The Role of Organ and Leaf Habit on the Secondary Xylem Anatomy Variation across 15 Species from Brazilian Cerrado
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study site and sampling
2.2. Wood Anatomy Measurements
2.3. Data Analysis
3. Results
4. Discussion
4.1. Xylem Anatomy Variation between Organs
4.2. Xylem Anatomy Variation among Leaf Habits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucas, W.J.; Groover, A.; Lichtenberger, R.; Furuta, K.; Yadav, S.R.; Helariutta, Y.; He, X.Q.; Fukuda, H.; Kang, J.; Brady, S.M.; et al. The Plant Vascular System: Evolution, Development and Functions. J. Integr. Plant Biol. 2013, 55, 294–388. [Google Scholar] [CrossRef] [PubMed]
- Pratt, R.B.; Jacobsen, A.L. Conflicting Demands on Angiosperm Xylem: Tradeoffs among Storage, Transport and Biomechanics. Plant. Cell Environ. 2017, 40, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Pratt, R.B.; Jacobsen, A.L.; Percolla, M.I.; de Guzman, M.E.; Traugh, C.A.; Tobin, M.F. Trade-Offs among Transport, Support, and Storage in Xylem from Shrubs in a Semiarid Chaparral Environment Tested with Structural Equation Modeling. Proc. Natl. Acad. Sci. USA 2021, 118, e2104336118. [Google Scholar] [CrossRef]
- Lachenbruch, B.; Mcculloh, K.A. Traits, Properties, and Performance: How Woody Plants Combine Hydraulic and Mechanical Functions in a Cell, Tissue, or Whole Plant. New Phytol. 2014, 204, 747–764. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a Worldwide Wood Economics Spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef]
- Carlquist, S. Ecological Strategies of Xylem Evolution; University of California Press: Berkeley, CA, USA, 1975. [Google Scholar]
- Choat, B.; Ball, M.C.; Luly, J.G.; Holtum, J.A.M. Hydraulic Architecture of Deciduous and Evergreen Dry Rainforest Tree Species from North-Eastern Australia. Trees—Struct. Funct. 2005, 19, 305–311. [Google Scholar] [CrossRef]
- Zanne, A.E.; Westoby, M.; Falster, D.S.; Ackerly, D.D.; Loarie, S.R.; Arnold, S.E.J.; Coomes, D.A. Angiosperm Wood Structure: Global Patterns in Vessel Anatomy and Their Relation to Wood Density and Potential Conductivity. Am. J. Bot. 2010, 97, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Pulido-Rodríguez, E.; López-Camacho, R.; Tórres, J.; Velasco, E.; Salgado-Negret, B. Traits and Trade-Offs of Wood Anatomy between Trunks and Branches in Tropical Dry Forest Species. Trees—Struct. Funct. 2020, 34, 497–505. [Google Scholar] [CrossRef]
- Dória, L.C.; Sonsin-Oliveira, J.; Rossi, S.; Marcati, C.R. Functional Trade-Offs in Volume Allocation to Xylem Cell Types in 75 Species from the Brazilian Savanna Cerrado. Ann. Bot. 2022, 130, 445–456. [Google Scholar] [CrossRef]
- Jacobsen, A.L.; Agenbag, L.; Esler, K.J.; Pratt, R.B.; Ewers, F.W.; Davis, S.D. Xylem Density, Biomechanics and Anatomical Traits Correlate with Water Stress in 17 Evergreen Shrub Species of the Mediterranean-Type Climate Region of South Africa. J. Ecol. 2007, 95, 171–183. [Google Scholar] [CrossRef]
- Plavcová, L.; Gallenmüller, F.; Morris, H.; Khatamirad, M.; Jansen, S.; Speck, T. Mechanical Properties and Structure–Function Trade-Offs in Secondary Xylem of Young Roots and Stems. J. Exp. Bot. 2019, 70, 3679–3691. [Google Scholar] [CrossRef] [PubMed]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Springer: Berlin, Germany, 2002. [Google Scholar]
- Hacke, U.G.; Sperry, J.S.; Wheeler, J.K.; Castro, L. Scaling of Angiosperm Xylem Structure with Safety and Efficiency. Tree Physiol. 2006, 26, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, A.L.; Valdovinos-Ayala, J.; Rodriguez-Zaccaro, F.D.; Hill-Crim, M.A.; Percolla, M.I.; Venturas, M.D. Intra-Organismal Variation in the Structure of Plant Vascular Transport Tissues in Poplar Trees. Trees—Struct. Funct. 2018, 32, 1335–1346. [Google Scholar] [CrossRef]
- McElrone, A.J.; Pockman, W.T.; Martínez-Vilalta, J.; Jackson, R.B. Variation in Xylem Structure and Function in Stems and Roots of Trees to 20 m Depth. New Phytol. 2004, 163, 507–517. [Google Scholar] [CrossRef]
- Machado, S.R.; Rodella, R.A.; Angyalossy, V.; Marcati, C.R. Structural Variations in Root and Stem Wood of Styrax (Styracaceae) from Brazilian Forest and Cerrado. IAWA J. 2007, 28, 173–188. [Google Scholar] [CrossRef]
- Morris, H.; Plavcová, L.; Cvecko, P.; Fichtler, E.; Gillingham, M.A.F.; Martínez-Cabrera, H.I.; McGlinn, D.J.; Wheeler, E.; Zheng, J.; Ziemińska, K.; et al. A Global Analysis of Parenchyma Tissue Fractions in Secondary Xylem of Seed Plants. New Phytol. 2016, 209, 1553–1565. [Google Scholar] [CrossRef] [Green Version]
- Niklas, K.J. Plant Biomechanics: An Engineering Approach to Plant Form and Function; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- West, G.B.; Brown, J.H.; Enquist, B.J. A General Model for the Structure and Allometry of Plant Vascular Systems. Nature 1999, 400, 664–667. [Google Scholar] [CrossRef]
- Jacobsen, A.L.; Ewers, F.W.; Pratt, R.B.; Paddock, W.A.; Davis, S.D. Do Xylem Fibers Affect Vessel Cavitation Resistance? Plant Physiol. 2005, 139, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Eamus, D.; Myers, B.; Duff, G.; Williams, D. Seasonal Changes in Photosynthesis of Eight Savanna Tree Species. Tree Physiol. 1999, 19, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.L.; Jiang, Y.J.; Wang, A.Y.; Brodribb, T.J.; Zhang, J.L.; Zhu, S.D.; Cao, K.F. Stem Hydraulic Traits and Leaf Water-Stress Tolerance are Co-Ordinated with the Leaf Phenology of Angiosperm Trees in an Asian Tropical Dry Karst Forest. Ann. Bot. 2012, 110, 189–199. [Google Scholar] [CrossRef]
- Arenas-Navarro, M.; Oyama, K.; García-Oliva, F.; Torres-Miranda, A.; De La Riva, E.G.; Terrazas, T. The Role of Wood Anatomical Traits in the Coexistence of Oak Species along an Environmental Gradient. AoB Plants 2021, 13, plab066. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.; Stein, A.; Choat, B.; Jansen, S. How Drought and Deciduousness Shape Xylem Plasticity in Three Costa Rican Woody Plant Species. IAWA J. 2014, 35, 337–355. [Google Scholar] [CrossRef]
- Reich, P.B. Phenology of Tropical Forests: Patterns, causes, and consequences. Can. J. Bot. 1995, 73, 164–174. [Google Scholar] [CrossRef]
- Goldstein, G.; Rada, F.; Sternberg, L.; Burguera, J.L.; Burguera, M.; Orozco, A.; Zabala, O.; Azocar, A.; Canales, M.J.; Celis, A. Gas Exchange and Water Balance of a Mistletoe Species and Its Mangrove Hosts. Oecologia 1989, 78, 176–183. [Google Scholar] [CrossRef]
- Poorter, L.; Kitajima, K.; Mercado, P.; Chubiña, J.; Melgar, I.; Prins, H.H.T. Resprouting as a Persistence Strategy of Tropical Forest Trees: Relations with Carbohydrate Storage and Shade Tolerance. Ecology 2010, 91, 2613–2627. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Sperry, J.S. Functional and Ecological Xylem Anatomy. Perspect. Plant Ecol. Evol. Syst. 2001, 4, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Piper, F.I.; Fajardo, A. Foliar Habit, Tolerance to Defoliation and Their Link to Carbon and Nitrogen Storage. J. Ecol. 2014, 102, 1101–1111. [Google Scholar] [CrossRef]
- Zhang, S.B.; Wen, G.J.; Qu, Y.Y.; Yang, L.Y.; Song, Y. Trade-Offs between Xylem Hydraulic Efficiency and Mechanical Strength in Chinese Evergreen and Deciduous Savanna Species. Tree Physiol. 2022, 42, 1337–1349. [Google Scholar] [CrossRef]
- Méndez-Alonzo, R.; Pineda-García, F.; Paz, H.; Rosell, J.A.; Olson, M.E. Leaf Phenology is Associated with Soil Water Availability and Xylem Traits in a Tropical Dry Forest. Trees—Struct. Funct. 2013, 27, 745–754. [Google Scholar] [CrossRef]
- Oliveira, P.S.; Marquis, R.J. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna; Columbia University Press: New York, NY, USA, 2002. [Google Scholar]
- Ribeiro, J.F.; Walter, B.M.T. Cerrado: Ambiente e Flora. In Fitofisionomias Do Bioma Cerrado; Sano, S.M., Almeida, S.P., Eds.; EMBRAPA: Planaltina, Brazil, 1998; pp. 89–166. [Google Scholar]
- Marcati, C.R.; Machado, S.R.; Podadera, D.S.; de Lara, N.O.T.; Bosio, F.; Wiedenhoeft, A.C. Cambial Activity in Dry and Rainy Season on Branches from Woody Species Growing in Brazilian Cerrado. Flora 2016, 223, 1–10. [Google Scholar] [CrossRef]
- Rasband, W.S. 1997–2018. ImageJ. Available online: https://imagej.nih.gov/ij/ (accessed on 20 February 2020).
- IAWA Committee. List of Microscopic Features for Hardwood Identification. IAWA Bull. 1989, 10, 219–332. [Google Scholar] [CrossRef]
- Scholz, A.; Klepsch, M.; Karimi, Z.; Jansen, S. How to Quantify Conduits in Wood? Front. Plant Sci. 2013, 4, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziemińska, K.; Butler, D.W.; Gleason, S.M.; Wright, I.J.; Westoby, M. Fibre Wall and Lumen Fractions Drive Wood Density Variation across 24 Australian Angiosperms. AoB Plants 2013, 5, plt046. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.; Rosell, J.A.; Martínez-Pérez, C.; León-Gómez, C.; Fajardo, A.; Isnard, S.; Cervantes-Alcayde, M.A.; Echeverría, A.; Figueroa-Abundiz, V.A.; Segovia-Rivas, A. Xylem Vessel-Diameter–Shoot-Length Scaling: Ecological Significance of Porosity Types and Other Traits. Ecol. Monogr. 2020, 90, e01410. [Google Scholar] [CrossRef]
- Schuldt, B.; Leuschner, C.; Brock, N.; Horna, V. Changes in Wood Density, Wood Anatomy and Hydraulic Properties of the Xylem along the Root-to-Shoot Flow Path in Tropical Rainforest Trees. Tree Physiol. 2013, 33, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Piermattei, A.; von Arx, G.; Avanzi, C.; Fonti, P.; Gärtner, H.; Piotti, A.; Urbinati, C.; Vendramin, G.G.; Büntgen, U.; Crivellaro, A. Functional Relationships of Wood Anatomical Traits in Norway Spruce. Front. Plant Sci. 2020, 11, 683. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed-Effects Modeling for Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 June 2021).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.; Lenth, V.; Buerkner, P.; Giné-vázquez, I.; Herve, M.; Love, J.; Singmann, H.; Lenth, M.R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.4.5. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 1 June 2021).
- Marcati, C.R.; Longo, L.R.; Wiedenhoeft, A.; Barros, C.F. Comparative Wood Anatomy of Root and Stem of Citharexylum myrianthum (Verbenaceae). Rodriguésia 2014, 65, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Rosell, J.A.; Olson, M.E.; Anfodillo, T. Scaling of Xylem Vessel Diameter with Plant Size: Causes, Predictions, and Outstanding Questions. Curr. For. Rep. 2017, 3, 46–59. [Google Scholar] [CrossRef]
- Carlquist, S. Living Cells in Wood 3. Overview; Functional Anatomy of the Parenchyma Network. Bot. Rev. 2018, 84, 242–294. [Google Scholar] [CrossRef]
- Carlquist, S. How Wood Evolves: A New Synthesis. Botany 2012, 90, 901–940. [Google Scholar] [CrossRef] [Green Version]
- Denne, P.; Gasson, P. Ray Structure in Root- and Stem-Wood of Larix decidua: Implications for Root Identification and Function. IAWA J. 2008, 29, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Hietz, P.; Rosner, S.; Hietz-Seifert, U.; Wright, S.J. Wood Traits Related to Size and Life History of Trees in a Panamanian Rainforest. New Phytol. 2017, 213, 170–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makoto, K.; Wilson, S.D.; Sato, T.; Blume-Werry, G.; Cornelissen, J.H.C. Synchronous and Asynchronous Root and Shoot Phenology in Temperate Woody Seedlings. Oikos 2020, 129, 643–650. [Google Scholar] [CrossRef]
- Radville, L.; McCormack, M.L.; Post, E.; Eissenstat, D.M. Root Phenology in a Changing Climate. J. Exp. Bot. 2016, 67, 3617–3628. [Google Scholar] [CrossRef] [Green Version]
- Dória, L.C.; Podadera, D.S.; Lima, R.S.; Lens, F.; Marcati, C.R. Axial Sampling Height Outperforms Site as Predictor of Wood Trait Variation. IAWA J. 2019, 40, 191–214. [Google Scholar] [CrossRef] [Green Version]
- Słupianek, A.; Dolzblasz, A.; Sokołowska, K. Xylem Parenchyma—Role and Relevance in Wood Functioning in Trees. Plants 2021, 10, 1247. [Google Scholar] [CrossRef]
- Carlquist, S. Comparative Wood Anatomy; Springer: Berlin, Germany, 2001. [Google Scholar]
- Rosell, J.A.; Piper, F.I.; Jiménez-Vera, C.; Vergílio, P.C.B.; Marcati, C.R.; Castorena, M.; Olson, M.E. Inner Bark as a Crucial Tissue for Non-Structural Carbohydrate Storage across Three Tropical Woody Plant Communities. Plant. Cell Environ. 2021, 44, 156–170. [Google Scholar] [CrossRef]
- Herrera-Ramírez, D.; Sierra, C.A.; Römermann, C.; Muhr, J.; Trumbore, S.; Silvério, D.; Brando, P.M.; Hartmann, H. Starch and Lipid Storage Strategies in Tropical Trees Relate to Growth and Mortality. New Phytol. 2021, 230, 139–154. [Google Scholar] [CrossRef]
- Forzza, R.C.; Baumgratz, J.F.A.; Bicudo, C.E.M.; Canhos, D.A.L.; Carvalho, A.A.; Coelho, M.A.N.; Costa, A.F.; Costa, D.P.; Hopkins, M.G.; Leitman, P.M. New Brazilian Floristic List Highlights Conservation Challenges. Bioscience 2012, 62, 39–45. [Google Scholar] [CrossRef]
Species | Family | Leaf Habit | Growth Form | Plant Height (m) | Stem Diameter (cm) | Root Diameter (cm) |
---|---|---|---|---|---|---|
Aegiphila verticillata Vell. | Lamiaceae | Dec | Tree | 4.3 ± 0.7 | 14.7 ± 3.9 | 3.6 ± 1.3 |
Annona crassiflora Mart. | Annonaceae | Dec | Tree | 3.8 ± 0.6 | 15.7 ± 2.3 | 8.8 ± 0.7 |
Caryocar brasiliense Cambess. | Caryocaraceae | Sd | Shrub | 1.8 ± 0.1 | 5.7 ± 2.3 | 12.4 ± 2.0 |
Casearia sylvestris Sw. | Salicaceae | Sd | Shrub | 2.3 ± 0.1 | 4.7 ± 2.0 | 1.5 ± 0.2 |
Couepia grandiflora (Mart. & Zucc.) Benth. | Chrysobalanaceae | Dec | Tree | 3.1 ± 0.5 | 12.5 ± 1.0 | 11.9 ± 0.4 |
Diospyros lasiocalyx (Mart.) B. Walln. | Ebanaceae | Dec | Tree | 2.7 ± 0.2 | 9.2 ± 0.5 | 7.5 ± 0.5 |
Eriotheca gracilipes (K.Schum.) A.Robyns | Malvaceae | Sd | Tree | 4.6 ± 0.8 | 19.3 ± 2.4 | 13.6 ± 0.9 |
Erythroxylum buxos Peyr. | Erythroxylaceae | Ev | Shrub | 2.2 ± 0.4 | 2.7 ± 0.3 | 2.2 ± 0.2 |
Erythroxylum suberosum A.St.-Hil. | Erythroxylaceae | Sd | Tree | 2.7 ± 0.6 | 9.7 ± 2.2 | 2.7 ± 1.4 |
Leptolobium elegans Vogel | Leguminosae | Dec | Tree | 4.5 ± 1.0 | 13.3 ± 1.8 | 2.8 ± 0.6 |
Myrcia bella Cambess. | Myrtaceae | Sd | Tree | 4.5 ± 0.5 | 11.9 ± 0.5 | 5.7 ± 2.5 |
Myrcia guianensis (Aubl.) DC. | Myrtaceae | Ev | Shrub | 2.1 ± 0.1 | 2.9 ± 0.2 | 1.8 ± 0.3 |
Piptocarpha rotundifolia (Less.) Baker | Asteraceae | Ev | Tree | 3 ± 0.3 | 14.6 ± 3.5 | 7.5 ± 3.2 |
Qualea grandiflora Mart. | Vochysiaceae | Dec | Tree | 5.8 ± 0.7 | 26.7 ± 4.7 | 13.5 ± 9.2 |
Roupala montana Aubl. | Proteaceae | Ev | Tree | 3.0 ± 0.5 | 6.3 ± 1.5 | 6.6 ± 2.6 |
Response Variable | Fixed Factor | Estimate | SE | t-Value | p-Value | Graph |
---|---|---|---|---|---|---|
sqrt Hydraulic vessel diameter | Organ (root–stem) | 0.16 | 0.33 | 0.47 | 0.64 | Figure 2A |
Organ_diameter | 0.01 | 0.04 | 0.20 | 0.84 | ||
Plant_height | 0.38 | 0.24 | 1.61 | 0.11 | ||
Vessel fraction | Organ (root–stem) | 0.00 | 0.00 | 0.37 | 0.72 | Figure 2B |
Organ_diameter | 0.00 | 0.00 | 0.51 | 0.62 | ||
Plant_height | 0.00 | 0.00 | 1.69 | 0.10 | ||
log Vessel density | Organ (root–stem) | 0.10 | 0.12 | 0.75 | 0.46 | Figure 2C |
Organ_diameter | −0.03 | 0.01 | −2.15 | 0.04 | ||
Plant_height | 0.03 | 0.09 | 0.32 | 0.75 | ||
Fiber fraction | Organ (root–stem) | −0.07 | 0.03 | −2.54 | 0.02 | Figure 2D |
Organ_diameter | −0.00 | 0.01 | −0.13 | 0.90 | ||
Plant_height | 0.01 | 0.02 | 0.30 | 0.77 | ||
Fiber lumen diameter | Organ (root–stem) | −0.04 | 0.37 | −0.09 | 0.93 | Figure 2E |
Organ_diameter | 0.01 | 0.04 | 0.10 | 0.92 | ||
Plant_height | −0.07 | 0.26 | −0.26 | 0.80 | ||
Total parenchyma fraction | Organ (root–stem) | 0.07 | 0.03 | 2.27 | 0.05 | Figure 2F |
Organ_diameter | 0.01 | 0.01 | 0.11 | 0.78 | ||
Plant_height | −0.02 | 0.02 | −1.05 | 0.48 | ||
Fiber wall thickness | Organ (root–stem) | −0.33 | 0.21 | −1.57 | 0.07 | Figure 2G |
Organ_diameter | 0.02 | 0.23 | 0.51 | 0.55 | ||
Plant_height | 0.06 | 0.13 | 0.46 | 0.17 | ||
Ray fraction | Organ (root–stem) | 0.08 | 0.02 | 3.79 | 0.002 | Figure 2H |
Organ_diameter | 0.01 | 0.01 | 2.75 | 0.04 | ||
Plant_height | −0.02 | 0.02 | −1.53 | 0.06 | ||
sqrt Ray density | Organ (root–stem) | 0.02 | 0.09 | 0.18 | 0.97 | Figure 2I |
Organ_diameter | 0.02 | 0.01 | 2.19 | 0.05 | ||
Plant_height | −0.10 | 0.06 | −1.90 | 0.77 | ||
Axial parenchyma fraction | Organ (root–stem) | 0.01 | 0.02 | 0.43 | 0.72 | Figure 2J |
Organ_diameter | −0.01 | 0.02 | −0.15 | 0.76 | ||
Plant_height | −0.01 | 0.01 | −0.95 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutra, R.; Nogueira, A.; Rossi, S.; Chacon Dória, L.; Buttò, V.; Marcati, C.R. The Role of Organ and Leaf Habit on the Secondary Xylem Anatomy Variation across 15 Species from Brazilian Cerrado. Forests 2023, 14, 269. https://doi.org/10.3390/f14020269
Dutra R, Nogueira A, Rossi S, Chacon Dória L, Buttò V, Marcati CR. The Role of Organ and Leaf Habit on the Secondary Xylem Anatomy Variation across 15 Species from Brazilian Cerrado. Forests. 2023; 14(2):269. https://doi.org/10.3390/f14020269
Chicago/Turabian StyleDutra, Rafaella, Anselmo Nogueira, Sergio Rossi, Larissa Chacon Dória, Valentina Buttò, and Carmen Regina Marcati. 2023. "The Role of Organ and Leaf Habit on the Secondary Xylem Anatomy Variation across 15 Species from Brazilian Cerrado" Forests 14, no. 2: 269. https://doi.org/10.3390/f14020269
APA StyleDutra, R., Nogueira, A., Rossi, S., Chacon Dória, L., Buttò, V., & Marcati, C. R. (2023). The Role of Organ and Leaf Habit on the Secondary Xylem Anatomy Variation across 15 Species from Brazilian Cerrado. Forests, 14(2), 269. https://doi.org/10.3390/f14020269