Study of the Genetic Adaptation Mechanisms of Siberian Larch (Larix sibirica Ledeb.) Regarding Climatic Stresses Based on Dendrogenomic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Dendrophenotypes
2.2. DNA Extraction and ddRAD Sequencing
2.3. SNP Calling
2.4. Genetic Structure of Populations
2.5. Associations between Dendrophenotypes and Individual Heterozygosity
2.6. Genotype–Phenotype Associations
2.7. SNP Annotation
3. Results
3.1. Dendrophenotypes
3.2. SNP Calling
3.3. Genetic Structure of Populations
3.4. Associations between Dendrophenotypes and Individual Heterozygosity
3.5. Genotype–Dendrophenotype Associations
3.6. SNP Annotation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.G. Boreal forest health and global change. Science 2015, 349, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Brecka, A.F.J.; Shahi, C.; Chen, H.Y.H. Climate change impacts on boreal forest timber supply. For. Policy Econ. 2018, 92, 11–21. [Google Scholar] [CrossRef]
- Krutovsky, K.V. Dendrogenomics is a new interdisciplinary field of research of the adaptive genetic potential of forest tree populations integrating dendrochronology, dendroecology, dendroclimatology, and genomics. Russ. J. Genet. 2022, 58, 1273–1286. [Google Scholar] [CrossRef]
- Liu, H.; Park Williams, A.; Allen, C.D.; Guo, D.; Wu, X.; Anenkhonov, O.A.; Liang, E.; Sandanov, D.V.; Yin, Y.; Qi, Z.; et al. Rapid warming accelerates tree growth decline in semi-arid forests of inner Asia. Global Chang. Biol. 2013, 19, 2500–2510. [Google Scholar] [CrossRef] [PubMed]
- Zhirnova, D.F.; Belokopytova, L.V.; Krutovsky, K.V.; Kholdaenko, Y.A.; Babushkina, E.A.; Vaganov, E.A. Spatial-coherent dynamics and climatic signals in the radial growth of Siberian stone pine (Pinus sibirica Du Tour) in subalpine stands along the Western Sayan Mountains. Forests 2022, 13, 1994. [Google Scholar] [CrossRef]
- Belokopytova, L.V.; Zhirnova, D.F.; Krutovsky, K.V.; Mapitov, N.B.; Vaganov, E.A.; Babushkina, E.A. Species- and age-specific growth reactions to extreme droughts of the keystone tree species across forest-steppe and sub-taiga habitats of South Siberia. Forests 2022, 13, 1027. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Petrov, I.A.; Dvinskaya, M.L.; Im, S.T.; Shushpanov, A.S. Comparative reaction of larch (Larix sibirica Ledeb.) radial increment on climate change in the forest steppe and highlands of Southern Siberia. Contemp. Probl. Ecol. 2018, 11, 388–395. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Leuschner, C. Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Glob. Chang. Biol. 2010, 16, 3024–3035. [Google Scholar] [CrossRef]
- Barchenkov, A.P.; Petrov, I.A.; Shushpanov, A.S.; Golyukov, A.S. Climatic response of larch (Larix sp.) radial increment in provenances on the Krasnoyarsk forest steppe. Contemp. Probl. Ecol. 2023, 16, 620–630. [Google Scholar] [CrossRef]
- Abaimov, A.P. Geographical distribution and genetics of Siberian larch species. In Permafrost Ecosystems. Ecological Studies; Osawa, A., Zyryanova, O., Matsuura, Y., Kajimoto, T., Wein, R., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 209, pp. 41–58. [Google Scholar] [CrossRef]
- Semerikov, V.L.; Iroshnikov, A.I.; Lascoux, M. Mitochondrial DNA variation pattern and postglacial history of the Siberian larch (Larix sibirica Ledeb.). Russ. J. Ecol. 2007, 38, 147–154. [Google Scholar] [CrossRef]
- Bobrov, E.G. Forest-Forming Conifers of the USSR; Nauka Publishing: Leningrad, Russia, 1978; 188p. [Google Scholar]
- Urban, J.; Rubtsov, A.V.; Urban, A.V.; Shashkin, A.V.; Benkova, V.E. Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia. Agric. For. Meteorol. 2019, 271, 64–72. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Bader, M.; Oyungerel, S.; Osokhjargal, D.; Nyambayar, S.; Leuschner, C. The different strategies of Pinus sylvestris and Larix sibirica to deal with summer drought in a northern Mongolian forest–steppe ecotone suggest a future superiority of pine in a warming climate. Can. J. For. Res. 2009, 39, 2520–2528. [Google Scholar] [CrossRef]
- Schweingruber, F.H. Tree Rings and Environment Dendroecology; Haupt: Berne, Switzerland; Stuttgart, Germany; Vienna, Austria, 1996; ISBN 978-3-258-05458-2. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Blackburn Press: Caldwell, NJ, USA, 2001; ISBN 978-1-930665-39-2. [Google Scholar]
- Vaganov, E.A.; Hughes, M.K.; Shashkin, A.V. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-26086-8. [Google Scholar]
- Babushkina, E.A.; Zhirnova, D.F.; Belokopytova, L.V.; Tychkov, I.I.; Vaganov, E.A.; Krutovsky, K.V. Response of four tree species to changing climate in a moisture-limited area of South Siberia. Forests 2019, 10, 999. [Google Scholar] [CrossRef]
- Belokopytova, L.V.; Babushkina, E.A.; Zhirnova, D.F.; Panyushkina, I.P.; Vaganov, E.A. Climatic response of conifer radial growth in forest-steppes of South Siberia: Comparison of three approaches. Contemp. Probl. Ecol. 2018, 11, 366–376. [Google Scholar] [CrossRef]
- Belokopytova, L.V.; Zhirnova, D.F.; Meko, D.M.; Babushkina, E.A.; Vaganov, E.A.; Krutovsky, K.V. Tree rings reveal the impact of soil temperature on larch growth in the forest-steppe of Siberia. Forests 2021, 12, 1765. [Google Scholar] [CrossRef]
- Rozenberg, P.; Pâques, L.; Huard, F.; Roques, A. Direct and Indirect analysis of the elevational shift of larch budmoth outbreaks along an elevation gradient. Front. For. Glob. Chang. 2020, 3, 86. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Vaganov, E.A.; Grachev, A.M.; Oreshkova, N.V.; Belokopytova, L.V.; Kostyakova, T.V.; Krutovsky, K.V. The effect of individual genetic heterozygosity on general homeostasis, heterosis and resilience in Siberian larch (Larix sibirica Ledeb.) using dendrochronology and microsatellite loci genotyping. Dendrochronologia 2016, 38, 26–37. [Google Scholar] [CrossRef]
- Johnson, J.S.; Gaddis, K.D.; Cairns, D.M.; Konganti, K.; Krutovsky, K.V. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. Am. J. Bot. 2017, 104, 439–450. [Google Scholar] [CrossRef]
- Johnson, J.S.; Chhetri, P.; Krutovsky, K.V.; Cairns, D.M. Growth and its relationship to individual genetic diversity of mountain hemlock (Tsuga mertensiana) at alpine treeline in Alaska: Combining dendrochronology and genomics. Forests 2017, 8, 418. [Google Scholar] [CrossRef]
- Johnson, J.S.; Gaddis, K.D.; Cairns, D.M.; Krutovsky, K.V. Seed dispersal at alpine treeline: An assessment of seed movement within the alpine treeline ecotone. Ecosphere 2017, 8, e01649. [Google Scholar] [CrossRef]
- Depardieu, C.; Gérardi, S.; Nadeau, S.; Parent, G.J.; Mackay, J.; Lenz, P.; Lamothe, M.; Girardin, M.P.; Bousquet, J.; Isabel, N. Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. Mol. Ecol. 2021, 30, 3898–3917. [Google Scholar] [CrossRef] [PubMed]
- Cappa, E.P.; Klutsch, J.G.; Sebastian-Azcona, J.; Ratcliffe, B.; Wei, X.; Da Ros, L.; Liu, Y.; Chen, C.; Benowicz, A.; Sadoway, S.; et al. Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program. PLoS ONE 2022, 17, e0264549. [Google Scholar] [CrossRef] [PubMed]
- Fasanella, M.; Suarez, M.L.; Hasbún, R.; Premoli, A.C. Individual-based dendrogenomic analysis of forest dieback driven by extreme droughts. Can. J. For. Res. 2021, 51, 420–432. [Google Scholar] [CrossRef]
- Heer, K.; Behringer, D.; Piermattei, A.; Bässler, C.; Brandl, R.; Fady, B.; Jehl, H.; Liepelt, S.; Lorch, S.; Piotti, A.; et al. Linking Dendroecology and association genetics in natural populations: Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 2018, 27, 1428–1438. [Google Scholar] [CrossRef]
- Cook, E.R.; Kairiukstis, L.A. (Eds.) Methods of Dendrochronology; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-90-481-4060-2. [Google Scholar]
- Rinn, F. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications. Version 0.55 User Reference. Heidelberg, Germany. 2003. Available online: https://software.rinntech.com/tsap (accessed on 14 October 2023).
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Zhirnova, D.F.; Babushkina, E.A.; Belokopytova, L.V.; Vaganov, E.A. To which side are the scales swinging? Growth stability of Siberian larch under permanent moisture deficit with periodic droughts. For. Ecol. Manag. 2020, 459, 117841. [Google Scholar] [CrossRef]
- Lloret, F.; Keeling, E.G.; Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 2011, 120, 1909–1920. [Google Scholar] [CrossRef]
- Cook, E.R.; Krusic, P.J. Program ARSTAN: A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics; Lamont-Doherty Earth Observatory, Columbia University: Palisades, NY, USA, 2005; 14p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.r-project.org (accessed on 14 October 2023).
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed]
- Parchman, T.L.; Gompert, Z.; Mudge, J.; Schilkey, F.D.; Benkman, C.W.; Buerkle, C.A. Genome-wide association genetics of an adaptive trait in lodgepole pine: Association mapping of serotiny. Mol. Ecol. 2012, 21, 2991–3005. [Google Scholar] [CrossRef] [PubMed]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, D.A.; Feranchuk, S.I.; Sharov, V.V.; Cybin, A.N.; Makolov, S.V.; Putintseva, Y.A.; Oreshkova, N.V.; Krutovsky, K.V. Stepwise large genome assembly approach: A case of Siberian larch (Larix sibirica Ledeb.). BMC Bioinf. 2019, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Pembleton, L.W.; Cogan, N.O.I.; Forster, J.W. St AMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 2013, 13, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Dray, S.; Dufour, A.-B. The Ade4 package: Implementing the duality diagram for ecologists. J. Stat. Soft. 2007, 22, 1–20. [Google Scholar] [CrossRef]
- Frichot, E.; François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Mussmann, S.M.; Douglas, M.R.; Chafin, T.K.; Douglas, M.E. AdmixPipe: Population analyses in admixture for non-model organisms. BMC Bioinf. 2020, 21, 337. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6-5. 2023. Available online: https://github.com/vegandevs/vegan (accessed on 14 October 2023).
- Zhou, X.; Carbonetto, P.; Stephens, M. Polygenic Modeling with Bayesian Sparse Linear Mixed Models. PLoS Genet. 2013, 9, e1003264. [Google Scholar] [CrossRef] [PubMed]
- Bondar, E.I.; Feranchuk, S.I.; Miroshnikova, K.A.; Sharov, V.V.; Kuzmin, D.A.; Oreshkova, N.V.; Krutovsky, K.V. Annotation of Siberian larch (Larix sibirica Ledeb.) nuclear genome—One of the most cold-resistant tree species in the only deciduous genus in Pinaceae. Plants 2022, 11, 2062. [Google Scholar] [CrossRef] [PubMed]
- Doran, A.G.; Creevey, C.J. Snpdat: Easy and rapid annotation of results from de novo SNP discovery projects for model and non-model organisms. BMC Bioinform. 2013, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Ding, J.; Lee, D.; Lu, X.; Feng, Y.; Song, W. Overexpression of SoCYP85A1, a spinach cytochrome P450 gene in transgenic tobacco enhances root development and drought stress tolerance. Front. Plant Sci. 2017, 8, 1909. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Xu, Y.; Tang, X.; Huang, Y.; Liu, J.; Deng, X.; Xu, Q. CsCYT75B1, a citrus CYTOCHROME P450 gene, is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis. Antioxidants 2020, 9, 161. [Google Scholar] [CrossRef]
- Xu, W.; Purugganan, M.M.; Polisensky, D.H.; Antosiewicz, D.M.; Fry, S.C.; Braam, J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 1995, 7, 1555–1567. [Google Scholar] [CrossRef]
- Zhu, J.; Lee, B.-H.; Dellinger, M.; Cui, X.; Zhang, C.; Wu, S.; Nothnagel, E.A.; Zhu, J.-K. A Cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis: SOS6 is important for osmotic stress tolerance in plants. Plant J. 2010, 63, 128–140. [Google Scholar] [CrossRef]
- Jinu, J.; Visarada, K.B.R.S.; Kanti, M.; Malathi, V.M. Dehydration stress influences the expression of brevis radix gene family members in sorghum (Sorghum bicolor). Proc. Indian Natl. Sci. Acad. 2022, 88, 324–335. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, W.T. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress. FEBS Lett. 2013, 587, 2584–2590. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.Y.; Kim, S.J.; Oh, T.R.; Cho, S.K.; Yang, S.W.; Kim, W.T. Arabidopsis Tóxicos En Levadura 78 (AtATL78) Mediates ABA-dependent ROS signaling in response to drought stress. Biochem. Biophys. Res. Commun. 2016, 469, 8–14. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.; Shi, R.; Sun, M.; Li, Q.; Zhang, G.; Wu, J.; Wang, Y.; Wang, W. Overexpression of wheat α-mannosidase gene TaMP impairs salt tolerance in transgenic Brachypodium distachyon. Plant Cell Rep. 2020, 39, 653–667. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Q.; Song, Z.; Wu, Y.; Liang, Q.; Wang, Q.; Yang, J.; Bi, Y.; Zhou, W.; Fan, L.-M. O-fucosylation of CPN20 by SPINDLY derepresses abscisic acid signaling during seed germination and seedling development. Front. Plant Sci. 2021, 12, 724144. [Google Scholar] [CrossRef] [PubMed]
- Simpson, P.J.; Tantitadapitak, C.; Reed, A.M.; Mather, O.C.; Bunce, C.M.; White, S.A.; Ride, J.P. Characterization of two novel aldo–keto reductases from Arabidopsis: Expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J. Mol. Biol. 2009, 392, 465–480. [Google Scholar] [CrossRef]
- Seo, Y.S.; Kim, E.Y.; Kim, J.H.; Kim, W.T. Enzymatic characterization of Class I DAD1-like acylhydrolase members targeted to chloroplast in Arabidopsis. FEBS Lett. 2009, 583, 2301–2307. [Google Scholar] [CrossRef] [PubMed]
- Oliw, E.H. Plant and Fungal Lipoxygenases. Prostaglandins Other Lipid Mediat. 2002, 68, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Sandford, R. The PLAT domain: A new piece in the PKD1 puzzle. Curr. Biol. 1999, 9, R588–R590. [Google Scholar] [CrossRef]
- Disch, S.; Anastasiou, E.; Sharma, V.K.; Laux, T.; Fletcher, J.C.; Lenhard, M. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr. Biol. 2006, 16, 272–279. [Google Scholar] [CrossRef]
- Al-Saharin, R.; Hellmann, H.; Mooney, S. Plant E3 ligases and their role in abiotic stress response. Cells 2022, 11, 890. [Google Scholar] [CrossRef]
- Yuan, C.; Li, C.; Zhao, X.; Yan, C.; Wang, J.; Mou, Y.; Sun, Q.; Shan, S. Genome-wide identification and characterization of HSP90-RAR1-SGT1-complex members from Arachis genomes and their responses to biotic and abiotic stresses. Front. Genet. 2021, 12, 689669. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Mo, X.; Yang, H.; Yue, L.; Song, J.; Mo, B. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS ONE 2017, 12, e0182402. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, M.D.; Poosapati, S.; Sahoo, R.K.; Swain, D.M. Helicase: A genetic tool for providing stress tolerance in plants. Plant Stress 2023, 9, 100171. [Google Scholar] [CrossRef]
- Zhang, Z.; Hao, Z.; Chai, R.; Qiu, H.; Wang, Y.; Wang, J.; Sun, G. Adenylsuccinate synthetase MoADE12 plays important roles in the development and pathogenicity of the rice blast fungus. J. Fungi 2022, 8, 780. [Google Scholar] [CrossRef]
- Jaimes-Miranda, F.; Chávez Montes, R.A. The Plant MBF1 protein family: A bridge between stress and transcription. J. Exp. Bot. 2020, 71, 1782–1791. [Google Scholar] [CrossRef]
- Rea, G.; Metoui, O.; Infantino, A.; Federico, R.; Angelini, R. Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. Plant Physiol. 2002, 128, 865–875. [Google Scholar] [CrossRef]
- Ambawat, S.; Sharma, P.; Yadav, N.R.; Yadav, R.C. MYB transcription factor genes as regulators for plant responses: An overview. Physiol. Mol. Biol. Plants 2013, 19, 307–321. [Google Scholar] [CrossRef]
- Gassmann, W.; Hinsch, M.E.; Staskawicz, B.J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 1999, 20, 265–277. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Y.; Chen, N.; Guo, S.; Liu, H.; Guo, X.; Chong, K.; Xu, Y. Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ. 2014, 37, 1144–1158. [Google Scholar] [CrossRef]
- Novikova, S.V.; Sharov, V.V.; Oreshkova, N.V.; Simonov, E.P.; Krutovsky, K.V. Genetic adaptation of Siberian larch (Larix Sibirica Ledeb.) to high altitudes. Int. J. Mol. Sci. 2023, 24, 4530. [Google Scholar] [CrossRef]
- Novikova, S.V.; Oreshkova, N.V.; Sharov, V.V.; Semerikov, V.L.; Krutovsky, K.V. Genetic structure and geographical differentiation of Siberian larch (Larix sibirica Ledeb.) populations based on genome genotyping by sequencing. Contemp. Probl. Ecol. 2023, 16, 631–644. [Google Scholar] [CrossRef]
- Altukhov, Y.P.; Gafarov, N.I.; Krutovskii, K.V.; Dukharev, V.A. Allozyme variability in a natural population of Norway spruce (Picea abies [L.] Karst.). III. Correlation between levels of individual heterozygosity and relative number of inviable seeds. Genetika 1986, 22, 2825–2830, (In Russian, translated in English as Soviet Genetics 1987, 22, 1580–1585). [Google Scholar]
- Altukhov, Y.P. The role of balancing selection and overdominance in maintaining allozyme polymorphism. Genetica 1991, 85, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Dubrova, Y.E.; Salmenkova, E.A.; Altukhov, Y.P.; Kartavtsev, Y.F.; Kalkova, E.V.; Omel’chenko, V.T. Family heterozygosity and progeny body length in pink salmon Oncorhynchus gorbuscha (Walbaum). Heredity 1995, 75, 281–289. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Belokopytova, L.V.; Zhirnova, D.F.; Shah, S.K.; Kostyakova, T.V. Climatically driven yield variability of major crops in Khakassia (South Siberia). Int. J. Biometeorol. 2018, 62, 939–948. [Google Scholar] [CrossRef]
- Zhirnova, D.F.; Belokopytova, L.V.; Meko, D.M.; Babushkina, E.A.; Vaganov, E.A. Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs. Sci. Rep. 2021, 11, 14266. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Observ. Geoinf. 2016, 52, 390–402. [Google Scholar] [CrossRef]
Population (Abbreviation Used in the Study) | Description | Coordinates | Altitude above Sea Level, m |
---|---|---|---|
Tuim (TUI) | Individuals and groups of larch trees along the steppe vegetation | 54°24′20″ N 89°57′27″ E | 550–600 |
Son (SON) | Mixed larch and birch forest | 54°21′55″ N 90°22′04″ E | 530–600 |
Bograd (BOG) | Mixed larch and birch forest | 54°15′58″ N 90°41′30″ E | 550–620 |
Bidja (BID) | Mixed larch, pine, and birch forest, with individuals and groups of larch trees in the steppe | 54°00′20″ N 90°58′52″ E | 640–670 |
Kamyziak (KAM) | Mixed larch and birch forest | 53°55′52″ N 90°37′30″ E | 700–770 |
Dendrophenotype | Abbreviation | ||||
---|---|---|---|---|---|
Age of the tree at the time of collection | Age | ||||
Average needle length | avLn | ||||
Variance of needle length | varLn | ||||
Average tree ring width | avTRW | ||||
Variation of tree ring width | varTRW | ||||
Radial growth trends (1990–2019) | trendTRW | ||||
Index | Drought years | ||||
1951 | 1963–1965 | 1974–1976 | 1999 | 2015 | |
Resistance | Rt1 | Rt2 | Rt3 | Rt4 | Rt5 |
Recovery | Rc1 | Rc2 | Rc3 | Rc4 | Rc5 |
Resilience | Rs1 | Rs2 | Rs3 | Rs4 | Rs5 |
Relative resilience | RRs1 | RRs2 | RRs3 | RRs4 | RRs5 |
Population | π ± s.e. | HO ± s.e. | HE ± s.e. | FIS ± s.e. |
---|---|---|---|---|
9742 SNPs | ||||
TUI | 0.00033 ± 0.00000 | 0.162 ± 0.001 | 0.162 ± 0.001 | 0.036 ± 0.017 |
SON | 0.00030 ± 0.00000 | 0.118 ± 0.001 | 0.146 ± 0.001 | 0.163 ± 0.016 |
KAM | 0.00033 ± 0.00000 | 0.147 ± 0.001 | 0.161 ± 0.001 | 0.099 ± 0.019 |
BOG | 0.00034 ± 0.00000 | 0.173 ± 0.001 | 0.166 ± 0.001 | 0.012 ± 0.014 * |
BID | 0.00034 ± 0.00000 | 0.170 ± 0.001 | 0.170 ± 0.001 | 0.033 ± 0.015 |
All | 0.00289 ± 0.00003 | 0.154 ± 0.001 | 0.166 ± 0.001 | 0.095 ± 0.049 |
371 SNPs | ||||
TUI | 0.00189 ± 0.00012 | 0.171 ± 0.009 | 0.166 ± 0.007 | 0.029 ± 0.100 * |
SON | 0.00160 ± 0.00011 | 0.125 ± 0.008 | 0.141 ± 0.007 | 0.117 ± 0.020 |
KAM | 0.00215 ± 0.00013 | 0.184 ± 0.009 | 0.189 ± 0.007 | 0.071 ± 0.101 * |
BOG | 0.00191 ± 0.00013 | 0.182 ± 0.010 | 0.168 ± 0.007 | −0.010 ± 0.075 * |
BID | 0.00180 ± 0.00012 | 0.171 ± 0.009 | 0.159 ± 0.006 | −0.005 ± 0.091 * |
All | 0.00192 ± 0.00011 | 0.166 ± 0.007 | 0.173 ± 0.005 | 0.073 ± 0.292 * |
Population | TUI | SON | KAM | BOG |
---|---|---|---|---|
SON | 0.016 (0.014–0.017) | |||
KAM | 0.014 (0.012–0.016) | 0.008 (0.007–0.009) | ||
BOG | 0.007 (0.005–0.008) | 0.022 (0.019–0.024) | 0.018 (0.015–0.020) | |
BID | 0.007 (0.005–0.008) | 0.020 (0.018–0.022) | 0.017 (0.015–0.018) | 0.007 (0.006–0.008) |
Source of Variation | Sum of Squares | Variance Components | Percentage Variation | F-Statistics over All Loci |
---|---|---|---|---|
Among groups | 2079.3 | 7.7 | 1.0 | FST = 0.018 FSC = 0.008 FCT = 0.010 |
Among populations within groups | 3139.3 | 5.8 | 0.8 | |
Within populations | 195,233.5 | 731.7 | 98.2 | |
Total | 200,452.1 | 745.3 | 100.0 |
Dendrophenotype | r | p | rS | p |
---|---|---|---|---|
Age | −0.006 | 0.9413 | 0.011 | 0.8979 |
avLn | 0.047 | 0.5858 | 0.030 | 0.7325 |
varLnr | −0.055 | 0.5262 | −0.150 | 0.0808 |
avTRW | −0.049 | 0.5718 | −0.046 | 0.5911 |
varTRW | −0.118 | 0.1701 | −0.164 | 0.0560 |
trendTRW | 0.372 * | <0.0001 | 0.371 * | <0.0001 |
Rc1 | 0.322 * | 0.0004 | 0.366 * | <0.0001 |
Rc2 | 0.345 * | <0.0001 | 0.351 * | <0.0001 |
Rc3 | 0.339 * | <0.0001 | 0.437 * | <0.0001 |
Rc4 | 0.307 * | 0.0007 | 0.435 * | <0.0001 |
Rc5 | 0.318 * | 0.0003 | 0.331 * | 0.0002 |
Rs1 | 0.064 | 0.4918 | −0.028 | 0.7615 |
Rs2 | 0.228 * | 0.0111 | 0.278 * | 0.0019 |
Rs3 | 0.074 | 0.4098 | 0.062 | 0.4898 |
Rs4 | 0.180 * | 0.0370 | 0.311 * | 0.0002 |
Rs5 | 0.142 | 0.1097 | 0.200 | 0.0237 |
Rt1 | −0.432 * | <0.0001 | −0.378 * | <0.0001 |
Rt2 | −0.076 | 0.4014 | 0.021 | 0.8144 |
Rt3 | −0.286 * | 0.0011 | −0.258 * | 0.0034 |
Rt4 | −0.342 * | <0.0001 | −0.280 * | 0.0010 |
Rt5 | −0.203 * | 0.0216 | −0.215 * | 0.0146 |
RRs1 | 0.471 * | <0.0001 | 0.316 * | 0.0005 |
RRs2 | 0.378 * | <0.0001 | 0.353 * | <0.0001 |
RRs3 | 0.405 * | <0.0001 | 0.493 * | <0.0001 |
RRs4 | 0.423 * | <0.0001 | 0.401 * | <0.0001 |
RRs5 | 0.216 * | 0.0144 | 0.258 * | 0.0033 |
Population | BID | BGD | KAM | SON | TUIM |
---|---|---|---|---|---|
trendTRW | −0.002 | 0.002 | −0.009 | −0.017 | −0.009 |
Mean radial growth | 0.973 | 1.017 | 0.982 | 1.042 | 1.058 |
SNP | Dendrophenotype (GWAS Method) | Location * | Gene | Function | Reference |
---|---|---|---|---|---|
LS.3651056.309 | Rt1 (GLM, MLM), avTRW (BSLMM) | Exon | Cytochrome P450 89A2 | Oxidoreductase activity | [56,57] |
LS.3905950.5973 | avTRW, varTRW (GLM, MLM), Rs4 (BSLMM) | Exon | Xyloglucan endotransglucosylase/hydrolase protein B | Cell wall construction of growing tissues | [58] |
LS.4033175.6261 | Rs1 (GLM, MLM), RRs1 (BSLMM) | Exon | Cellulose synthase-like protein E6 | Cellulose biosynthetic process | [59] |
LS.4447596.15042 | Age (GLM, MLM), Rc1 (BSLMM) | Exon | Uncharacterized protein LOC116133164 | - | [53] |
LS.4817075.929 | varLn (GLM, MLM), Rc5 (GLM, BSLMM), RRs5 (GLM) | Exon | Protein Brevis radix-like 4 | Modulator of root growth | [60] |
LS.3903843.2180 | Rc2, Rc3, RRs2, RRs3 (MLM, GLM) Rs2 (GLM), Rs3 (BSLMM) | 78 | RING-H2 finger protein ATL3 | Ubiquitin ligase | [61,62] |
LS.4185574.3908 | varLn (GLM, MLM), Rs3 (BSLMM) | 325 | Alpha-mannosidase 2 | Production of complex-type glycans | [63] |
LS.7774.12431 | RRs4, Rs2 (GLM, MLM), RRs5 (GLM, BSLMM) Rc5, Rt5 (GLM), Age (BSLMM) | 3951 | O-fucosyltransferase 19-like | Component of the gibberellin signaling pathway | [64] |
LS.10638.27578 | avTRW (GLM, MLM, BSLMM), Age, Rc4 (GLM) | 5283 | GPALPP motifs-containing protein 1 (lipopolysaccharide-specific response protein) | Lipopolysaccharide-specific response | [53] |
LS.56935.13023 | Rs4 (GLM, MLM, BSLMM) | 5957 | Probable aldo-keto reductase 4 | Glyphosate degradation | [65] |
LS.21791.50056 | RRs1, Rc5 (GLM, MLM), Rs3 (BSLMM) | 6066 | Unknown | - | [53] |
LS.61616.10689 | Rc1, Rt1 (GLM, MLM), Rs5 (BSLMM) | 6109 | Hypothetical protein | - | [53] |
LS.24961.61616 | RRs5 (GLM, MLM), Rt4 (BSLMM) | 6200 | Unknown | - | [53] |
LS.7196.6722 | RRs5, Rs5 (GLM, MLM), RRs2 (BSLMM) | 8888 | Hypothetical heat shock protein | - | [53] |
LS.105004.9682 | avLn, Rt2 (GLM, MLM), Rc3 (GLM, BSLMM), RRs1, Rc1, Rt3 (GLM) | 12,733 | Phospholipase A1-Igamma3, chloroplastic | Catalyzes the hydrolysis of phosphatidylcholine | [66] |
LS.7184.3035 | Rs1 (GLM, MLM), RRs2 (BSLMM) | 12,939 | Unknown | - | [53] |
LS.7252.104584 | Rc3 (GLM, MLM, BSLMM), RRs1, Rc1, (MLM, GLM), Rs1 (GLM) | 15,386 | PLAT/LH2 domain-containing lipoxygenase family protein isoform 2 | Defense mechanisms against pathogens | [67,68] |
LS.14907.46110 | Rt2 (GLM, MLM, BSLMM), Rs1 (GLM) | 15,426 | E3 ubiquitin ligase BIG BROTHER-related-like protein | It may limit the duration of organ growth and ultimately organ size by actively degrading critical growth stimulators | [69,70] |
LS.15117.58377 | RRs2, Rc2 (GLM, MLM), Age (GLM), Rs4 (BSLMM) | 34,970 | Cysteine and histidine-rich domain-containing protein RAR1 (CHRD1) | Gene-mediated disease resistance | [71] |
LS.30352.56788 | Rs4 (GLM, MLM), Rs3 (BSLMM) | 54,635 | Unknown | - | [53] |
LS.16524.116919 | Rs1 (GLM, MLM), Rs5 (BSLMM) | 58,871 | Uncharacterized FCP1 homology domain-containing protein C1271.03c | - | [53] |
LS.12450.3129 | Rs2, avTRW, varTRW (GLM, MLM), avLn (BSLMM) | 64,166 | RING-H2 finger protein | Ubiquitin ligase | [61,62] |
LS.1920.81278 | Rc1 (GLM, MLM), Rt1 (GLM), Rt3 (BSLMM) | 65,622 | U-box domain-containing protein 52-like | Functions as an E3 ubiquitin ligase. | [72] |
LS.5783.87994 | Rt1 (GLM, MLM), Rc1 (GLM), Rs3 (BSLMM) | 69,130 | ATP-dependent DNA helicase RECG-like | Recombination and DNA repair | [73] |
LS.2549.42867 | Rc3 (GLM, MLM), RRs2 (BSLMM) | 69,752 | Hypothetical protein GW17_00026793 | - | [53] |
LS.16630.144091 | varLn (GLM, MLM), avLn (BSLMM) | 83,423 | Adenylosuccinate lyase | Synthesis of purine nucleotides | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikova, S.V.; Oreshkova, N.V.; Sharov, V.V.; Zhirnova, D.F.; Belokopytova, L.V.; Babushkina, E.A.; Krutovsky, K.V. Study of the Genetic Adaptation Mechanisms of Siberian Larch (Larix sibirica Ledeb.) Regarding Climatic Stresses Based on Dendrogenomic Analysis. Forests 2023, 14, 2358. https://doi.org/10.3390/f14122358
Novikova SV, Oreshkova NV, Sharov VV, Zhirnova DF, Belokopytova LV, Babushkina EA, Krutovsky KV. Study of the Genetic Adaptation Mechanisms of Siberian Larch (Larix sibirica Ledeb.) Regarding Climatic Stresses Based on Dendrogenomic Analysis. Forests. 2023; 14(12):2358. https://doi.org/10.3390/f14122358
Chicago/Turabian StyleNovikova, Serafima V., Natalia V. Oreshkova, Vadim V. Sharov, Dina F. Zhirnova, Liliana V. Belokopytova, Elena A. Babushkina, and Konstantin V. Krutovsky. 2023. "Study of the Genetic Adaptation Mechanisms of Siberian Larch (Larix sibirica Ledeb.) Regarding Climatic Stresses Based on Dendrogenomic Analysis" Forests 14, no. 12: 2358. https://doi.org/10.3390/f14122358
APA StyleNovikova, S. V., Oreshkova, N. V., Sharov, V. V., Zhirnova, D. F., Belokopytova, L. V., Babushkina, E. A., & Krutovsky, K. V. (2023). Study of the Genetic Adaptation Mechanisms of Siberian Larch (Larix sibirica Ledeb.) Regarding Climatic Stresses Based on Dendrogenomic Analysis. Forests, 14(12), 2358. https://doi.org/10.3390/f14122358