | |||||
H: 1150–1500 | Pass, Axial part | 80.0–81.5 Healthy | ||||
Western Sayan, Transect windward (Rock et al.1991) | M: 700–1000 | West-facing slopes | Damaged | before-1990s | ||
Kuznetsky Alatau, Transect windward (bottom-up): Kommunar – Nenastnaya | M: 570–1000 | SE, SW, NW | 46.4–57.5 Severely damaged | 1991 1999 | 1980–81 1989–90 1997 1999 2005 2011–12 2016 | 1964 1970 2002 2018 |
Transect leeward (bottom-up): Shira-Kommunar | M: 710–1250 | NW, SW | 65.6–92.3 Damaged to healthy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchebakova, N.M.; Parfenova, E.I.; Bazhina, E.V.; Soja, A.J.; Groisman, P.Y. Droughts Are Not the Likely Primary Cause for Abies sibirica and Pinus sibirica Forest Dieback in the South Siberian Mountains. Forests 2022, 13, 1378. https://doi.org/10.3390/f13091378
Tchebakova NM, Parfenova EI, Bazhina EV, Soja AJ, Groisman PY. Droughts Are Not the Likely Primary Cause for Abies sibirica and Pinus sibirica Forest Dieback in the South Siberian Mountains. Forests. 2022; 13(9):1378. https://doi.org/10.3390/f13091378
Chicago/Turabian StyleTchebakova, Nadezhda M., Elena I. Parfenova, Elena V. Bazhina, Amber J. Soja, and Pavel Ya. Groisman. 2022. "Droughts Are Not the Likely Primary Cause for Abies sibirica and Pinus sibirica Forest Dieback in the South Siberian Mountains" Forests 13, no. 9: 1378. https://doi.org/10.3390/f13091378
APA StyleTchebakova, N. M., Parfenova, E. I., Bazhina, E. V., Soja, A. J., & Groisman, P. Y. (2022). Droughts Are Not the Likely Primary Cause for Abies sibirica and Pinus sibirica Forest Dieback in the South Siberian Mountains. Forests, 13(9), 1378. https://doi.org/10.3390/f13091378