Discussion of the Distribution Pattern and Driving Factors of 2 Large Old Tree Resources in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Source and Preprocessing
2.3. Research Methods
2.4. Indicators and Calculations
2.5. Data Processing
3. Results
3.1. Distribution of Large Old Tree Resources
3.2. Habitat Distribution
3.3. Spatial Distribution and Driving Factor Analysis of Large Old Tree Resources
3.3.1. Spatial Distribution of Large Old Trees and Tree Species Distribution
3.3.2. Analysis of Driving Factors of Large Old Tree Distribution
4. Discussion
4.1. Driving Factors of Spatial Heterogeneity and Species Richness of Large Old Trees in Beijing
4.2. The Functional Value of Tree Species Determines the Habitat of Large Old Trees
4.3. Inspirations and Suggestions for the Management of Large Old Tree Resources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jim, C.Y. Urban heritage trees: Natural-cultural significance informing management and conservation. In Greening Cities; Springer: Singapore, 2017; pp. 279–305. [Google Scholar] [CrossRef]
- Lindenmayer, D. The importance of managing and conserving large old trees: A case study from victorian mountain ash forests. Proc. R. Soc. Vic. 2016, 128, 64–70. [Google Scholar] [CrossRef]
- Lindenmayer, D.B. Conserving large old trees as small natural features. Biol. Conserv. 2017, 211, 51–59. [Google Scholar] [CrossRef]
- Li, K.; Zhang, G. Species Diversity and Distribution Pattern of Heritage Trees in the Rapidly-Urbanizing Province of Jiangsu, China. Forests 2021, 12, 1543. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F. The unique challenges of conserving large old trees. Trends Ecol. Evol. 2016, 31, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Turner-Skoff, J.B.; Cavender, N. The benefits of trees for livable and sustainable communities. Plants People Planet 2019, 1, 323–335. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F.; Franklin, J.F. Global decline in large old trees. Science 2012, 338, 1305–1306. [Google Scholar] [CrossRef]
- Liao, Y.; Chen, H.; Wang, Z.; Chen, C.; Liu, L. Study on community of fengshui woods and the value of application in construction of ecological public welfare forest. J. Subtrop. Resour. Environ. 2008, 3, 42–48. [Google Scholar] [CrossRef]
- Chen, H.Y.; Luo, Y. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada’s boreal forests. Glob. Change Biol. 2015, 21, 3675–3684. [Google Scholar] [CrossRef]
- Slik, J.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bastian, M.; Blanc, L.; Bongers, F.; Boundja, P.; Clark, C. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Gilhen-Baker, M.; Roviello, V.; Beresford-Kroeger, D.; Roviello, G.N. Old growth forests and large old trees as critical organisms connecting ecosystems and human health. A review. Environ. Chem. Lett. 2022, 20, 1529–1538. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Blakey, R.V.; Burger, J.R.; Cooper, D.S.; Niesner, C.A.; Blumstein, D.T. Urban biodiversity and the importance of scale. Trends Ecol. Evol. 2021, 36, 123–131. [Google Scholar] [CrossRef]
- van der Hoek, Y.; Gaona, G.V.; Martin, K. The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world. Divers. Distrib. 2017, 23, 1120–1131. [Google Scholar] [CrossRef]
- Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf. 2007, 6, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Isah, T. Rethinking Ginkgo biloba L.: Medicinal uses and Conservation. Pharmacogn. Rev. 2015, 9, 140. [Google Scholar] [CrossRef]
- Blicharska, M.; Mikusiński, G. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 2014, 28, 1558–1567. [Google Scholar] [CrossRef]
- Jim, C.Y.; Zhang, H. Species diversity and spatial differentiation of old-valuable trees in urban Hong Kong. Urban For. Urban Green. 2013, 12, 171–182. [Google Scholar] [CrossRef]
- Jin, C.; Zheng, M.; Huang, L.; Qian, S.; Jim, C.Y.; Lin, D.; Zhao, L.; Minor, J.; Coggins, C.; Chen, B. Co-existence between humans and nature: Heritage trees in China’s yangtze River region. Urban For. Urban Green. 2020, 54, 126748. [Google Scholar] [CrossRef]
- Suchocka, M.; Wojnowska-Heciak, M.; Błaszczyk, M.; Gawłowska, A.; Ciemniewska, J.; Jarska, A.; Heciak, J.; Pachnowska, B. Old trees are perceived as a valuable element of the municipal forest landscape. PeerJ 2022, 10, e12700. [Google Scholar] [CrossRef]
- Rega-Brodsky, C.C.; Aronson, M.F.; Piana, M.R.; Carpenter, E.-S.; Hahs, A.K.; Herrera-Montes, A.; Knapp, S.; Kotze, D.J.; Lepczyk, C.A.; Moretti, M. Urban biodiversity: State of the science and future directions. Urban Ecosyst. 2022, 25, 1083–1096. [Google Scholar] [CrossRef]
- Xu, P.; Guan, C.; Zhang, H.; Li, G.; Zhao, D.; Ross, R.J.; Shen, Y. Application of nondestructive testing technologies in preserving historic trees and ancient timber structures in china. Forests 2021, 12, 318. [Google Scholar] [CrossRef]
- Qin, R.; Qiu, Q.; Lam, J.H.; Tang, A.; Leung, M.W.; Lau, D. Health assessment of tree trunk by using acoustic-laser technique and sonic tomography. Wood Sci. Technol. 2018, 52, 1113–1132. [Google Scholar] [CrossRef]
- Cherubini, P.; Battipaglia, G.; Innes, J.L. Tree vitality and forest health: Can tree-ring stable isotopes be used as indicators? Curr. For. Rep. 2021, 7, 69–80. [Google Scholar] [CrossRef]
- Takács, M.; Szénási, Á.; Malatinszky, Á. Polypores, Agrobacterium and ivy damage on Hungarian ancient trees. Nat. Conserv. 2020, 40, 1–38. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C. Research progress in ancient trees health assessment. World For. Res. 2013, 26, 37–42. Available online: http://www.sjlyyj.com/article/id/fc6e1723-4f4a-4a72-87c6-ee3a6fda4cb7?viewType=HTML (accessed on 29 July 2022).
- Liu, J.; Xia, S.; Zeng, D.; Liu, C.; Li, Y.; Yang, W.; Yang, B.; Zhang, J.; Slik, F.; Lindenmayer, D.B. Age and spatial distribution of the world’s oldest trees. Conserv. Biol. 2022, e13907. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lindenmayer, D.B.; Yang, W.; Ren, Y.; Campbell, M.J.; Wu, C.; Luo, Y.; Zhong, L.; Yu, M. Diversity and density patterns of large old trees in China. Sci. Total Environ. 2019, 655, 255–262. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Blanchard, W.; Blair, D.; McBurney, L.; Banks, S.C. Environmental and human drivers influencing large old tree abundance in Australian wet forests. For. Ecol. Manag. 2016, 372, 226–235. [Google Scholar] [CrossRef]
- Chi, X.; Yang, G.; Sun, K.; Li, X.; Wang, T.; Zhang, A.; Li, Y.; Cheng, M.; Wang, Q.J.G.E. Old ginkgo trees in China: Distribution, determinants and implications for conservation. Glob. Ecol. Conserv. 2020, 24, e01304. [Google Scholar] [CrossRef]
- Andersson, R.; Östlund, L. Spatial patterns, density changes and implications on biodiversity for old trees in the boreal landscape of northern Sweden. Biol. Conserv. 2004, 118, 443–453. [Google Scholar] [CrossRef]
- Salick, J.; Amend, A.; Anderson, D.; Hoffmeister, K.; Gunn, B.; Zhendong, F. Tibetan sacred sites conserve old growth trees and cover in the eastern Himalayas. Biodivers. Conserv. 2007, 16, 693–706. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Wan, J.-Z.; Li, Q.-F.; Wei, G.-L.; Yin, G.-J.; Wei, D.-X.; Song, Z.-M.; Wang, C.-J. The effects of the human footprint and soil properties on the habitat suitability of large old trees in alpine urban and periurban areas. Urban For. Urban Green. 2020, 47, 126520. [Google Scholar] [CrossRef]
- Huang, L.; Tian, L.; Zhou, L.; Jin, C.; Qian, S.; Jim, C.Y.; Lin, D.; Zhao, L.; Minor, J.; Coggins, C.J.U.F.; et al. Local cultural beliefs and practices promote conservation of large old trees in an ethnic minority region in southwestern China. Urban For. Urban Green. 2020, 49, 126584. [Google Scholar] [CrossRef]
- Le Roux, D.S.; Ikin, K.; Lindenmayer, D.B.; Manning, A.D.; Gibbons, P.J.P.o. The future of large old trees in urban landscapes. PLoS ONE 2014, 9, e99403. [Google Scholar] [CrossRef]
- Chen, W.Y. Public willingness-to-pay for conserving urban heritage trees in Guangzhou, south China. Urban For. Urban Green. 2015, 14, 796–805. [Google Scholar] [CrossRef]
- Wyse, S.V.; Beggs, J.R.; Burns, B.R.; Stanley, M.C. Protecting trees at an individual level provides insufficient safeguard for urban forests. Landsc. Urban Plan. 2015, 141, 112–122. [Google Scholar] [CrossRef]
- Huang, L.; Jin, C.; Zhen, M.; Zhou, L.; Qian, S.; Jim, C.Y.; Lin, D.; Zhao, L.; Minor, J.; Coggins, C. Biogeographic and anthropogenic factors shaping the distribution and species assemblage of heritage trees in China. Urban For. Urban Green. 2020, 50, 126652. [Google Scholar] [CrossRef]
- McIntyre, N.E.; Knowles-Yánez, K.; Hope, D. Urban ecology as an interdisciplinary field: Differences in the use of “urban” between the social and natural sciences. In Urban Ecology; Springer: Boston, MA, USA, 2008; pp. 49–65. [Google Scholar] [CrossRef]
- Leong, M.; Dunn, R.R.; Trautwein, M.D. Biodiversity and socioeconomics in the city: A review of the luxury effect. Biol. Lett. 2018, 14, 20180082. [Google Scholar] [CrossRef]
- Connor, E.F.; McCoy, E.D. The statistics and biology of the species-area relationship. Am. Nat. 1979, 113, 791–833. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Qian, Z.; Zhong, T.; Chen, M.; Zhang, K.; Yang, Y.; Zhu, R.; Zhang, F.; Zhang, H.; Zhou, F. Vectorized rooftop area data for 90 cities in China. Sci. Data 2022, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Xu, X. China GDP Spatial Distribution Kilometer Grid Data Set; Chinese Academy of Sciences: Beijing, China, 2017. [Google Scholar] [CrossRef]
- Hill, M.O.; Gauch, H.G. Detrended correspondence analysis: An improved ordination technique. In Classification and Ordination; Springer: Berlin/Heidelberg, Germany, 1980; pp. 47–58. [Google Scholar] [CrossRef]
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetectors: Principles and Prospects. Acta Geogr. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wilshusen, P.R.; Brechin, S.R.; Fortwangler, C.L.; West, P.C. Reinventing a square wheel: Critique of a resurgent “protection paradigm” in international biodiversity conservation. Soc. Nat. Resour. 2002, 15, 17–40. [Google Scholar] [CrossRef]
- Martín-López, B.; Iniesta-Arandia, I.; García-Llorente, M.; Palomo, I.; Casado-Arzuaga, I.; Amo, D.G.D.; Gómez-Baggethun, E.; Oteros-Rozas, E.; Palacios-Agundez, I.; Willaarts, B. Uncovering ecosystem service bundles through social preferences. PLoS ONE 2012, 7, e38970. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Li, Y.; Wu, F. The Development of Chinese Royal Gardens. J. Landsc. Res. 2020, 12, 111–116. [Google Scholar] [CrossRef]
- Qu, H. The Office of the Capital Greening Committee held the 2021 Work Conference on the Protection and Management of Ancient and Famous. Trees. Land Green. 2021, 38. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=GTLH202103012 (accessed on 29 July 2022).
- Zhao, P. Building knowledge city in transformation era: Knowledge-based urban development in Beijing in the context of globalisation and decentralisation. Asia Pac. Viewp. 2010, 51, 73–90. [Google Scholar] [CrossRef]
- Acharya, S.K. Urban development in post-reform China: Insights from Beijing. Nor. J. Geogr. 2005, 59, 228–236. [Google Scholar] [CrossRef]
- Eliasson, I. Urban geometry, surface temperature and air temperature. Energy Build. 1990, 15, 141–145. [Google Scholar] [CrossRef]
- Davoren, E.; Siebert, S.; Cilliers, S.; Du Toit, M.J. Influence of socioeconomic status on design of Batswana home gardens and associated plant diversity patterns in northern South Africa. Landsc. Ecol. Eng. 2016, 12, 129–139. [Google Scholar] [CrossRef]
- Zhang, H.; Lai, P.Y.; Jim, C.Y. Species diversity and spatial pattern of old and precious trees in Macau. Landsc. Urban Plan. 2017, 162, 56–67. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Shin, H.-S.; Lee, H.-L. A Cultural Landscape Charactertistics of Traditional Temple Garden in China-Focusing on the Spatial Division of Buddhist Temples and the Value of Gardens. J. Korean Inst. Tradit. Landsc. Archit. 2021, 39, 15–21. [Google Scholar] [CrossRef]
- Wu, H.; Jin, H.; Zheng, Q. The Functions and Aesthetic Meaning of Water Scenes in Chinese Temple Gardens. Water-Related Urbanization and Locality: Protecting, Planning and Designing Urban Water Environments in a Sustainable Way; Springer: Singapore, 2020; p. 317. [Google Scholar] [CrossRef]
- Cloke, P.; Jones, O. Turning in the graveyard: Trees and the hybrid geographies of dwelling, monitoring and resistance in a Bristol cemetery. Cult. Geogr. 2004, 11, 313–341. [Google Scholar] [CrossRef]
- Kurnianto, A.S.; Septiadi, L.; Firmansyah, P.; Dewi, N. Communities and tree-species preferences of birds in traditional agroforestry system in Meru Betiri National Park. Berk. Penelit. Hayati 2022, 27, 83–90. [Google Scholar] [CrossRef]
- Gwedla, N.; Shackleton, C.M.; Olvitt, L. Trees stocks in domestic gardens and willingness to participate in tree planting initiatives in low-cost housing areas of the Eastern Cape, South Africa. Urban For. Urban Green. 2022, 68, 127484. [Google Scholar] [CrossRef]
- Galenieks, A. Importance of urban street tree policies: A Comparison of neighbouring Southern California cities. Urban For. Urban Green. 2017, 22, 105–110. [Google Scholar] [CrossRef]
- Sheppard, S.R.; Van den Bosch, C.C.K.; Croy, O.; Macias, A.; Barron, S. Urban forest governance and community engagement. In Routledge Handbook of Urban Forestry; Routledge: London, UK, 2017; pp. 205–221. ISBN 9781315627106. [Google Scholar] [CrossRef]
- Davis, K.L.; Jones, R.E. Modeling environmental concern for urban tree protection using biophysical and social psychological indicators. Soc. Nat. Resour. 2014, 27, 372–388. [Google Scholar] [CrossRef]
Comparison | Interaction Contribution |
---|---|
P(A ∩ B) > P(A) or P(B) | Enhance |
P(A ∩ B) > P(A) and P(B) | Enhance, bivariate |
P(A ∩ B) > P(A) + P(B) | Enhance, nonlinear |
P(A ∩ B) < P(A) + P(B) | Weaken |
If P(A ∩ B) < P(A) or P(B) | Weaken, univariate |
P(A ∩ B) < P(A) and P(B) | Weaken, nonlinear |
P(A ∩ B) = P(A) + P(B) | Independent |
Code | Habitat Type | Scope |
---|---|---|
GY | Park | All royal gardens in Beijing and public gardens for public recreation and rest. |
LM | Cemetery | Tombs containing emperors and other deceased people. |
LD | Microgreen space | Small-scale green areas beside streets and buildings. |
SM | Temple | All religious sites, such as Buddhist and Taoist temples. |
SQ | Community | Residential areas, office areas, schools and other areas of work and life. |
DL | Roadside | Only road areas beside main and secondary roads. |
XC | Countryside | Areas with less human activity, such as areas outside cities and wilderness areas. |
Type | Evergreen | Fallen Leaves | Level 1 | Level 2 | Total |
---|---|---|---|---|---|
Family | 2 | 27 | 21 | 26 | 29 |
Genus | 6 | 46 | 30 | 48 | 52 |
Species | 8 | 64 | 36 | 64 | 72 |
Tree count (trees) | 35,709 | 4881 | 6150 | 34,440 | 40,590 |
Explanatory Variables | Spatial Distribution of Large Old Trees | Species Richness | ||
---|---|---|---|---|
q Statistic | p Value | q Statistic | p Value | |
BUD | 0.0329 | 0.000 | 0.2148 | 0.000 |
GDP | 0.0975 | 0.000 | 0.3662 | 0.000 |
PD | 0.0297 | 0.000 | 0.2257 | 0.000 |
DFC | 0.1337 | 0.000 | 0.2330 | 0.000 |
ANP | 0.0070 | 0.052 | 0.0403 | 0.000 |
AMT | 0.0272 | 0.000 | 0.1612 | 0.000 |
SRHS | 0.3706 | 0.000 | 0.3681 | 0.000 |
EL | 0.0146 | 0.000 | 0.0971 | 0.000 |
Spatial Distribution of Large Old Trees | Species Richness | |||||
---|---|---|---|---|---|---|
Variable | q | A + B | Interaction Contribution | q | A + B | Interaction Contribution |
BUD ∩ GDP | 0.1611 | 0.0329 + 0.0975 = 0.1303 | Enhance, nonlinear | 0.4662 | 0.2148 + 0.3662 = 0.5810 | Enhance, bivariate |
BUD ∩ POB | 0.1822 | 0.0329 + 0.0297 = 0.0626 | Enhance, nonlinear | 0.3358 | 0.2148 + 0.2257 = 0.4405 | Enhance, bivariate |
BUD ∩ DFC | 0.1790 | 0.0329 + 0.1337 = 0.1666 | Enhance, nonlinear | 0.3360 | 0.2148 + 0.2330 = 0.4481 | Enhance, bivariate |
BUD ∩ ANP | 0.0714 | 0.0329 + 0.0070 = 0.0399 | Enhance, nonlinear | 0.3035 | 0.2148 + 0.0403 = 0.2551 | Enhance, nonlinear |
BUD ∩ AMT | 0.0625 | 0.0329 + 0.0272 = 0.0601 | Enhance, nonlinear | 0.2926 | 0.2148 + 0.1612 = 0.3760 | Enhance, bivariate |
BUD ∩ SRHS | 0.6172 | 0.0329 + 0.3706 = 0.4035 | Enhance, nonlinear | 0.5066 | 0.2148 + 0.3681 = 0.5829 | Enhance, bivariate |
BUD ∩ EL | 0.0496 | 0.0329 + 0.0146 = 0.0475 | Enhance, nonlinear | 0.3254 | 0.2148 + 0.0971 = 0.3119 | Enhance, nonlinear |
GDP ∩ POB | 0.1935 | 0.0975 + 0.0297 = 0.1272 | Enhance, nonlinear | 0.4195 | 0.3662 + 0.2257 = 0.5919 | Enhance, bivariate |
GDP ∩ DFC | 0.1685 | 0.0975 + 0.1337 = 0.2312 | Enhance, bivariate | 0.3797 | 0.3662 + 0.2333 = 0.5995 | Enhance, bivariate |
GDP ∩ ANP | 0.1630 | 0.0975 + 0.0070 = 0.1045 | Enhance, nonlinear | 0.4101 | 0.3662 + 0.0403 = 0.4065 | Enhance, nonlinear |
GDP ∩ AMT | 0.1026 | 0.0975 + 0.0272 = 0.1247 | Enhance, bivariate | 0.4313 | 0.3662 + 0.1612 = 0.5274 | Enhance, bivariate |
GDP ∩ SRHS | 0.6292 | 0.0975 + 0.3706 = 0.4681 | Enhance, nonlinear | 0.5234 | 0.3662 + 0.3681 = 0.7343 | Enhance, bivariate |
GDP ∩ EL | 0.1840 | 0.0975 + 0.0146 = 0.1121 | Enhance, nonlinear | 0.4981 | 0.3662 + 0.0971 = 0.4633 | Enhance, nonlinear |
POB ∩ DFC | 0.2047 | 0.0297 + 0.1337 = 0.1634 | Enhance, nonlinear | 0.3321 | 0.2257 + 0.2333 = 0.4590 | Enhance, bivariate |
POB ∩ ANP | 0.1060 | 0.0297 + 0.0070 = 0.0367 | Enhance, nonlinear | 0.2633 | 0.2257 + 0.0403 = 0.2660 | Enhance, bivariate |
POB ∩ AMT | 0.0852 | 0.0297 + 0.0272 = 0.0569 | Enhance, nonlinear | 0.2716 | 0.2257 + 0.1612 = 0.3869 | Enhance, bivariate |
POB ∩ SRHS | 0.8396 | 0.0297 + 0.3706 = 0.4003 | Enhance, nonlinear | 0.5077 | 0.2257 + 0.3681 = 0.5938 | Enhance, bivariate |
POB ∩ EL | 0.0629 | 0.0297 + 0.0146 = 0.0443 | Enhance, nonlinear | 0.3478 | 0.2257 + 0.0971 = 0.3228 | Enhance, nonlinear |
DFC ∩ ANP | 0.1514 | 0.1337 + 0.0070 = 0.1407 | Enhance, nonlinear | 0.2433 | 0.2333 + 0.0403 = 0.2736 | Enhance, bivariate |
DFC ∩ AMT | 0.1386 | 0.1337 + 0.0272 = 0.1609 | Enhance, bivariate | 0.3082 | 0.2333 + 0.1612 = 0.3945 | Enhance, bivariate |
DFC ∩ SRHS | 0.4625 | 0.1337 + 0.3706 = 0.5043 | Enhance, bivariate | 0.4738 | 0.2333 + 0.3681 = 0.6014 | Enhance, bivariate |
DFC ∩ EL | 0.1594 | 0.1337 + 0.0146 = 0.1483 | Enhance, nonlinear | 0.3867 | 0.2333 + 0.0971 = 0.3304 | Enhance, nonlinear |
ANP ∩ AMT | 0.0406 | 0.0070 + 0.0272 = 0.0342 | Enhance, nonlinear | 0.1920 | 0.0403 + 0.1612 = 0.2015 | Enhance, bivariate |
ANP ∩ SRHS | 0.6639 | 0.0070 + 0.3706 = 0.3776 | Enhance, nonlinear | 0.4428 | 0.0403 + 0.3681 = 0.4084 | Enhance, nonlinear |
ANP ∩ EL | 0.0722 | 0.0070 + 0.0146 = 0.0216 | Enhance, nonlinear | 0.2462 | 0.0403 + 0.0971 = 0.1374 | Enhance, nonlinear |
AMT ∩ SRHS | 0.4835 | 0.0272 + 0.3706 = 0.3978 | Enhance, nonlinear | 0.4668 | 0.1612 + 0.3681 = 0.5293 | Enhance, bivariate |
AMT ∩ EL | 0.0404 | 0.0272 + 0.0146 = 0.0418 | Enhance, bivariate | 0.2740 | 0.1612 + 0.0971 = 0.2583 | Enhance, nonlinear |
SRHS ∩ EL | 0.4734 | 0.3706 + 0.0146 = 0.3852 | Enhance, nonlinear | 0.4948 | 0.3681 + 0.0971 = 0.4652 | Enhance, nonlinear |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Qiu, E.; Zhang, Y.; Huang, L.; Wang, H.; Jiang, S. Discussion of the Distribution Pattern and Driving Factors of 2 Large Old Tree Resources in Beijing. Forests 2022, 13, 1500. https://doi.org/10.3390/f13091500
Fu Q, Qiu E, Zhang Y, Huang L, Wang H, Jiang S. Discussion of the Distribution Pattern and Driving Factors of 2 Large Old Tree Resources in Beijing. Forests. 2022; 13(9):1500. https://doi.org/10.3390/f13091500
Chicago/Turabian StyleFu, Qingcheng, Erfa Qiu, Yuan Zhang, Lanhong Huang, Huichao Wang, and Shasha Jiang. 2022. "Discussion of the Distribution Pattern and Driving Factors of 2 Large Old Tree Resources in Beijing" Forests 13, no. 9: 1500. https://doi.org/10.3390/f13091500
APA StyleFu, Q., Qiu, E., Zhang, Y., Huang, L., Wang, H., & Jiang, S. (2022). Discussion of the Distribution Pattern and Driving Factors of 2 Large Old Tree Resources in Beijing. Forests, 13(9), 1500. https://doi.org/10.3390/f13091500