Giant Trees Exhibited Great Cooling Effect in Residential Area Southwest of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Design and Field Measurements
2.3. Multiple Linear Regression
3. Results
3.1. Comparison of Air Temperature under Different Trees
3.2. Impact of Temperature Difference between the Tree Trunk and Deep Soil
3.3. Multiple Linear Regression for Control Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, Y.; Zhang, M.; Liu, S.; Sun, P.; Yin, L.; Yang, T.; Wei, X. The Hydrological Impact of Extreme Weather-Induced Forest Disturbances in a Tropical Experimental Watershed in South China. Forests 2018, 12, 734. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Fu, B.; Sun, J.Y. Heat wave mitigation of ecosystems in mountain areas—A case study of the Upper Yangtze River basin. Ecosyst. Health Sustain. 2022, 8, 2084459. [Google Scholar] [CrossRef]
- Plasman, M.; Torres, R. Feeling the heat: Extreme temperatures compromise constitutive innate humoral immunity and skin color in a desert dwelling lizard. J. Therm. Biol. 2019, 83, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.F.; Liu, T.T.; Xu, K.; Chen, C.X. The impact of high temperature and drought stress on the yield of major staple crops in northern China. J. Environ. Manag. 2022, 314, 115092. [Google Scholar] [CrossRef]
- Carrillo-Niquete, G.A.; Andrade, J.L.; Valdez-Lazalde, J.R.; Reyes-Garcia, C.; Hernandez-Stefanoni, J.L. Characterizing spatial and temporal deforestation and its effects on surface urban heat islands in a tropical city using Landsat time series. Landsc. Urban Plan 2022, 217, 104280. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Yu, Z.W.; Zhang, J.G.; Yang, G.Y. How to build a heat network to alleviate surface heat island effect? Sustain. Cities Soc. 2021, 74, 103135. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Ji, P.; Li, S.H. Effects of Urban Green Belts on the Air Temperature, Humidity and Air Quality. J. Environ. Eng. Landsc. 2017, 25, 39–55. [Google Scholar] [CrossRef]
- Amati, M.; Yokohari, M. Temporal changes and local variations in the functions of London’s green belt. Landsc. Urban Plan 2006, 75, 125–142. [Google Scholar] [CrossRef]
- Boentje, J.P.; Blinnikov, M.S. Post-Soviet forest fragmentation and loss in the Green Belt around Moscow, Russia (1991–2001): A remote sensing perspective. Landsc. Urban Plan 2007, 82, 208–221. [Google Scholar] [CrossRef]
- Kowarik, I. The “Green Belt Berlin”: Establishing a greenway where the Berlin Wall once stood by integrating ecological, social and cultural approaches. Landsc. Urban Plan 2019, 184, 12–22. [Google Scholar] [CrossRef]
- Pathak, V.; Tripathi, B.D.; Mishra, V.K. Evaluation of Anticipated Performance Index of some tree species for green belt development to mitigate traffic generated noise. Urban For. Urban Green. 2011, 10, 61–66. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Tripathi, B.D. Anticipated Performance Index of some tree species considered for green belt development in and around an urban area: A case study of Varanasi city, India. J. Environ. Manag. 2008, 88, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Kubilay, A.; Allegrini, J.; Strebel, D.; Zhao, Y.; Derome, D.; Carmeliet, J. Advancement in Urban Climate Modelling at Local Scale: Urban Heat Island Mitigation and Building Cooling Demand. Atmosphere 2020, 11, 1313. [Google Scholar] [CrossRef]
- Manickathan, L.; Defraeye, T.; Allegrini, J.; Derome, D.; Carmeliet, J. Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. Agric. For. Meteorol. 2018, 248, 259–274. [Google Scholar] [CrossRef]
- Huang, J.; Kong, F.; Yin, H.; Middel, A.; Liu, H.; Zheng, X.; Wen, Z.; Wang, D. Transpirational cooling and physiological responses of trees to heat. Agric. Forest Meteorol. 2022, 320, 108940. [Google Scholar] [CrossRef]
- Wang, W.Z.; Xu, F.A.; Wang, J.M. Energy Exchange and Evapotranspiration over the Ejina Oasis Riparian Forest Ecosystem with Different Land-Cover Types. Water 2021, 13, 3424. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Z.; Xie, J.; Liu, B.; Jia, B.; Qin, P.; Li, R. Impact of urbanization on the thermal environment of the Chengdu-Chongqing urban agglomeration under complex terrain. Earth Syst. Dynam. 2022, 13, 341–356. [Google Scholar] [CrossRef]
- Gao, J.; Bian, H.Y.; Zhu, C.J.; Tang, S. The response of key ecosystem services to land use and climate change in Chongqing: Time, space, and altitude. J. Geogr. Sci. 2022, 32, 317–332. [Google Scholar] [CrossRef]
- Liu, G.; Niu, J.; Guo, W.; Zhao, L.; Zhang, C.; Wang, M.; Guo, G. Assessment of terrain factors on the pattern and extent of soil contamination surrounding a chemical industry in Chongqing, Southwest China. Catena 2017, 156, 237–243. [Google Scholar] [CrossRef]
- Lu, H.; Xie, M.; Liu, B.; Liu, X.; Feng, J.; Yang, F.; Gao, Y. Impact of atmospheric thermodynamic structures and aerosol radiation feedback on winter regional persistent heavy particulate pollution in the Sichuan-Chongqing region, China. Sci. Total Environ. 2022, 842, 156575. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chen, J.H.; Tang, Y.; Feng, Y.; Wang, J.S. High-rise buildings versus outdoor thermal environment in Chongqing. Sensors 2007, 7, 2183–2200. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Luo, S.; He, J.; Cheng, Y.; Jin, Y. Impacts of extremely high temperature and heatwave on heatstroke in Chongqing, China. Environ. Sci. Pollut. R 2017, 24, 8534–8540. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yan, Y.; Liu, G.; Fang, D.; Wu, Z.; He, J.; Tang, J. Spatiotemporal characteristics of precipitation diurnal variations in Chongqing with complex terrain. Appl. Clim. 2019, 137, 1217–1231. [Google Scholar] [CrossRef]
- Zhan, Z.Z.; Liu, H.B.; Li, H.M.; Wu, W.; Zhong, B. The Relationship between NDVI and Terrain Factors --A Case Study of Chongqing. Procedia Environ. Sci. 2012, 12, 765–771. [Google Scholar] [CrossRef]
- Yao, R.M.; Luo, Q.; Luo, Z.W.; Jiang, L.; Yang, Y. An integrated study of urban microclimates in Chongqing, China: Historical weather data, transverse measurement and numerical simulation. Sustain. Cities Soc. 2015, 14, 187–199. [Google Scholar] [CrossRef]
- He, B.J.; Zhao, D.; Dong, X.; Xiong, K.; Feng, C.; Qi, Q.; Pathak, M. Perception, physiological and psychological impacts, adaptive awareness and knowledge, and climate justice under urban heat: A study in extremely hot-humid Chongqing, China. Sustain. Cities Soc. 2022, 79, 103685. [Google Scholar] [CrossRef]
- Wang, Y.M.; Xiang, P.C. Urban Sprawl Sustainability of Mountainous Cities in the Context of Climate Change Adaptability Using a Coupled Coordination Model: A Case Study of Chongqing, China. Sustainability 2019, 11, 20. [Google Scholar] [CrossRef]
- Peterson, S.H.; Roberts, D.A.; Dennison, P.E. Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sens. Environ. 2008, 112, 4272–4284. [Google Scholar] [CrossRef]
- Swayze, N.C.; Tinkham, W.T.; Vogeler, J.C.; Hudak, A.T. Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density. Remote Sens. Environ. 2021, 263, 112540. [Google Scholar] [CrossRef]
- Bucci, S.J.; Goldstein, G.; Meinzer, F.C.; Scholz, F.G.; Franco, A.C.; Bustamante, M. Functional convergence in hydraulic architecture and water relations of tropical savanna trees: From leaf to whole plant. Tree Physiol. 2004, 24, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Beyene, A.; Cornelis, W.; Verhoest, N.E.; Tilahun, S.; Alamirew, T.; Adgo, E.; Nyssen, J. Estimating the actual evapotranspiration and deep percolation in irrigated soils of a tropical floodplain, northwest Ethiopia. Agric. Water Manag. 2018, 202, 42–56. [Google Scholar] [CrossRef]
- Tang, Y.K.; Wen, X.F.; Sun, X.M.; Zhang, X.Y.; Wang, H.M. The Limiting Effect of Deep Soil Water on Evapotranspiration of a Subtropical Coniferous Plantation Subjected to Seasonal Drought. Adv. Atmos. Sci. 2014, 31, 385–395. [Google Scholar] [CrossRef]
- Kong, J.; Zhao, Y.; Carmeliet, J.; Lei, C. Urban heat island and its interaction with heatwaves: A review of studies on mesoscale. Sustainability 2021, 13, 10923. [Google Scholar] [CrossRef]
- Amato, M.; Basso, B.; Celano, G.; Bitella, G.; Morelli, G.; Rossi, R. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree Physiol. 2008, 28, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Farahnak, M.; Mitsuyasu, K.; Hishi, T.; Katayama, A.; Chiwa, M.; Jeong, S.; Kume, A. Relationship between Very Fine Root Distribution and Soil Water Content in Pre- and Post-Harvest Areas of Two Coniferous Tree Species. Forests 2020, 11, 1227. [Google Scholar] [CrossRef]
- Plante, P.M.; Rivest, D.; Vezina, A.; Vanasse, A. Root distribution of different mature tree species growing on contrasting textured soils in temperate windbreaks. Plant Soil 2014, 380, 429–439. [Google Scholar] [CrossRef]
- Ali, N.; Tavoillot, J.; Chapuis, E.; Mateille, T. Trend to explain the distribution of root-knot nematodes Meloidogyne spp. associated with olive trees in Morocco. Agric. Ecosyst. Environ. 2016, 225, 22–32. [Google Scholar] [CrossRef]
Intercept | DBH | LAI | CH | CA | R2 | ||
---|---|---|---|---|---|---|---|
Result 1 | 6.2943 | −0.0832 | −0.2561 | −0.0291 | 0.0068 | 0.6821 | |
p-value | 0.0000 | 0.0002 | 0.0021 | 0.3141 | 0.0650 | ||
Result 2 | 6.2463 | −0.0926 | −0.2580 | 0.0063 | 0.6818 | ||
p-value | 0.0000 | 0.0000 | 0.0019 | 0.0850 | |||
Result 3 | 5.6671 | −0.0665 | −0.1942 | 0.6644 | |||
p-value | 0.0000 | 0.0000 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhao, Z. Giant Trees Exhibited Great Cooling Effect in Residential Area Southwest of China. Forests 2022, 13, 1516. https://doi.org/10.3390/f13091516
Zhang R, Zhao Z. Giant Trees Exhibited Great Cooling Effect in Residential Area Southwest of China. Forests. 2022; 13(9):1516. https://doi.org/10.3390/f13091516
Chicago/Turabian StyleZhang, Rongfei, and Ziyan Zhao. 2022. "Giant Trees Exhibited Great Cooling Effect in Residential Area Southwest of China" Forests 13, no. 9: 1516. https://doi.org/10.3390/f13091516
APA StyleZhang, R., & Zhao, Z. (2022). Giant Trees Exhibited Great Cooling Effect in Residential Area Southwest of China. Forests, 13(9), 1516. https://doi.org/10.3390/f13091516